## Actuarial Risk Matrices: The Nearest Positive Semidefinite Matrix Problem.

## Dr. Adrian O'Hagan, Stefan Cutajar and Dr Helena Smigoc

School of Mathematics and Statistics
University College Dublin
Ireland
adrian.ohagan@ucd.ie

April, 2016

## Features of a valid correlation matrix

- Correlation matrices:

Diagonal elements all equal 1
Matrix is symmetric
All off-diagonal elements between 1 and -1 inclusive.

- A less intuitive property is that a correlation matrix must also be positive semidefinite:

$$
\sum_{i} \sum_{j} a_{i} a_{j} \operatorname{Corr}(i, j) \geq 0 \quad \forall a_{i}, a_{j} \in \mathbf{R} .
$$

The variance of a weighted sum of random variables must be nonnegative for all choices of real weights.

## How non-positive semidefinite matrices arise.

Reasons why a correlation matrix may not be positive semidefinite:

- Noise
- Elements estimated from disparate models
- Elements subjectively adjusted (to confer financial prudence, for example)
- Rounding
- Incomplete data/data with many outliers
- Correlation coefficients computed using inconsistent approaches (Pearson vs Spearman)


## Starting matrix: $A$

Solution matrix: $X$

- Chebychev (maximum) norm:

$$
\|A-X\|_{\max }=\max \left|A_{i j}-X_{i j}\right|
$$

- Frobenius norm:

$$
\|A-X\|_{F}=\sqrt{\sum_{i, j=1}^{n}\left(A_{i j}-X_{i j}\right)^{2}}
$$

## Toy matrix.

Toy $5 \times 5$ correlation matrix with off-diagonal blocks of constants.

$$
A=\left(\begin{array}{ccccc}
1 & 0.5886 & -0.0292 & -0.0292 & -0.0292 \\
0.5886 & 1 & -0.0292 & -0.0292 & -0.0292 \\
-0.0292 & -0.0292 & 1 & 0.8267 & -0.6952 \\
-0.0292 & -0.0292 & 0.8267 & 1 & -0.1146 \\
-0.0292 & -0.0292 & -0.6952 & -0.1146 & 1
\end{array}\right)
$$

## Toy solution matrix

$$
A=\left(\begin{array}{ccccc}
1 & 0.5886 & -0.0292 & -0.0292 & -0.0292 \\
0.5886 & 1 & -0.0292 & -0.0292 & -0.0292 \\
-0.0292 & -0.0292 & 1 & 0.8267 & -0.6952 \\
-0.0292 & -0.0292 & 0.8267 & 1 & -0.1146 \\
-0.0292 & -0.0292 & -0.6952 & -0.1146 & 1
\end{array}\right)
$$

Using the Alternating Projections Method (minimizing the
Frobenius Norm) without off-diagonal constraints:

$$
X=\left(\begin{array}{ccccc}
1 & 0.5886 & -0.0289 & -0.0295 & -0.0290 \\
0.5886 & 1 & -0.0289 & -0.0295 & -0.0290 \\
-0.0289 & -0.0289 & 1 & 0.8101 & -0.6819 \\
-0.0295 & -0.0295 & 0.8101 & 1 & -0.1244 \\
-0.0290 & -0.0290 & -0.6819 & -0.1244 & 1
\end{array}\right)
$$

Frobenius distance 0.0331 Chebychev distance 0.0133

## Toy solution matrix

$$
A=\left(\begin{array}{ccccc}
1 & 0.5886 & -0.0292 & -0.0292 & -0.0292 \\
0.5886 & 1 & -0.0292 & -0.0292 & -0.0292 \\
-0.0292 & -0.0292 & 1 & 0.8267 & -0.6952 \\
-0.0292 & -0.0292 & 0.8267 & 1 & -0.1146 \\
-0.0292 & -0.0292 & -0.6952 & -0.1146 & 1
\end{array}\right)
$$

Using the Alternating Projections Method (minimizing the Frobenius Norm) with off-diagonal block constraints:

$$
X=\left(\begin{array}{ccccc}
1 & 0.5886 & -0.0291 & -0.0291 & -0.0291 \\
0.5886 & 1 & -0.0291 & -0.0291 & -0.0291 \\
-0.0291 & -0.0291 & 1 & 0.8101 & -0.6819 \\
-0.0291 & -0.0291 & 0.8101 & 1 & -0.1245 \\
-0.0291 & -0.0291 & -0.6819 & -0.1245 & 1
\end{array}\right)
$$

Frobenius distance $0.0331+\quad$ Chebychev distance $0.0133+$

## Current TMK approach: Igloo and ReMetrica

- Iterate between Igloo and ReMetrica.
- Igloo is generally very accurate in terms of the nearest PSD matrices identified.
- However Igloo unable to achieve the desired off-diagonal block structure.
- ReMetrica is able to incorporate the off diagonal block structure but is relatively inaccurate in producing "near" matrices.
- Iterative approach is slow and requires significant manual input.


## Semidefinite programming

- Challenge can be written as an optimization problem with a linear objective function (minimizing a norm).
- Once the problem is identified to be a semidefinite programming problem there are several algorithms available.
- However they revolve around setting up constraints on all elements in the correlation matrix (PSD matrix, diagonal elements of 1 , symmetry and off-diagonal blocks of constants).


## Semidefinite programming

- Higham (2001) concludes that in order to compute the nearest correlation matrix for the classical problem (no off-diagonal blocks) we require $\frac{1}{2} n^{4}+\frac{3}{2} n^{2}+n+1$ constraints.
- This is slow for very large $n$ (but can be done, see for example MOSEK package in Matlab).
- The complication of having fixed off-diagonal blocks adds a considerable amount of additional constraints and hence would require an even greater increase in execution time.


## Alternating projections method

- Positive semidefinite matrices (set $\mathcal{S}$ ): classical result tells us how to find a matrix that is positive semidefinite and closest to a given symmetric matrix $A$ in the Frobenius norm:

$$
A=M^{\prime} D M
$$

- $M$ is an orthogonal matrix. $D$ is a diagonal matrix.
- If $A$ is not positive semidefinite some of the diagonal entries of $D$ are negative.
- Let $D_{0}$ be a matrix obtained from $D$ by setting all the negative entries in $D$ equal to 0 .
- Now $A_{0}=M^{\prime} D_{0} M$ is positive semidefinite and in Frobenius norm closest to $A$.


## Alternating projections method

- Matrices with all the diagonal elements equal to 1 (set $\mathcal{U}$ ): if $A_{0}$ does not have all the diagonal entries equal to 1 , set all the diagonal entries equal to 1 .
- Matrices with diagonal elements equal to 1 AND with blocks of constants (set $\mathcal{V}$ ):
if $A_{0}$ does not have all the diagonal entries equal to 1 , set all the diagonal entries equal to 1.
if $A_{0}$ does not have all its entries in a given block equal, compute the average of the entries of $A$ in this block and put all entries in the block equal to the average.


## Alternating projections method

- Assume that you want to find a matrix that is the closest to a given matrix $A$ and is contained in the intersection of sets $\mathcal{S}$ and $\mathcal{V}$ :
- $\mathcal{S}$ : PSD matrices
$\mathcal{V}$ : matrices with diagonal elements equal to 1 and off-diagonal blocks of constants.
- We know (separately) how to find a closest point in $\mathcal{S}$ and how to find a closest point in $\mathcal{V}$
- But we don't know how to simultaneously find a closest point in the intersection of $\mathcal{S}$ and $\mathcal{V}$.
- Hence we ALTERNATE between the two PROJECTIONS...


## Alternating projections method

- Hence we ALTERNATE between the two PROJECTIONS
$P_{\mathcal{S}}(A)$
$P_{\mathcal{V}}\left(P_{\mathcal{S}}(A)\right)$
$P_{\mathcal{S}}\left(P_{\mathcal{V}}\left(P_{\mathcal{S}}(A)\right)\right) \ldots$
- If this process converges, the dual objectives are satisfied (typical convergence criterion is that maximum individual element change between two successive iterations is less than $5 \times 10^{-5}$ ).
- Make sure to terminate the algorithm on a matrix projection into $\mathcal{S}$ !!
- Some harder math: Dykstra's projection algorithm to guarantee convergence.


## Results: Alternating projections method

APM1: classical approach (ignores off-diagonal blocks of constants).
APM2: preserves off-diagonal blocks of constants.

Table : Comparison of Results on Sample Matrix $A_{1}$ : dimension $155 \times 155$

|  | $\min \operatorname{eig}\left(X_{1}\right)$ | $\left\\|A_{1}-X_{1}\right\\|_{F}$ | $\left\\|A_{1}-X_{1}\right\\|_{\max }$ | Time |
| :--- | :--- | :--- | :--- | :--- |
| TMK | $-3.05 E-16$ | 1.0528 | 0.038 | $\approx 4$ hours |
| APM1 | $1.00 E-07$ | 0.6756 | 0.0415 | 0.2064 s |
| APM2 | $1.00 E-07$ | 0.7956 | 0.0468 | 3.204 s |

## Minimizing Chebychev norm

- APM described above gives an optimal solution in the Frobenius norm fairly quickly, so that problem is satisfactorily addressed.
- However there still remains the outstanding question: how to deal with other matrix norms, most notably the Chebychev norm?
- Least Maximum Norm algorithm is one possibility (Fmincom package in MATLAB) but as with semidefinite programming is very slow.
- Instead we try to optimise for Chebychev norm using the (much faster) tools already developed (and one new one)


## Minimizing Chebychev norm within APM: approach 1 the crude method

- Approach 1 (crude): record the maximum (Chebychev) norm at each iteration of the APM.
- The minimal Chebychev norm among all the matrices produced in the APM iterations will typically occur before convergence to the minimal Frobenius norm.


## Minimizing Chebychev norm within APM: approach 1 the crude method



Actuarial Risk Matrices: The Nearest Positive Semidefinite Matrix

## Minimizing Chebychev norm within APM: approach 2 shrinking method

- A convex combination of our original matrix $A$ (perfect in Chebychev norm, but not positive definite) and some positive definite matrix $B$ :

$$
C(t)=(1-t) A+t B
$$

$t=0$ : just returns the original matrix $C(0)=A$.
$t=1$ : guaranteed positive definite matrix $C(1)=B$.

- There exists (a minimal) $t^{*}$ in $(0,1)$ such that $C(t)$ is positive definite for all $t>t^{*}$.
- $C\left(t^{*}\right)$ is the closest (in any norm) positive semidefinite matrix to $A$ among all matrices of the form $(1-t) A+t B$.
- Two challenges: how to find $t^{*}$ and what to use for $B$.


## The shrinking method: finding $t^{*}$ - the bisection method

- $C(0)$ is not PSD and $C(1)$ is.
- Check if $C(1 / 2)$ is PSD.
- If $C(1 / 2)$ is PSD check if $C(1 / 4)$ is PSD.

If $C(1 / 4)$ is PSD check $C(1 / 8)$, otherwise check $C(3 / 8)$...

- If $C(1 / 2)$ is not PSD check if $C(3 / 4)$ is PSD. If $C(3 / 4)$ is PSD check $C(5 / 8)$, otherwise check $C(7 / 8)$...


## The shrinking method: finding $B$

- We want $B$ to be close to $A$ and PSD, can do this using APM.
- But now we no longer need (or want) the minimal eigenvalue to be 0 .
- Exploit this by gradually increasing the minimal eigenvalue of $B$ and recording the maximum (Chebychev) norm for the answer.
- In this way an optimal minimal eigenvalue and accompanying $B$ is identified.


## Results: shrinking method

Figure: Chebychev Distance progression between min eig 0 to 0.5


## Results: shrinking method

Figure: Chebychev Distance progression between min eig 0 to 0.5


## Minimizing Chebychev norm within APM: approach 3

??

- Join Approach 1 (checking Chebychev norm values as APM progresses) and Approach 2 (Shrinking method):
- Set $B$ to be the matrix that is the closest in the Chebyshev norm to $A$ in the iterative process for some given eigenvalue $\lambda$
- Then as before increase $\lambda$.

$$
C(t)=(1-t) A+t B
$$

## Another open idea...

- Not all risks are created equal.
- Large positive correlations in the starting matrix A point to risk pairings that are more inclined to simultaneously materialise in large losses.
- Amend the algorithms to prioritise "nearness" among these cell pairings.
- Could have a weighted Frobenius norm with higher weights on positive values in $A . .$.
- ...or an adapted Chebychev norm that only looks at maximum deviations from positive values in $A$.


## Conclusions

- All methods work well
- The Alternating Projections Method (APM) is readily applicable and is optimal in terms of convergence speed.
- APM has linear convergence rate, but still very efficient.
- APM minimizes Frobenius norm - must track Chebychev norm and corresponding matrices if minimization of latter is the goal.
- The Semidefinite Progrmaming (SDP) method proved to be as accurate as the APM (same resultant matrices).
- However SDP significantly slower than APM.
- Shrinking method appears to hold promise for minimizing Chebychev norm when using APM.


## Upcoming talks and publication

- Our paper will be under review and a draft available on ArXiV soon!
- Planned presentations at:

Society of Actuaries in Ireland Tomorrow !

51st Actuarial Research Conference (Society of Actuaries) University of Minneapolis, July 2016.

GIRO 2016 (Institute and Faculty of Actuaries) Dublin, September 2016.

- Updated slides available on request.


# Thank you <br> Mr Brian Heffernan and Mr Tetsushi Imatomi, TokioMarine Kiln. 

## Questions and Discussion

