Nonparametric and Model-based Clustering Approaches to Data Compression for Analysing Actuarial Data

Dr. Adrian O’Hagan & Mr. Colm Ferrari, BAFS

January 2015
Data compression - non-parametric VS model-based.

Model-based clustering - covariance, correlation, PCA.

In-sample results - 50 and 250 clusters.

Fitting larger numbers of clusters - feedback sampling.

In-sample results - 1000, 2500 and 5000 clusters.

Out-of-sample results - CTE70, present values of variables.

Conclusions and further work - general insurance extensions.
We have a dataset of 110,000 policies with 54 “location” variables and a “size” variable.

We want to compress the data into clusters that can each be represented by a single, scaled-up policy.

The aim is for the scaled-up representative policies to replicate the behaviour of the full dataset over a range of stochastic economic scenarios as closely as possible.

Some compression technique is necessary because it is not feasible to compute a large range of scenarios for the full dataset.
Data Compression by Clustering
Data Compression by Clustering

- Current practice (Freedman & Reynolds, 2008) is to use size-weighted hierarchical clustering: iteratively merge the "least important" policy with its nearest neighbour until only the desired number remain.

- A variety of clustering algorithms exist. Can alternative methods result in representative model points that replicate the behaviour of the full data set more accurately over a range of scenarios?

- We test the new clustering methods at various levels of compression - from 110000 policies to 50, 250, 1000, 2500 and 5000 clusters.
Existing Approach - Milliman’s Method
K-medoids Clustering

- Given some initial partition, identify the medoid of each cluster.
- Assign each object to the cluster whose medoid is closest.
- Identify the new cluster medoids.
- Repeat until no more objects are reassigned.

The k clusters will be linearly separable, similarly sized and approximately spherical.
K-medoids Clustering
Ward’s Minimum Variance Hierarchical Clustering

- Begin by treating each object as an individual cluster.
- Then iteratively merge the pair of clusters that will result in the smallest increase in total within-cluster variance:

\[
\sum_{k=1}^{G} \sum_{i=1}^{n_k} \sum_{j=1}^{p} \frac{1}{n_k} (x_{ij} - \bar{x}_{kj})^2
\]

This method produces compact, spherical clusters.
Model-based Clustering

- Assume that the objects within each cluster follow a multivariate normal distribution.
- Use the EM algorithm to estimate the parameters.
Model-based Clustering
Implementing the model-based approach

- Fit the Gaussian mixture model using `mclust` in R with the `me.weighted` step to account for policy size.
- 50 and 250 clusters: exact `mclust` solution available via laptop processing.
- 1000 and 2500 clusters: exact `mclust` solution available via cluster processing.
- 5000 clusters: exact solution not available via `mclust`.
Available Covariance Structures

- EII
- VII
- EEI
- EVI
- VEI
- VVI
- EEE
- EEV
- VEV
Weighted Correlation of Location Variables

- GMIB
- GMAB
- GMDB
- Commission
- Maintenance Expense
- Net Revenue
- M&E Income
- Revenue Sharing
- General Acct
- Separate Accts
250 Clusters

Separate Accounts
General Account
Revenue Sharing
M&E Income
Net Revenue
Maintenance Expense
Commission
GMDB
GMAB
GMIB

Milliman: 3.19
250 Clusters

- Milliman: 3.19
- Ward: 1.19
Direct application of model-based clustering to large datasets with large numbers of clusters can be prohibitively expensive in terms of computer time and memory.

e.g. a VVV model with 5000 clusters and 15 location variables would require the estimation of hundreds of thousands parameters.

Feedback sampling is an approach we have developed that takes advantage of the size-weighted nature of the data to partition the data into large numbers of clusters.
Take a sample of 2500 objects.

Partition the sample into a moderate number (e.g. 20-50) of clusters using weighted `mclust`. BIC can be used to select the optimum model type and number of clusters g.

Treat the resulting cluster centres as g individual objects, scaled up by the sums of the sizes of the objects in each cluster.
Replace the sampled objects in the data set with these g scaled-up cluster centres, thus reducing the size of the data set by $(2500 - g)$.

Repeat until the desired number of objects or cluster centres remain.

Then simply assign each policy to the cluster whose centre is closest.
2500 Clusters

Milliman: 0.92
5000 Clusters

- Milliman: 1.05
- Feedback: 0.28
- Ward: 0.13
Out-of-sample results for 2500 clusters - PV of Net GMIB Costs
Out-of-sample results for 2500 clusters - PV of Net GMIB Costs

Lower tail

PV

Scenario

Upper tail

PV

Scenario
The two-sample Kolmogorov-Smirnov test compares the distributions of data from two samples.

Null hypothesis: both come from the same distribution.

The test statistic, and hence the p-value, quantifies the maximum absolute difference between the two empirical sample CDFs over the range of values in the samples.

The closer the p-value is to 1, the more similar the two samples are.
Out-of-sample results for 2500 clusters - PV of Net GMIB Costs

Table: P-value from Kolmogorov-Smirnov tests for present value of net GMIB cost.

<table>
<thead>
<tr>
<th>Method</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seriatim</td>
<td>1.000</td>
</tr>
<tr>
<td>Milliman</td>
<td>0.181</td>
</tr>
<tr>
<td>Ward</td>
<td>1.000</td>
</tr>
<tr>
<td>Feedback</td>
<td>0.794</td>
</tr>
<tr>
<td>K-medoids</td>
<td>0.888</td>
</tr>
</tbody>
</table>
Out-of-sample results for 2500 clusters - PV of Net M&E Fee Income
Out-of-sample results for 2500 clusters - PV of Net M&E Fee Income

Lower tail

Upper tail

Scenario
PV

Seriatim
Milliman
Ward
Feedback
Medoids

PV

Scenario
Out-of-sample results for 2500 clusters - PV of Net M&E Fee Income

Table: *P*-value from Kolmogorov-Smirnov tests for present value of net GMIB cost.

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Seriatim</td>
<td>1.000</td>
</tr>
<tr>
<td>Milliman</td>
<td>0.241</td>
</tr>
<tr>
<td>Ward</td>
<td>0.980</td>
</tr>
<tr>
<td>Feedback</td>
<td>1.000</td>
</tr>
<tr>
<td>K-medoids</td>
<td>0.954</td>
</tr>
</tbody>
</table>
Freedman & Reynolds (2008)’s original approach is not necessarily the optimum method for clustering when compressing actuarial data.

A model-based approach appears promising as an alternative, particularly when the number of clusters is small.

Ward’s minimum variance hierarchical clustering method and k-medoids clustering both outperform Milliman’s method for large numbers of clusters.
Further work?
Optimizing the Approach for General Insurance

- So far we have only clustered data based on continuous numerical variables. What about nominal and ordinal variables such as gender and car type?

- McParland & Gormley (2014) developed clustMD to perform model-based clustering for such mixed data.

- It would be possible to integrate the mixed data methodology with the size-weighted nature of the actuarial data original approach for continuous variables.

- Nominal and ordinal variables can then be modelled directly, or used to power the feedback sampling approach in randomly selecting data subsets for clustering.
Key References
