Date
Time

Start Time: 08:30 am GMT

End Time: 13:30 pm GMT

Venue
Online

Machine Learning and Anomaly Detection

Announcement from the EAA organiser:

Machine Learning (ML) allows computers to process data, analyse it in real time and learn and make decisions based on data. Diverse applications from self-driving cars to chess computers have successfully relied on ML.

While the insurance industry is not necessarily known for being particularly innovative, insurance companies are increasingly embracing approaches commonly used in ML to address business challenges in different areas. Actuaries and data scientists apply ML to claim management, underwriting or customer service.

Nowadays, both data and models can be processed much faster than before which means data-driven approaches to actuarial modelling are being increasingly adopted by the insurance companies. The amount of data being used by insurance companies for different purposes has increased exponentially. As such, it is becoming more difficult for actuaries to identify anomalies in data, models and outputs. For example, some insurers apply Least Square Monte Carlo methods to derive their Net Asset Value and Best Estimate Liability proxy models. These models take a huge amount of data to perform complex calculations. It is not possible for actuaries to understand bad data and model behaviour by using traditional methods given the amount of data involved.

In this web session, we are going to discuss how techniques commonly used by data scientist in ML applications can help actuaries detect/remove bad data and significantly improve forecasting abilities of modern actuarial models.

This course is for professionals who process large amounts of data in actuarial models and would like to apply Machine Learning techniques to detect anomalies in their data in an automated way. No prior Machine Learning knowledge is a prerequisite for our course.

In our first lecture, we will introduce our audience to some useful data clustering and anomaly detection techniques. On this foundation, our second lecture will be dedicated to practical applications of these methods in an automated Solvency II Internal Model calculation workflow. In particular, we discuss the interpretability of ML approaches and their validation.

Technical requirements: Please check with your IT department if your firewall and computer settings support web session participation (the programme Zoom is used for the web session).

Click here to register. Your early-bird registration fee is € 200.00 plus 19% VAT for bookings by 18 February 2022. After this date, the fee will be € 270.00 plus 19% VAT.

Agenda

Click here for Agenda

Biographical details

Abdal is a consultant at Milliman with over 10 years of experience working in the life insurance industry in the United Kingdom. Abdal specializes in Solvency II reporting, risk calibrations, proxy modelling and capital management and has delivered a number of projects in these areas for large UK based life insurance companies. Abdal has been working on the applications of Machine Learning techniques to the optimization of the Solvency II Internal Model SCR calculations.



Michael is a Principal with Milliman with over 15 years of experience working in the life insurance industry, notably in Germany and the United Kingdom. Michael specializes in risk modelling, e.g. in the context of Solvency II Internal Models, and actuarial systems transformation. Michael leads an R&D task force developing Machine Learning applications to actuarial modelling and reporting.

Event Type
Webinar
Speakers/Presenters
Abdal Chaudhry and Michael Leitschkis
Organizer
European Actuarial Academy - EAA