

Society of Actuaries in Ireland

Who is the driver? - Applying data analytics to actuarial and insurance challenges

Thursday 25 June

Actuaries' core competence

Analyse the financial consequences of uncertain future events

Common problems solved

- "Model uncertainty" we develop models to help prioritise and make business choices
- "Make data talk" we use data to derive business insights and drive evidencebased change
- "Quantify complex risks and uncertainty"

 we help quantify and manage volatile business risks and uncertainty

Big data and analytics are impacting on insurance

The insurance sector has a long history of creating and leveraging mostly domain-specific, data-oriented models

"Insurance is the most obvious" industry "about to explode" with uses for big data (Eric Schmidt, Google Chairman)

How Big Data is impacting insurance market?

Shaping the competition landscape

The data explosion has created a new ecosystem of data sources incorporating a diverse range of new players from telecommunications, retail and automotive companies, to domain-specific data providers and aggregators

Opening new market opportunities

The application of analytical techniques to available data gives visibility on more forward-looking business opportunities. Examples include capital modelling and economic scenario and catastrophe simulations.

Rethinking the products

Organisations are looking at how big data can drive development of new products, such as those based on longer term policies (e.g. life assurance, consumer healthcare) and smart technology provision (e.g. car insurance)

Actuaries and the data science community

- There is a vibrant data science/analytics community
- The data science community thrives on exchange and challenge, e.g. Kaggle as main platform of data science competitions posted by Fortune 500 companies
- Actuaries are still focused on our own community
- Recent actuarial graduates are flexible and better trained to actively participate and benefit
- How can we trigger an interest and get our members interested and involved in these communities?

The Titanic Competition

Knowledge • 2,937 teams Titanic: Machine Learning from Disaster

Fri 28 Sep 2012

Thu 31 Dec 2015 (6 months to go)

- An ideal starting point for those interested in data analytics.
- "In this challenge, we ask you to complete the analysis of what sorts of people were likely to survive. In particular, we ask you to apply the tools of machine learning to predict which passengers survived the tragedy."
- No cash prize but knowledge.
- Tutorials available in data analytics, R and Python.
- The competition runs from 1st July to 31st December.
- Contact Emily O'Gara at <u>emily.ogara@actuaries.ie</u> if you would like to join.

Next Steps

- Join the competition!
- September Titanic workshop
- End of competition event share your experience!

- "R is a language and environment for statistical computing and graphics." (<u>www.r-project.org</u>)
- Why R? R is free, portable, flexible, widely used and fit for purpose. There are many libraries and tutorials freely available online
- What are the alternatives?
 - Free: RapidMiner, SAS University Edition, Julia...
 - Not so free: SAS, SPSS, Mathematica, STATA...

Who is the driver?

Applying data analytics to actuarial and insurance challenges

Gábor Stikkel

Society of Actuaries in Ireland, Featured Event

7/1/2015

Who am I?

Az 1994/95. évi matematika Országos Középiskolai Tanulmányi Verseny eredményei

- I. díj: Németh Sándor Géza, IV. o., Vác, Boronkay György Műszaki Szakközépiskola, felkészítő tanár: Benedek Ilona
- II. díj: Zaupper Bence, III. o., Győr, Krúdy Gyula Gimnázium és Vendéglátóipari Szki., felkészítő tanár: Babarczi Imréné
- III. díj: Bányai Attila, IV. o., Kaposvár, Eötvös Loránd Műszaki Középiskola, felkészítő tanár: Demeter László
- 4. Kiss Béla, II. o., Vác, Boronkay György Műszaki Szakközépiskola, felkészítő tanár: Újvári István
- 5. Kiss Olivér, IV. o., Debrecen, Mechwart András Gépipari Műszaki Szki., felkészítő tanár: dr. Rutovszky Ede
- 6. Stikkel Gábor, III. o., Eger, Neumann János Közgazdasági Szki. és Gimnázium, felkészítő tanár: Máté Mihályné

Agenda

- AXA Driver Telematics competition on Kaggle
 - Insurance related data science competitions and use cases
- Importance of data analytics in other industries
- Basic skills required to be a data scientist
 - Profile of a 'typical' data analyst
- Software tools for applying data science
 - R Studio
 - A basic solution for the Titanic competition
- Summary

Data science competitions

- Netflix prize: 1 000 000 USD to improve movie recommendations by 10%, 2009
- Foundation of <u>Kaggle</u>, 2010
 - Crowdsourcing predictive modeling
 - Has 326 000+ members
 - Selling data analytics service of the best performed
 - Hosted 179 competitions

Anthony Goldbloom

Anthony John Goldbloom is the founder and CEO of Kaggle, a Silicon Valley start-up which has used predictive modeling competitions to solve problems for NASA, Wikipedia, Ford and Deloitte. Wikipedia

Born: June 21, 1983 (age 31), Melbourne, Australia

Education: University of Melbourne

AXA Driver Telematics Analysis

- The intent of this competition is to develop an algorithmic signature of driving type
- Come up with a "telematic fingerprint" capable of distinguishing when a trip was driven by a given driver
- Data available:
 - 2736 folder with 200 trips in each
 - the majority of the trips in one folder belongs to a
 - trip (all centered to origin, randomly rotated and
 - х,у

0.0,0.0

18.6,-11.1

36.1,-21.9

Evaluation

- Submissions (probabilities of each trip belonging to a particular driver) are judged on area under the <u>receiver</u> <u>operating curve</u> (AUC)
- The ROC area is calculated in a global manner (all predictions together)
- You should therefore aim to submit calibrated probabilities between the drivers
- Interpretation of global AUC:

Here i runs over all m data points with true label 1, and j runs over all n data points with true label 0; p[i] and p[j] denote the probability score assigned by the classifier to data point i and j, respectively.

Main strategy

- Assume that all 200 trips were driven by the same driver, label them as 1
- Select trips from other drivers and label them as o
 - Strategy of how to do it can vary
- Run <u>supervised learning</u> on this dataset and gather probabilities for the first 200 trips

opt_input.R ×	Stationplot.	R* × 🛛 🖭 dtma	odel.R 🛪 🛛 🖭 de	cisiontree.R ×	🖭 genxdata.R	* × 🗌 bus1da	y 🗴 🖭 main9	_1.R × 👘 refD	ata × >> e	_
								800 observat	tions of 98 var	iables
V87	V88	V89	V90	V91	V92	V93	V94	V95	V96	t
0.006756757	0.016216216	0.004054054	0.0108108108	0.005405405	0.001351351	0.0054054054	0.0108108108	0.0013513514	57.594406	0
0.012738854	0.003184713	0.003184713	0.000000000	0.006369427	0.012738854	0.000000000	0.000000000	0.000000000	18.572335	0
0.016077170	0.003215434	0.00000000	0.000000000	0.000000000	0.00000000	0.0032154341	0.0032154341	0.000000000	8.635380	0
0.004160888	0.007628294	0.002773925	0.0027739251	0.002773925	0.002080444	0.0006934813	0.0110957004	0.0006934813	77.710441	0
0.010309278	0.005154639	0.010309278	0.0077319588	0.005154639	0.005154639	0.0128865979	0.000000000	0.0025773196	30.330611	0
0.002811621	0.002811621	0.002811621	0.0028116214	0.002811621	0.002811621	0.0028116214	0.0103092784	0.0018744142	57.491791	0
0.00000000	0.00000000	0.003105590	0.0093167702	0.00000000	0.003105590	0.000000000	0.0031055901	0.0031055901	22.033406	0
0.009157509	0.005494505	0.003663004	0.0073260073	0.003663004	0.001831502	0.0018315018	0.0036630037	0.0073260073	32.298160	0
0.006226650	0.004981320	0.007471980	0.0024906600	0.003735990	0.004981320	0.0049813200	0.0087173101	0.000000000	48.017103	0
0.006485084	0.006485084	0.003891051	0.0058365759	0.004539559	0.002594034	0.0025940337	0.0058365759	0.0038910506	111.622506	0
0.002254791	0.002254791	0.004509583	0.000000000	0.001127396	0.002254791	0.0022547914	0.0045095829	0.0022547914	42.358827	0
0.007168459	0.028673835	0.003584229	0.0107526882	0.008960573	0.005376344	0.0035842294	0.0053763441	0.0017921147	39.475635	0
0.004494382	0.004494382	0.006741573	0.0089887640	0.008988764	0.017977528	0.0044943820	0.0134831461	0.0067415730	33.347581	0

Features – trip matching

Heuristics: rotate the trip to have the endpoint on y-axis and check which rectangle it can fit

Features - cont.

- Distribution of
 - acceleration (discretized: 0, 0.5, ..., 10 m/s²)
 - deceleration (-10, -9.5, ..., 0 m/s²)
 - speed (0, 2, ..., 50 m/s)
 - angles (0, 0.025, ..., 0.5 radian)
- Length of trip in seconds
- Distance of trip in meter
- Quantiles of speed (0, 10%, ..., 100%)
- Horizontal extension of rotated trip
- Vertical extension of rotated trip
- Sum of angle changes

Major milestones

In terms of AUC score:

- 0.50961: 1st submission, heuristics of trip length
- 0.62222: still heuristics of trip length and horizontal extension
- 0.69965: zscore on heuristics of trip shape, speed, acceleration
- 0.70150: Random Forest on acceleration and deceleration histograms
- 0.81130: RF on acc, dec, speed and trip length (2x200 random trips)
- 0.90307: RF on full feature set (20x40 random trips)
- 0.91237: blending 10 different RF on full feature set (20x40 random trips)

Winning features

- 0.93398 AUC (7th place) can be achieved by using
 - The derivative of acceleration: jerk
 - Centripetal acceleration
 - Tangential acceleration
 - Heading change distribution
 - Stopping time
 - Number of stops
- Ensembling with Lasso-regression instead of just averaging

Winning features and ideas

- Trip matching does count!
- Ramer-Douglas-Peucker algorithm:

function DouglasPeucker(PointList[], epsilon)					
// Find the point with the maximum distance					
dmax = 0					
index = 0					
end = length(PointList)					
for $i = 2$ to (end - 1) {					
<pre>d = shortestDistanceToSegment(PointList[i], Line(PointList[1], PointList[end]))</pre>					
if (d > dmax) {					
index = i					
dmax = d					
}					
}					
// If max distance is greater than epsilon, recursively simplify					
if (dmax > epsilon) {					
// Recursive call					
recResults[] = DouglasPeucker(PointList[1index], epsilon)					
recResults2[] = DouglasPeucker(PointList[indexend], epsilon)					
// Build the result list					
<pre>ResultList[] = {recResults1[1length(recResults1)-1] recResults2[1length(recResults2)]}</pre>					
} else {					
ResultList[] = {PointList[1], PointList[end]}					
}					
// Return the result					
return ResultList[]					
end					

Insurance related competitions

Competitior	n Name	▼ Reward	Reward <i>+</i> Teams	
	Heritage Health Prize Identify patients who will be admitted to a hospital within the next year using historical claims data. (Enter by 06:59:59 UTC Oct 4 2012)	\$500,000	1353	2 years ago
A	Liberty Mutual Group - Fire Peril Loss Cost Predict expected fire losses for insurance policies	\$25,000	634	9 months ago
	Claim Prediction Challenge (Allstate) A key part of insurance is charging each customer the appropriate price for the risk	\$10,000	102	3 years ago
Deloitte.	limited As the World Churns Predict which customers will leave an insurance company in the next 12 months.	Private	37	18 months ago

Insurance related big data use cases

• <u>PWC's approach</u> to cure churn:

- <u>Smartcasco</u>: cellphone assisted car insurance (30% cheaper than normal)
- Liberty Mutual Insurance and Nest <u>Partner to Reward Customers</u> For Protecting Their Homes With Innovative Technology

A possible application of driver's signature

Importance of data analytics in other industries

- Data is the new oil
- Data is the new gold
- <u>Report</u> from McKinsey Global Institute (2011) on Big Data claims it is the next frontier for innovation, competition, and productivity
- The trend is visible everywhere: from <u>telecom</u> through <u>agriculture</u> to <u>psychology</u>
 - <u>Connected vehicle cloud</u> platform for pay-as-you-go car insurance policies
- Even following blogs on big data is time consuming ⁽ⁱ⁾
 - Paco Nathan
 - Bernard Marr

Data is the new gold

Gartner, August 2014

Agenda

- AXA Driver Telematics competition on Kaggle
 - Insurance related data science competitions
- Importance of data analytics in other industries
- Basic skills required to be a data scientist
 - Profile of a 'typical' data analyst
- Software tools for applying data science
 - R Studio
 - A basic solution for the Titanic competition
- Summary

Data science Venn diagram

Data Scientist (n.): Person who is better at statistics than any software engineer and better at software engineering than any statistician.

http://drewconway.com/zia/2013/3/26/the-data-science-venn-diagram

Skills required for data science

- <u>4 types of data science jobs with a</u> breakdown of the 8 skills you need
- The sexiest job of the 21st century
- Coursera <u>learnings</u>
- MIT edX <u>course</u> on data analytics with Spark

Framework for data science

00	9	Studio		12 ⁷	
2.	😤 📲 🔒 🕼 🖉 I 🛷 Go to file/function			Project: (None) •	
18* ×	9 gen_opt_input.R × 9 stationplot.R* × bus1day × 9 Untitled9* × 9 decisiontree.R × >> ==	Environment History			
0	🗇 🗇 🔒 🖸 Source on Save 🔍 🖉 - 🛛 🕀 Run 😏 🕞 Source - 📳		taset 🗸 🧹 Clear 🛛 🎯	List -	
4	trainssurvivea <- as.tactor(trainssurvivea)	Global Environment -		9	
5	str(train)	Quemission	418 obs of 2 variables		
7	hist(trainSFare)	0 tost	418 obs. of 11 variables		
8		Otroin	Ref obs. of 12 variables		
9	library(rpart)	o train	53172 at a f f ward at an		
10	<pre>tree <- rpart(as.factor(Survived) ~ Pclass + Sex + Age , method="class", data=train)</pre>	otransfers	52272 ODS. OF 4 Variables		
11	plot(tree)	0 trips	252717 obs. of 8 variables		
12	a bailed as a data from (Decomental back/Decomental)	Values			
13	submission <- add.frame(rassengeria = testsrassengeria)	agencyid	275		
15	write.csv(submission, file = "basicdt.csv", row.names=FALSE)	O bplot	Large gg (9 elements, 1.1 Mb)		
16		Bus	179		
17	library(rattle)	busnr	178		
18	fancyRpartPlot(tree)				
19		Files Plots Packag	es Help Viewer		
17:1	(Top Level) R Script	🖕 🧼 🍠 Zoom 😽	🛎 Export - 🛛 🍳 🧹 Clear All	C	
obj > tra > tra Error obj > tre > plo > fan Error > 7?f > lib Rattl Versi Type > fan Loadi Loadi > sub > sub > sub > wri	<pre>ett is not a matrix inSurvived - as.factor(trainSurvived) e <- npart(Survived - Pclass + Sex + Age , method="class", data-train) in model.frame.default(formula = Survived - Pclass + Sex + Age - : ett is not a matrix e <- npart(as.factor(Survived) - Pclass + Sex + Age , method="class", data-train) t(tree) : could not find function "fancyRpartPlot" ancyRpartPlot rany(rattle) e: A free graphical interface for data mining with R. on 3.02.r169 Copyright (c) 2006-2013 Tagamare Pty Ltd. 'rattle()' to shake, rattle, and roll your data. cyRpartPlot(tree) ng required package: npart.plot msiston <- data.frame(PassengerId) msiston <- data.frame(PassengerId = testSPassengerId) msiston.file = 'basicf.csv', row.names=FALSE) te.:gviSubmission, file = 'basicf.ss', row.names=FALSE)</pre>	0 8.1 10 65% Age >= 6	$\begin{array}{c} 0\\ 62\\ 33\\ 100\%\\ periodic line \\ 5\\ 5\\ 5\\ 5\\ 5\\ 6\\ 6\\ 6\\ 6\\ 7\\ 6\\ 7\\ 7\\ 7\\ 7\\ 7\\ 7\\ 7\\ 7\\ 7\\ 7\\ 7\\ 7\\ 7\\$	3 05.95 19%	
>		Rattle 2015-Jun-20 15:34:43 egbosti			

Summary

- Fun to compete especially when discussing ideas with your colleagues at the coffee machine
- One will always find something new to learn in R
 - Running the AXA models on multicore, <u>link</u> to my code in Github
- Feature engineering tests creativity
- Data is the new gold

References

- The competition's webpage: <u>https://www.kaggle.com/c/axa-driver-telematics-analysis</u>
- My blog post about the AXA telematics competition: <u>http://www.ericsson.com/research-blog/data-knowledge/adventures-in-the-data-mine/</u>
- Andrei Olariu's blog: <u>http://webmining.olariu.org/kaggle-driver-telematics/</u>
- Connected vehicle cloud concept of Ericsson: https://www.youtube.com/watch?v=NK12lhW_Siw
- R Studio: <u>http://www.rstudio.com/</u>

"Prediction is very difficult, especially about the future"

Niels Bohr