Nonparametric and Model-based Clustering Approaches to Data Compression for Analysing Actuarial Data

Dr. Adrian O'Hagan & Mr. Colm Ferrari, BAFS

January 2015

Running order

- Data compression non-parametric VS model-based.
- Model-based clustering covariance, correlation, PCA.
- 1 In-sample results 50 and 250 clusters.
- Fitting larger numbers of clusters feedback sampling.
- In-sample results 1000, 2500 and 5000 clusters.
- Out-of-sample results CTE70, present values of variables.
- O Conclusions and further work general insurance extensions.

Data Compression by Clustering

- We have a dataset of 110,000 policies with 54 "location" variables and a "size" variable.
- We want to compress the data into clusters that can each be represented by a single, scaled-up policy.
- The aim is for the scaled-up representative policies to replicate the behaviour of the full dataset over a range of stochastic economic scenarios as closely as possible.
- Some compression technique is necessary because it is not feasible to compute a large range of scenarios for the full dataset.

Data Compression by Clustering

Data Compression by Clustering

- Current practice (Freedman & Reynolds, 2008) is to use size-weighted hierarchical clustering: iteratively merge the "least important" policy with its nearest neighbour until only the desired number remain.
- A variety of clustering algorithms exist. Can alternative methods result in representative model points that replicate the behaviour of the full data set more accurately over a range of scenarios?
- We test the new clustering methods at various levels of compression - from 110000 policies to 50, 250, 1000, 2500 and 5000 clusters.

Existing Approach - Milliman's Method

K-medoids Clustering

- Given some initial partition, identify the medoid of each cluster.
- Assign each object to the cluster whose medoid is closest.
- Identify the new cluster medoids.
- Repeat until no more objects are reassigned.

The k clusters will be linearly separable, similarly sized and approximately spherical.

K-medoids Clustering

Ward's Minimum Variance Hierarchical Clustering

- Begin by treating each object as an individual cluster.
- Then iteratively merge the pair of clusters that will result in the smallest increase in total within-cluster variance:

$$\sum_{k=1}^{G} \sum_{i=1}^{n_k} \sum_{j=1}^{p} \frac{1}{n_k} (x_{ij} - \bar{x}_{kj})^2$$
 (1)

This method produces compact, spherical clusters.

Ward's Minimum Variance Hierarchical Clustering

Model-based Clustering

- Assume that the objects within each cluster follow a multivariate normal distribution.
- Use the EM algorithm to estimate the parameters.

Model-based Clustering

Implementing the model-based approach

- Fit the Gaussian mixture model using **mclust** in **R** with the **me.weighted** step to account for policy size.
- 50 and 250 clusters: exact **mclust** solution available via laptop processing.
- 1000 and 2500 clusters: exact **mclust** solution available via cluster processing.
- 5000 clusters: exact solution not available via mclust.

Available Covariance Structures

Weighted Correlation of Location Variables

PCA - Proportion of variance explained

Fitting Larger Numbers of Clusters

- Direct application of model-based clustering to large datasets with large numbers of clusters can be prohibitively expensive in terms of computer time and memory.
- e.g. a VVV model with 5000 clusters and 15 location variables would require the estimation of hundreds of thousands parameters.
- Feedback sampling is an approach we have developed that takes advantage of the size-weighted nature of the data to partition the data into large numbers of clusters.

Fitting Larger Numbers of Clusters - Feedback Sampling

- Take a sample of 2500 objects.
- Partition the sample into a moderate number (e.g. 20-50) of clusters using weighted mclust. BIC can be used to select the optimum model type and number of clusters g.
- Treat the resulting cluster centres as g individual objects, scaled up by the sums of the sizes of the objects in each cluster.

Fitting Larger Numbers of Clusters - Feedback Sampling

- Replace the sampled objects in the data set with these g scaled-up cluster centres, thus reducing the size of the data set by (2500 g).
- Repeat until the desired number of objects or cluster centres remain.
- Then simply assign each policy to the cluster whose centre is closest.

Out-of-sample results for 2500 clusters - PV of Net GMIB Costs

Out-of-sample results for 2500 clusters - PV of Net GMIB Costs

Kolmogorov-Smirnov Test

- The two-sample Kolmogorov-Smirnov test compares the distributions of data from two samples.
- Null hypothesis: both come from the same distribution.
- The test statistic, and hence the p-value, quantifes the maximum absolute difference between the two empirical sample CDFs over the range of values in the samples.
- The closer the p-value is to 1, the more similar the two samples are.

Out-of-sample results for 2500 clusters - PV of Net GMIB Costs

Table: P-value from Kolmogorov-Smirnov tests for present value of net GMIB cost.

Seriatim	1.000
Milliman	0.181
Ward	1.000
Feedback	0.794
K-medoids	0.888

Out-of-sample results for 2500 clusters - PV of Net M&E Fee Income

Out-of-sample results for 2500 clusters - PV of Net M&E Fee Income

Out-of-sample results for 2500 clusters - PV of Net M&E Fee Income

Table: P-value from Kolmogorov-Smirnov tests for present value of net GMIB cost.

Seriatim	1.000
Milliman	0.241
Ward	0.980
Feedback	1.000
K-medoids	0.954

Conclusion

- Freedman & Reynolds (2008)'s original approach is not necessarily the optimum method for clustering when compressing actuarial data.
- A model-based approach appears promising as an alternative, particularly when the number of clusters is small.
- Ward's minimum variance hierarchical clustering method and k-medoids clustering both outperform Milliman's method for large numbers of clusters.

Further work? Optimizing the Approach for General Insurance

- So far we have only clustered data based on continuous numerical variables. What about nominal and ordinal variables such as gender and car type?
- McParland & Gormley (2014) developed clustMD to perform model-based clustering for such mixed data.
- It would be possible to integrate the mixed data methodology with the size-weighted nature of the actuarial data original approach for continuous variables.
- Nominal and ordinal variables can then be modelled directly, or used to power the feedback sampling approach in randomly selecting data subsets for clustering.

Key References

- Reynolds, C. & Freedman, A. (2008) Cluster Analysis: A
 Spatial Approach to Actuarial Modelling, accessed September
 2013, http://www.milliman.com/uploadedFiles/
 insight/research/life-rr/
 cluster-analysis-a-spatialrr08-01-08.pdf
- Raftery, A.E. & Fraley, C. (2002) Model-based Clustering,
 Discriminant Analysis and Density Estimation Journal of the American Statistical Association 97, 611-631.