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© Data compression - non-parametric VS model-based.

@ Model-based clustering - covariance, correlation, PCA.

© In-sample results - 50 and 250 clusters.

@ Fitting larger numbers of clusters - feedback sampling.

© In-sample results - 1000, 2500 and 5000 clusters.

@ Out-of-sample results - CTE70, present values of variables.

@ Conclusions and further work - general insurance extensions.



Data Compression by Clustering

@ We have a dataset of 110,000 policies with 54 “location”
variables and a “size” variable.

@ We want to compress the data into clusters that can each be
represented by a single, scaled-up policy.

@ The aim is for the scaled-up representative policies to
replicate the behaviour of the full dataset over a range of
stochastic economic scenarios as closely as possible.

@ Some compression technique is necessary because it is not
feasible to compute a large range of scenarios for the full
dataset.



Data Compression by Clustering
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Data Compression by Clustering

e Current practice (Freedman & Reynolds, 2008) is to use
size-weighted hierarchical clustering: iteratively merge the
"least important” policy with its nearest neighbour until only
the desired number remain.

o A variety of clustering algorithms exist. Can alternative
methods result in representative model points that replicate
the behaviour of the full data set more accurately over a range
of scenarios?

@ We test the new clustering methods at various levels of
compression - from 110000 policies to 50, 250, 1000, 2500
and 5000 clusters.



Existing Approach -

Milliman's Method
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K-medoids Clustering

@ Given some initial partition, identify the medoid of each
cluster.

@ Assign each object to the cluster whose medoid is closest.
o ldentify the new cluster medoids.

@ Repeat until no more objects are reassigned.

The k clusters will be linearly separable, similarly sized and
approximately spherical.



K-medoids Clustering




Ward's Minimum Variance Hierarchical Clustering

@ Begin by treating each object as an individual cluster.

@ Then iteratively merge the pair of clusters that will result in
the smallest increase in total within-cluster variance:

ZZZ X’.I Xkj) 2 (1)

k=1 i=1 j=1

This method produces compact, spherical clusters.



Ward's Minimum Variance Hierarchical Clustering




Model-based Clustering

@ Assume that the objects within each cluster follow a
multivariate normal distribution.

@ Use the EM algorithm to estimate the parameters.



Model-based Clustering




Implementing the model-based approach

@ Fit the Gaussian mixture model using mclust in R with the
me.weighted step to account for policy size.

@ 50 and 250 clusters: exact mclust solution available via
laptop processing.

@ 1000 and 2500 clusters: exact mclust solution available via
cluster processing.

@ 5000 clusters: exact solution not available via mclust.



Available Covariance Structures
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Weighted Correlation of Location Variables
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PCA - Proportion of variance explained
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50 Clusters
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Fitting Larger Numbers of Clusters

@ Direct application of model-based clustering to large datasets
with large numbers of clusters can be prohibitively expensive
in terms of computer time and memory.

@ e.g. a VVV model with 5000 clusters and 15 location
variables would require the estimation of hundreds of
thousands parameters.

o Feedback sampling is an approach we have developed that
takes advantage of the size-weighted nature of the data to
partition the data into large numbers of clusters.



Fitting Larger Numbers of Clusters -

Feedback Sampling

o Take a sample of 2500 objects.

@ Partition the sample into a moderate number (e.g. 20-50) of
clusters using weighted mclust. BIC can be used to select the
optimum model type and number of clusters g.

@ Treat the resulting cluster centres as g individual objects,
scaled up by the sums of the sizes of the objects in each
cluster.



Fitting Larger Numbers of Clusters -

Feedback Sampling

@ Replace the sampled objects in the data set with these g
scaled-up cluster centres, thus reducing the size of the data
set by (2500 — g).

@ Repeat until the desired number of objects or cluster centres
remain.

@ Then simply assign each policy to the cluster whose centre is
closest.
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1000 Clusters
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2500 Clusters
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5000 Clusters
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Out-of-sample results for 2500 clusters -

PV of Net GMIB Costs
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Out-of-sample results for 2500 clusters -

PV of Net GMIB Costs
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Kolmogorov-Smirnov Test

@ The two-sample Kolmogorov-Smirnov test compares the
distributions of data from two samples.

@ Null hypothesis: both come from the same distribution.

@ The test statistic, and hence the p-value, quantifes the
maximum absolute difference between the two empirical
sample CDFs over the range of values in the samples.

@ The closer the p-value is to 1, the more similar the two
samples are.



Out-of-sample results for 2500 clusters -

PV of Net GMIB Costs

Table : P-value from Kolmogorov-Smirnov tests for present value of net
GMIB cost.

| Seriatim | 1.000 |
Milliman || 0.181
Ward | 1.000
Feedback || 0.794
K-medoids || 0.888




Out-of-sample results for 2500 clusters -

PV of Net M&E Fee Income
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Out-of-sample results for 2500 clusters -

PV of Net M&E Fee Income
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Out-of-sample results for 2500 clusters -

PV of Net M&E Fee Income

Table : P-value from Kolmogorov-Smirnov tests for present value of net
GMIB cost.

| Seriatim | 1.000 |
Milliman || 0.241
Ward | 0.980
Feedback || 1.000
K-medoids || 0.954




Conclusion

e Freedman & Reynolds (2008)'s original approach is not
necessarily the optimum method for clustering when
compressing actuarial data.

@ A model-based approach appears promising as an alternative,
particularly when the number of clusters is small.

@ Ward's minimum variance hierarchical clustering method and
k-medoids clustering both outperform Milliman’s method for
large numbers of clusters.



Further work?

Optimizing the Approach for General Insurance

@ So far we have only clustered data based on continuous
numerical variables. What about nominal and ordinal variables
such as gender and car type?

e McParland & Gormley (2014) developed clustMD to perform
model-based clustering for such mixed data.

@ It would be possible to integrate the mixed data methodology
with the size-weighted nature of the actuarial data original
approach for continuous variables.

@ Nominal and ordinal variables can then be modelled directly,
or used to power the feedback sampling approach in randomly
selecting data subsets for clustering.
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