

Society of Actuaries in Ireland

Review of the Titanic Competition

15th February 2016

Agenda

- Data Analytics in the Society of Actuaries
- Team ZLAP
- Deloitte GI Team
- Where Can I Get More?

Disclaimer:

The material, content and views in the following presentation are those of the presenter(s).

Data Analytics in the Society of Actuaries

- Wider Fields Committee and Data Analytics subgroup.
- Past events:
 - Who is the driver?
 - Titanic Competition Workshop
- Future events

Disclaimer:

The material, content and views in the following presentation are those of the presenter(s).

Society of Actuaries in Ireland

Titanic: Machine Learning from Disaster Team ZLAP

15th February 2016

Introduction

- Team ZLAP
 - Nicholas Clarke
 - Patrick Mangan
 - Julianne Harrington

Product Solutions

Data Analytics

Data Analytics

The Problem

• Predict survival on the Titanic

- Analyse which groups of passengers were likely to survive
- Apply the tools of machine learning to make predictions about survival
- Data split into a 'training set' and a 'test set'
- Training set includes the outcome for each passenger
- Use training set to build our model to generate predictions for the test set

- IPython Notebook
 - Powerful
 - Fast
 - Flexible
 - Open-source
 - Bundle your analysis in one file
 - A range of packages like Pandas, NumPy, SciPy, Scikit-Learn, Matplotlib,
 Statsmodels

- 891 train / 418 test
- Variables:
 - Name
 - Sex
 - Age
 - Number of Siblings/Spouses Aboard
 - Number of Parents/Children Aboard
 - Ticket Number
 - Passenger Fare
 - Cabin
 - Port of Embarkation

- Extracting title from name
- Family grouping
 - Survival status of family members (spouse, parent/child)
- Normalising data
 - Log(fare)
 - Log(fare) outside 2 standard deviations
- Categorical Variables
 - Child
 - Lone traveller

- Averaging across sub groups
- Randomised Lasso Regression
 - Modelling ages
 - Automatic feature selection

- Men, women, and children were modelled separately.
 - Allowed for group-specific covariates to be created.
 - Less data in each group for cross-validation.
 - Some covariates have different meanings/strengths for each of the groups.
- Avenues not explored:
 - Ethnicity/language
 - Matching by tickets

Models Used

- Logistic Regression
 - Widely used, reasonably simple classifier.
 - Models the *probability* that a passenger survives.
- Decision Trees
 - Uses consecutive "splitting" rules to classify data points.
 - Tree is then "pruned" (via cross-validation) to avoid over-fitting.
 - Even still, decision trees suffer from high variance!
- Bagging / Random Forests
 - Bootstrapping ("bagging") helps reduce variance.
 - Random Forests then decorrelates the trees.
- Ensemble Learning

Support Vector Machines

A Simple Classification Problem

We want to find the separating hyperplane.

Support Vector Machines

SVM looks for the *maximal margin hyperplane*.

Support Vector Machines

A Slightly Less Simple Classification Problem

- Not possible/prudent to correctly classify all training points
 - Some data points will be on the wrong side of the hyperplane.
- How much do we want to avoid misclassification?
 - If 9/10 1st class women survived in our training set, should we predict all 1st class women to survive?
- How much influence should each individual training point have?
 - Does the fate of a 1st class 20 year-old tell us anything about the fate of a 1st class 21 year-old? What about a 30 year-old?

Model Specifics

- Men, women, and children were modelled separately.
- Features used were:
 - Women: Social class, age, log(fare), log(fare) outside 2sd, title, lone traveller, pensioner, husband's fate, husband's title, children's fate
 - Children: Social class, gender, log(fare), log(fare) outside 2sd, age, toddler, mother's fate, father's fate, father's title, siblings' fate, lone traveller
 - Men: Gender...

- Our Score
 - Public Score: 0.82297

i.e. our model correctly predicts survival for 82.3% of the passengers

	A	B	C	D	E
1	PassengerID	Survived			
2	892	0			
3	893	0			
4	894	0			
5	895	0			
6	896	1			
7	897	0			
8	898	0			
9	899	0			
10	900	1			
11	901	0			
12	902	0			
13	903	0			
14	904	1			
15	905	0			
16	906	1			
17	907	1			
18	908	0			
19	909	0			
20	910	0			
21	911	0			
22	912	0			
23	913	1			
		c / 01 /			

Any Questions?

Society of Actuaries in Ireland

Titanic: Machine Learning from Disaster Deloitte GI

15th February 2016

- Team introduction
- Overview of software used
- Overview of general approach
- Challenges
- Next steps / future improvements

Software and Resources

- Excel
 - Exploratory analysis
 - One-way tables, two-way tables
- R
 - Feature engineering
 - Data adjustments
 - Model training
 - Model testing
 - Model output for submission to Kaggle
- Useful Resources
 - Kaggle tutorial and forums
 - R help files
 - SAI workshop

Exploratory analysis

Passengerld Sur	Sex	Age	SibSp Parch		Ticket	Fare Cabi	Embarked		
31	0	1 Uruchurtu, Don. Manuel E	male	40	0	0	PC 17601	27.7208	С
246	0	1 Minahan, Dr. William Edward	male	44	2	0	19928	90 C78	Q
746	0	1 Crosby, Capt. Edward Gifford	male	70	1	1	WE/P 5735	71 B22	S
17	0	3 Rice, Master. Eugene	male	2	4	1	382652	29.125	Q
1	0	3 Braund, Mr. Owen Harris	male	22	1	0	A/5 21171	7.25	S
2	1	1 Cumings, Mrs. John Bradley (Florence Briggs Thayer)	female	38	1	0	PC 17599	71.2833 C85	С
3	1	3 Heikkinen, Miss. Laina	female	26	0	0	STON/O2. 3101282	7.925	S

Exploratory analysis

• One-way and two-way tables used to identify variables of statistical significance

• Missing and incomplete data fields were identified e.g. Age, location embarked, fare.

Feature engineering

- Engineered new variables based on the data available:
 - Title: Indicator of sex and age.
 - Extracted from passenger name
 - Less common/rare titles grouped *e.g. 'Capt', 'Don', 'Major' grouped in with 'Sir'.*

- Family Size:

• # of siblings + # of parents + 1

- Family ID:

- Family name & size
- "Small" for 2 or less (or erroneous data)

Data adjustments

- Data adjustments were carried out in R, to estimate missing and incomplete data items:
 - Age:
 - ~20% of passengers have blank ages
 - Filled in blanks using decision tree (utilised engineering variables)
 - Key data adjustment.

– Location Embarked:

• Information for two passengers missing –assumed embarked at most popular location (Southampton).

– Fare:

• One fare missing – assumed median fare.

Model training – An iterative process!

Model training – Decision tree

х

- Problem with decision trees
 - May miss 'optimal' solution
 - Prone to overfitting

- Random forests
 - Multiple decision trees
 - Random subset of variables used
 - Random subset of data used
 - Returns mode output of all trees
 - Corrects for overfitting

- $\eta_i = \beta_0 + \beta_1 \operatorname{Age}_i + \beta_2 \operatorname{Title}_i + \dots + \beta_5 (\operatorname{Sex}_i * \operatorname{Class}_i) + \dots$
- $\mathbb{P}(\text{Survived}) = \frac{1}{1+e^{-\eta_i}}$
- Predict passenger survived if $\mathbb{P}(Survived) > 0.55$
- 0.55 threshold based on value which maximised

Accuracy = $\frac{(\# \text{ of } \text{True} - \text{ve}) + (\# \text{ of } \text{True} + \text{ve})}{\text{Total } \# \text{ of observations}}$

- Final model = vote across the 3 models
 - 0/3 or 1/3 survive –> DIED
 - 2/3 or 3/3 survive –> SURVIVE

Set of weak learners = strong learner?

Combined Model Result: 81.8%

- Limitations existed:
 - Time
 - Resource
- Possible next steps / enhancements:
 - Further cleansing of data
 - Enhanced feature engineering
 - Further model testing, identifying insignificant variables.
 - Combining algorithms
 - Additional algorithms e.g. LDA

Conclusion

- Key step: data cleaning, feature engineering
- Diminishing marginal returns of predictive power
- Furthered knowledge of machine learning and R
- Actuarial skillset highly transferable to data analytics

Where Can I Get More?

- Formal education: UCD Msc Data Analytics, UCD Business School MSc in Business Analytics, DIT Msc Computing (Data Analytics)
- Web: Kaggle, KDNuggets, UCI Machine Learning Repository, R-Bloggers, numerous sites for online courses such as Coursera, LinkedIn groups, etc.
- MeetUp Groups: Dublin R, Data Scientists Ireland, Deep Learning Dublin, Dublin Data Science Beginners, Machine Learning Dublin, Hadoop User Group Ireland, and many more!
- Dublin R: San Francisco Crime Database exploration 24th February.

Disclaimer:

The material, content and views in the following presentation are those of the presenter(s).