Evolutionary Estimation of a Coupled Markov Chian Credit Risk Model

There exists a range of different models for estimating and simulating credit risk transitions to optimally manage credit risk portfolios and products. In this chapter we present a Coupled Markov Chain approach to model rating transitions and thereby default probabilities of companies. As the likelihood of the model turns out to be a non-convex function of the parameters to be estimated, we apply heuristics to find the ML estimators. To this extent, we outline the model and its likelihood function, and present both a Particle Swarm Optimization algorithm, as well as an Evolutionary Optimization algorithm to maximize the likelihood function. Numerical results are shown which suggest a further application of evolutionary optimization techniques for credit risk management

University of Vienna
Length of Resource
Resource File
Ronald Hochreiter, David Wozabal
Date Published
Publication Type
Resource Type

ResourceID: 69800

< Return to Library