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Features of a valid correlation matrix

Correlation matrices:

Diagonal elements all equal 1
Matrix is symmetric
All off-diagonal elements between 1 and −1 inclusive.

A less intuitive property is that a correlation matrix must
also be positive semidefinite:

∑

i

∑

j

aiajCorr(i , j) ≥ 0 ∀ai ,aj ∈ R.

The variance of a weighted sum of random variables must
be nonnegative for all choices of real weights.
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How non-positive semidefinite matrices arise.

Reasons why a correlation matrix may not be positive
semidefinite:

Noise

Elements estimated from disparate models

Elements subjectively adjusted (to confer financial
prudence, for example)

Rounding

Incomplete data/data with many outliers

Correlation coefficients computed using inconsistent
approaches (Pearson vs Spearman)
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Norms

Starting matrix: A

Solution matrix: X

Chebychev (maximum) norm:

‖A − X‖max = max |Aij − Xij |

Frobenius norm:

‖A − X‖F =

√

√

√

√

n
∑

i ,j=1

(Aij − Xij)2
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Toy matrix.

Toy 5 × 5 correlation matrix with off-diagonal blocks of
constants.

A =













1 0.5886 −0.0292 −0.0292 −0.0292
0.5886 1 −0.0292 −0.0292 −0.0292
−0.0292 −0.0292 1 0.8267 −0.6952
−0.0292 −0.0292 0.8267 1 −0.1146
−0.0292 −0.0292 −0.6952 −0.1146 1
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Toy solution matrix

A =













1 0.5886 −0.0292 −0.0292 −0.0292
0.5886 1 −0.0292 −0.0292 −0.0292
−0.0292 −0.0292 1 0.8267 −0.6952
−0.0292 −0.0292 0.8267 1 −0.1146
−0.0292 −0.0292 −0.6952 −0.1146 1













Using the Alternating Projections Method (minimizing the
Frobenius Norm) without off-diagonal constraints:

X =













1 0.5886 −0.0289 −0.0295 −0.0290
0.5886 1 −0.0289 −0.0295 −0.0290
−0.0289 −0.0289 1 0.8101 −0.6819
−0.0295 −0.0295 0.8101 1 −0.1244
−0.0290 −0.0290 −0.6819 −0.1244 1













Frobenius distance 0.0331 Chebychev distance 0.0133
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Toy solution matrix

A =













1 0.5886 −0.0292 −0.0292 −0.0292
0.5886 1 −0.0292 −0.0292 −0.0292
−0.0292 −0.0292 1 0.8267 −0.6952
−0.0292 −0.0292 0.8267 1 −0.1146
−0.0292 −0.0292 −0.6952 −0.1146 1













Using the Alternating Projections Method (minimizing the
Frobenius Norm) with off-diagonal block constraints:

X =













1 0.5886 −0.0291 −0.0291 −0.0291
0.5886 1 −0.0291 −0.0291 −0.0291
−0.0291 −0.0291 1 0.8101 −0.6819
−0.0291 −0.0291 0.8101 1 −0.1245
−0.0291 −0.0291 −0.6819 −0.1245 1













Frobenius distance 0.0331+ Chebychev distance 0.0133+
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Current TMK approach: Igloo and ReMetrica

Iterate between Igloo and ReMetrica.

Igloo is generally very accurate in terms of the nearest
PSD matrices identified.

However Igloo unable to achieve the desired off-diagonal
block structure.

ReMetrica is able to incorporate the off diagonal block
structure but is relatively inaccurate in producing “near”
matrices.

Iterative approach is slow and requires significant manual
input.
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Semidefinite programming

Challenge can be written as an optimization problem with a
linear objective function (minimizing a norm).

Once the problem is identified to be a semidefinite
programming problem there are several algorithms
available.

However they revolve around setting up constraints on all
elements in the correlation matrix (PSD matrix, diagonal
elements of 1, symmetry and off-diagonal blocks of
constants).
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Semidefinite programming

Higham (2001) concludes that in order to compute the
nearest correlation matrix for the classical problem (no
off-diagonal blocks) we require 1

2n4 + 3
2n2 + n + 1

constraints.

This is slow for very large n (but can be done, see for
example MOSEK package in Matlab).

The complication of having fixed off-diagonal blocks adds a
considerable amount of additional constraints and hence
would require an even greater increase in execution time.

Actuarial Risk Matrices: The Nearest Positive Semidefinite Matrix



Alternating projections method

Positive semidefinite matrices (set S): classical result tells
us how to find a matrix that is positive semidefinite and
closest to a given symmetric matrix A in the Frobenius
norm:

A = M ′DM

M is an orthogonal matrix. D is a diagonal matrix.

If A is not positive semidefinite some of the diagonal
entries of D are negative.

Let D0 be a matrix obtained from D by setting all the
negative entries in D equal to 0.

Now A0 = M ′D0M is positive semidefinite and in Frobenius
norm closest to A.
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Alternating projections method

Matrices with all the diagonal elements equal to 1 (set U ):

if A0 does not have all the diagonal entries equal to 1, set
all the diagonal entries equal to 1.

Matrices with diagonal elements equal to 1 AND with
blocks of constants (set V):

if A0 does not have all the diagonal entries equal to 1, set
all the diagonal entries equal to 1.

if A0 does not have all its entries in a given block equal,
compute the average of the entries of A in this block and
put all entries in the block equal to the average.
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Alternating projections method

Assume that you want to find a matrix that is the closest to
a given matrix A and is contained in the intersection of sets
S and V:

S: PSD matrices
V: matrices with diagonal elements equal to 1 and
off-diagonal blocks of constants.

We know (separately) how to find a closest point in S and
how to find a closest point in V

But we don’t know how to simultaneously find a closest
point in the intersection of S and V.

Hence we ALTERNATE between the two PROJECTIONS...
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Alternating projections method

Hence we ALTERNATE between the two PROJECTIONS

PS(A)

PV(PS(A))

PS(PV(PS(A))) ...

If this process converges, the dual objectives are satisfied
(typical convergence criterion is that maximum individual
element change between two successive iterations is less
than 5 × 10−5).

Make sure to terminate the algorithm on a matrix projection
into S !!

Some harder math: Dykstra’s projection algorithm to
guarantee convergence.
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Results: Alternating projections method

APM1: classical approach (ignores off-diagonal blocks of
constants).
APM2: preserves off-diagonal blocks of constants.

Table : Comparison of Results on Sample Matrix A1: dimension
155 × 155

min eig(X1) ‖A1 − X1‖F ‖A1 − X1‖max Time
TMK −3.05E − 16 1.0528 0.038 ≈ 4 hours
APM1 1.00E − 07 0.6756 0.0415 0.2064 s
APM2 1.00E − 07 0.7956 0.0468 3.204 s
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Minimizing Chebychev norm

APM described above gives an optimal solution in the
Frobenius norm fairly quickly, so that problem is
satisfactorily addressed.

However there still remains the outstanding question: how
to deal with other matrix norms, most notably the
Chebychev norm ?

Least Maximum Norm algorithm is one possibility
(Fmincom package in MATLAB) but as with semidefinite
programming is very slow.

Instead we try to optimise for Chebychev norm using the
(much faster) tools already developed (and one new one)
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Minimizing Chebychev norm within APM: approach 1 -
the crude method

Approach 1 (crude): record the maximum (Chebychev)
norm at each iteration of the APM.

The minimal Chebychev norm among all the matrices
produced in the APM iterations will typically occur before
convergence to the minimal Frobenius norm.
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Minimizing Chebychev norm within APM: approach 1 -
the crude method

Alternating Projection Method Iterations
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Minimizing Chebychev norm within APM: approach 2 -
shrinking method

A convex combination of our original matrix A (perfect in
Chebychev norm, but not positive definite) and some
positive definite matrix B:

C(t) = (1 − t)A + tB

t = 0: just returns the original matrix C(0) = A.
t = 1: guaranteed positive definite matrix C(1) = B.

There exists (a minimal) t∗ in (0,1) such that C(t) is
positive definite for all t > t∗.

C(t∗) is the closest (in any norm) positive semidefinite
matrix to A among all matrices of the form (1 − t)A + tB.

Two challenges: how to find t∗ and what to use for B.
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The shrinking method: finding t∗ - the bisection
method

C(0) is not PSD and C(1) is.

Check if C(1/2) is PSD.

If C(1/2) is PSD check if C(1/4) is PSD.
If C(1/4) is PSD check C(1/8), otherwise check C(3/8)...

If C(1/2) is not PSD check if C(3/4) is PSD.
If C(3/4) is PSD check C(5/8), otherwise check C(7/8)...
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The shrinking method: finding B

We want B to be close to A and PSD, can do this using
APM.

But now we no longer need (or want) the minimal
eigenvalue to be 0.

Exploit this by gradually increasing the minimal eigenvalue
of B and recording the maximum (Chebychev) norm for the
answer.

In this way an optimal minimal eigenvalue and
accompanying B is identified.
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Results: shrinking method
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Results: shrinking method
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Minimizing Chebychev norm within APM: approach 3
??

Join Approach 1 (checking Chebychev norm values as
APM progresses) and Approach 2 (Shrinking method):

Set B to be the matrix that is the closest in the Chebyshev
norm to A in the iterative process for some given
eigenvalue λ

Then as before increase λ.

C(t) = (1 − t)A + tB
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Another open idea...

Not all risks are created equal.

Large positive correlations in the starting matrix A point to
risk pairings that are more inclined to simultaneously
materialise in large losses.

Amend the algorithms to prioritise “nearness” among these
cell pairings.

Could have a weighted Frobenius norm with higher weights
on positive values in A...

...or an adapted Chebychev norm that only looks at
maximum deviations from positive values in A.
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Conclusions

All methods work well

The Alternating Projections Method (APM) is readily
applicable and is optimal in terms of convergence speed.

APM has linear convergence rate, but still very efficient.

APM minimizes Frobenius norm - must track Chebychev
norm and corresponding matrices if minimization of latter
is the goal.

The Semidefinite Progrmaming (SDP) method proved to
be as accurate as the APM (same resultant matrices).

However SDP significantly slower than APM.

Shrinking method appears to hold promise for minimizing
Chebychev norm when using APM.
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Upcoming talks and publication

Our paper will be under review and a draft available on
ArXiV soon !

Planned presentations at:

Society of Actuaries in Ireland
Tomorrow !

51st Actuarial Research Conference (Society of Actuaries)
University of Minneapolis, July 2016.

GIRO 2016 (Institute and Faculty of Actuaries)
Dublin, September 2016.

Updated slides available on request.
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Thank you
Mr Brian Heffernan and Mr Tetsushi Imatomi,

TokioMarine Kiln.

Questions and Discussion
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