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Introduction 
In the idealised model of Black Scholes we know that the first order delta hedge is perfectly effective 

in the sense that it removes all variability of the final outcome of a derivative product such as an 

option.  The main purpose of this paper is to examine, using a simple example, the extent to which 

deviations from the idealised framework render practical hedging strategies less than perfectly 

effective in so much as they present some variability in final outcomes.  I also briefly address other 

aspects in this simplified context such as Solvency II and the recently published CBI stress tests1 for 

Variable Annuity (VA) products.  

Throughout this paper the example chosen is a 5 year single premium Put option on a 

stock/index/fund with reinvested dividends.  Unless otherwise stated the initial stock price and the 

exercise price is taken to be 100.  This is broadly analogous to the VA GMAB.  I will not be 

considering demographic or other behavioural complications which would be typically present in 

such a product.  Nonetheless I believe that many of the observations are at least directionally 

informative in a real VA context though practitioners might want to check to what extent they are 

applicable to their own situation. 

The framework for the analysis is, unless otherwise stated, the same 1,000 stochastic simulations of 

60 monthly movements in the underlying stock price using the Brownian log-normal with Real World 

mean of 5% per annum and volatility of 20% per annum.  The risk free rate is assumed to be 2% per 

annum.  Hedging strategies are assumed to rebalance at the monthly simulated price change. 

This simple example would in reality have two stochastic drivers viz. the stock price level and the 

interest rate level.  However, as there is no optionality present on the interest rate level “hedging” 

the interest rate is more a matter of duration matching and would tend to be almost 100% effective 

unless the liability is of a very long duration.  As I wish to focus on the effectiveness of hedging 

strategies in reducing the variability of outcomes where there is optionality in the liability I will 

assume that the interest rate level is constant. 

The effectiveness of a hedging strategy would be quantified by some measure of the dispersion of 

the result which it is attempting to stabilise.  I have in the main used the CTE902 of the outcomes as 

the measure of dispersion as this is the target of most concern.  Clearly it would be highly desirable 

to have a strategy which reduces the worst 10% of outcomes without a broadly symmetrical effect 

on the best outcomes.  Unfortunately that would be in the realm of alchemy.  In statistical terms 

hedging reduces dispersion whilst having a minimal though negative (due to costs) effect on 

location.  Also the unhedged outcome will be broadly symmetrically distributed either side of the 

hedged outcome. 

Where possible I use closed form formulae in calculating the “greeks” and the option values and 

these are given in Appendix 2. 

                                                           
1 Stress Testing Framework for the Variable Annuity Industry 
2 The conditional tail expectation, being the average value of the result conditioned on being in the “worst” 
10% of outcomes. 
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The Taylor Expansion 
The Taylor expansion of the option value to first order in 𝛿𝑡 is as follows: 

𝛿𝐿𝑜𝑣 = ∆δs + Θδt +
Γ

2
(𝛿𝑠)2 + 𝑜(𝛿𝑡)                      (1) 

where 

𝛿𝐿𝑜𝑣 is the small change in the Liability Option Value3 caused by the evolution of a small interval of 

time 𝛿𝑡 which also causes a small change δs in the stock price. 

∆=
𝜕𝐿𝑜𝑣

𝜕𝑠
;   Θ =

𝜕𝐿𝑜𝑣

𝜕𝑡
;   Γ =

𝜕2𝐿𝑜𝑣

𝜕𝑠2   are the said greeks: delta, theta and gamma 

𝑜(𝛿𝑡) is a residual term which is small relative to 𝛿𝑡 

Note that in a practical VA situation none of these terms can be evaluated by closed formulae.  In 
practice the liability is simulated by Monte Carlo methods based on an input Economic Scenario 
Generator.  Nonetheless, provided sufficiently many runs are performed the law of large numbers 
should give us comfort that the Taylor expansion is a good approximation and indeed this is the 
ubiquitous tool in VA hedging math. 

The interesting term in equation (1) is the term in (𝛿𝑠)2 but this is the essence of the stochastic 

nature of stock price movements.  𝛿𝑠 is of order (𝛿𝑡)𝛼 where 𝛼 =
1

2
; if 𝛼 was greater than 

1

2
  then 

the change in the stock price would have no variance at the continuous level i.e. it would be 

deterministic; if it is less than 
1

2
 then the process explodes.  𝛼 =

1

2
  is the only value which produces 

the random walk which we intuitively require.  Of course the geometric Brownian motion satisfies 
this condition. 

Now equation (1) is not really the Black Scholes SDE and nor does it require the elaborate apparatus 
of the risk neutral martingale theory or even a principle of no arbitrage.  It is fairly elementary 
mathematical common sense with a sprinkling of Itô.  It leads in a natural way to the notion that if 
we want to be hedged against changes in the stock price we should purchase a position in the 
primary market which precisely cancels the ∆ term, the so called delta hedge. 

In the case of our Put option that means having a short position in stock futures.  But equation (1) 
would suggest that we would still be exposed to the stochastic term in (𝛿𝑠)2 (the sum of these 
terms over an interval will hereafter be referred as the realised volatility4).  Now by its nature the 
primary market does not have instruments which can counter this term, or in the jargon they do not 
have any convexity (gamma).  One of the implications of the Black Scholes derivation is that we do 
not need such instruments.  The delta hedge is perfect in the sense that if we follow it we will have 
no variability in final outcome – it is a complete replication strategy. 

 To understand what is happening here imagine the unit time interval divided into 1/𝛿𝑡 sub-intervals 
of size 𝛿𝑡.  The realised volatility of each sub-interval will have an expectation of order 𝛿𝑡 and a 
variance of order (𝛿𝑡)2.  The realised volatility over the full interval will have an expectation of the 

order of (
1

𝛿𝑡
) × 𝛿𝑡  i.e. non zero but bounded just as we would expect of a random walk.  On the 

assumption that each sub-interval is independently distributed5 it will have a variance of the order of 

                                                           
3 LOV is the standard jargon used by VA writers 
4 Realised volatility is slightly different from realised variance in that the latter has an adjustment for the 

square of the average 𝛿𝑠.  At the continuous level the two concepts are the same.  Also note that I 

interchangeably refer to volatility as either being the sum of squares or alternatively the square root of that 
sum.  I hope the context will remove any possible ambiguity. 
5 But not necessarily identically distributed 
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(
1

𝛿𝑡
) × (𝛿𝑡)2 i.e. of order𝛿𝑡.  In other words, in the continuous limit the realised volatility over any 

time interval has zero variance i.e. it is deterministic and is precisely the underlying volatility 
assumed in the Black Scholes derivation.   

Note that this convexity or gamma term in the realised volatility always produces a positive increase 
in the liability, a fact which follows from the curvature of the Black Scholes formula.  Appendix 1 
gives what I believe to be a more heuristic illustration of why this is the case.  The point is that these 
convexity effects are instantaneously deterministic in the Black Scholes model and built into the 
value of the option.  The delta hedge works in Black Scholes because the theta of the formula i.e. the 
instantaneous change in the value with the passage of time alone6 precisely counters these 
convexity effects.  Gamma and theta themselves are stochastic but they change in a self-cancelling 
way. 

So we see that the first practical difficulty we have with a delta hedge is that we cannot trade at the 
continuous level and therefore we are exposed to stochastic movements in the realised volatility.  
These can give rise to profits or losses depending on how they compare with the underlying volatility 
in the formula. 

A perhaps even more obvious “risk” that we run with a delta hedge is that we might not be using  
the correct assumption for underlying volatility.  This will generally be estimated from historic data 
or maybe from the implied volatility of derivative instruments in the market but clearly we are at risk 
of having this key assumption in our hedging formula wrong.  Note that this is the risk of having the 
wrong delta; it is not in that sense a gamma risk.  We are following a delta hedge so the only thing 
we can get “wrong” is to calculate the wrong delta and we can take some comfort that this will give 
a broadly symmetrical exposure to stock price movements .  Before examining these Realised 
Volatility and Underlying Volatility risks in our simple model it is useful at this stage to produce a 
table of the various versions of “volatility” with which we are confronted. 

 
Table 1:  The various versions of volatility 

Definition Comments 

Underlying Can never be observed even with hindsight.  Has to be estimated from historic data 
possibly with a judgement overlay.  Implied Volatility could be interpreted as the 
market’s assessment of Underlying Volatility. 

Realised  What we observe with hindsight.  A random realisation of the Underlying Volatility 
and plausibly a likelihood estimate of it.   
Depends on the interval of observation. 
Unaffected by choice of Accounting or Hedge volatilities. 

Accounting Does not affect final outcome.  Does affect timing of P&L recognition and in 
particular the starting value of the option and affects the attribution of P&L between 
delta and gamma effects. 

Hedging The volatility assumption in the formula we chose to hedge.  Only affects Delta.  
Delta mismatches with the other definitions are broadly symmetrical in their effect.   

 

 

                                                           
6 That is theta is a partial derivative with respect to time 
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Realised Volatility risk 
Figure 1: Variation in hedged P&L due to Realised Volatility 

 

In Figure 1 I consider two possible models for the stochastic behaviour of the stock price.  In each 

case the underlying volatility is 20% and the hedging strategy calculates delta using the Black Scholes 

log-normal formula with 20% volatility i.e. we are not exposed to Underlying Volatility risk.   

In one case I sample from the log-normal distribution as in all other situations in this paper.  In the 

other case I sample from the log-binary distribution.  By this latter I mean that each month the log of 

the price goes up or down by one sigma7 with equal probability.  In this way the realised volatility 

will be precisely 20% just as it is in the Black Scholes continuous model.  So, perhaps paradoxically, 

the log-binary model more closely represents the outcome from the Black Scholes model than does 

the log-normal from which the formula is derived and which in each case underpins the calculation 

of delta.  The thought may occur that if we use a log-binary model rather than the log-normal would 

we derive the same Black Scholes formula for the value of the option?  The answer is yes for the log-

binary becomes the log-normal in the continuous limit by virtue of the central limit theorem. 

The fact that the log-normal outcomes in the above figure are not a horizontal line along the X axis 

illustrates that there is a residual stochastic dimension to the outcome of the hedging strategy which 

in this example is driven purely by the Realised Volatility. 

  

                                                           
7 Plus a “drift” component 



Page 7 
 

Table 2 shows the output from the stochastic runs using 20% for both the underlying volatility and 

the hedge volatility. 

Table 2:  Realised Volatility risk when hedging volatility assumption is correct 

 Average Final 
Outcome (Profit) 

Standard Deviation 
of Final Outcome 

CTE90 of Final 
Outcome 

Unhedged 4.5 15.8 -33.8 

Hedged using 20% Volatility 0.0 1.9 -3.4 

Note: the starting position is taken to be the Risk Neutral value of the Put option. CTE90 is the 

average of the worst 10% of final profit outcomes. 

The Risk Neutral value of the Put option at inception is 12.5 which rolled up to maturity at risk free 

rate is 13.8.  To a first decimal place this resulted in the hedging strategy breaking even on average 

which reflects the fact that it was the Risk Neutral value of the Put option which was hedged.  For 

the rest of this paper I will refer to this hedging strategy as the Risk Neutral or IFRS strategy.  It is the 

one usually adopted in practice as the IFRS value of the option is determined as its risk neutral 

expectation value. 

The average outcome of the hedged strategy is somewhat worse than the average position on the 

unhedged strategy since in this latter case the Real World equity risk premium of 3% p.a. reduces 

the extent of the Put finishing in the money or, alternatively, any hedging strategy in this example 

will be shorting the equity risk premium.   

The hedge dramatically reduces the dispersion of final outcomes both in terms of standard deviation 

and CTE90.  The CTE90 hedge effectiveness can be calculated as the percentage reduction from the 

unhedged value of -33.8 to -3.4 which is c.90%. 

Nonetheless the main point of Table 2 is to show that there is a residual variability, albeit relatively 

small, notwithstanding that the formula which was hedged precisely described the underlying reality 

in terms of volatility i.e. by construction we are assured that there is no Underlying Volatility risk. 

Of course the Realised Volatility risk is a function of the size of the interval for rebalancing.    The 

underlying model is that realised volatility i.e. the realised square of the price changes is of the order 

of the time interval and its variance is of the order of the square of the time interval.  So if we split 

the time interval into n sub-intervals each sub-interval will display a variance in the square of the 

price change of an order 1/n2 the variance for the whole interval.  Summing these independent 

variables over the sub-intervals we find that the variance of the realised volatility over the whole 

interval is 1/n times the variance over the whole interval without subdivision.  Hence the Realised 

Volatility risk reduces in proportion to the square root of the size of the re-balancing interval.  For 

example the Realised Volatility risk for weekly rebalancing might be only 50% of that for monthly 

rebalancing.  The choice of frequency of rebalancing is largely a trade-off between hedge 

effectiveness and transaction costs. 
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Before leaving this section we consider Figure 2 below. 

Figure 2: Hedging P&L outcome plotted against final stock price 

 

Note: this graph has been constructed by ordering the simulations in order of the final hedged P&L 

outcome and then plotting the final stock price against that statistic.  A moving average across the 

simulations as so ordered was used to eliminate excessive noise. 

In the middle of the P&L outcome range there is no correlation with the final price.  But it can be 

seen that at the extreme negatives of hedging P&L that the final price is concentrated around the at 

the money price of 1008.  This is due to the well-recognised fact that the second order greek, 

gamma, is at its highest when we are both at the money and close to maturity (see Appendix 1).  A 

similar dampening of the spread of final price can be seen at the extreme positives of P&L though 

this is less pronounced because of the skewness in the distribution of realised volatility.   

Note that it is not that finishing at the money implies that there will be realised volatility losses as 

there is an equal chance of profits.  However as gamma is high the variability of the outcome is 

aggravated.  This emphasises the importance of “maturity diversification” in stabilising hedging P&L 

in the overall context of a VA writer’s portfolio.  

                                                           
8 It rarely actually touches 100 because of the moving average technique I used to make the figure more 
readable 



Page 9 
 

Underlying Volatility risk 
The other obvious weakness in the hedging strategy is how do we determine the key parameter viz. 

the underlying volatility?  In practice, we only have historic data to make estimates for this 

parameter but we must expect that this can only be a broad indication of what is correct for the 

future.    

Figure 3 shows the sensitivity of the effectiveness of the hedging outcome to the underlying 

volatility being different from the assumed volatility in the hedging model. 

Figure 3:  Effectiveness of hedging for different underlying volatility9 

 

Note:  the hedging strategy in the above figure uses a risk neutral 20% volatility.  Hedge effectiveness 

is measured as the percentage reduction in the unhedged CTE90 brought about by the hedge.   

As is to be expected, this strategy which is based on a 20% volatility assumption is at its most 

effective when the underlying volatility is around 20%.   

The surprising aspect of this graph is that the green and red lines are broadly parallel when the 

underlying volatility is greater than the hedged volatility.  This means that the absolute relief 

garnered from the hedging program, being the difference between the green line and the red line is 

quite insensitive to the “correctness” of our choice of hedge volatility. 

The shape of the graph of the percentage effectiveness is a fairly symmetric hump shape as we 

might expect. 

                                                           
9 In constructing this figure the underling simulated prices reflect the change in the assumed underlying 
volatility but use the same 60,000 uniformly distributed random numbers as are used throughout the paper. 
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Figure 4 below looks more closely at the situation where underlying volatility is 40%. 

Figure 4:  Comparing hedging programs with different assumed volatility 

 

Note:  Each line represents the 1,000 simulated outcomes ordered according to the particular P&L 

outcome which it represents.  They do not therefore relate to the same ordering of the simulations. 

The initial value for determining P&L is taken in each case as the Black Scholes value using 40% 

volatility. 

The 40% underlying volatility simulated in this figure is at the level of the CBI stress tests albeit over 

the full 5 year term and not simply years 1,3 and 5 of much longer liabilities.  If we have hedged 20% 

volatility then it can certainly be said that we have got it fairly badly wrong and yet the hedging is 

still quite effective and not too far off the effectiveness of a hedging program which had the correct 

40% volatility assumption, at least in a broad middle range of outcomes. 

This is not saying that the final outcome is not sensitive to the underlying volatility; indeed the initial 

value of the Put option using 40% volatility is 28.3 compared to 12.5 value using 20% volatility.  

What it is saying is that the effectiveness of hedging in reducing the dispersion of final outcomes is 

relatively insensitive to having chosen the “correct” volatility assumption. 

Put more colloquially, the good news is that it is unlikely that you would be seriously wrong in your 

choice of hedge formula but the bad news is that if the option is fundamentally mispriced there is no 

way to hedge your way out of that situation. 
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Table 3 below is a stark illustration of this phenomenon.  In this Table I have assumed that 

underlying volatility is 40% whilst the IFRS reserves, the CTE gross capital and the hedge 

effectiveness have all been calculated using a volatility assumption of 20%. 

Table 3:  Allowance for hedging in capital calculation 

 Correct Position Actual Position 

IFRS Reserves 28.3 12.5 

Extra CTE90 unhedged capital 45.8 30.6 

Allowance for hedging -27.2 -27.5 

Combined net reserves and capital 46.9 15.1 

Note: The allowance for hedging in the “correct” position assumes we actually use 20% volatility in 

the hedge formula even though the correct assumption would have been 40%. 

What the above Table demonstrates is that getting this key assumption wrong is highly significant in 

terms of calculating IFRS reserves and gross capital but the allowance for hedging effectiveness is 

not compounding the error in any significant way.  I have used a hedge effectiveness factor of 90% in 

calculating the net capital but I have applied it to an unhedged capital calculated at 20% volatility.  

Both assumptions are wrong but self-cancel to render the absolute deduction for hedge 

effectiveness more or less correct.  It should be noted that in practice calculate their capital 

requirement using a prudent estimate of underlying volatility, for example, 80th centile of historic 

realised volatility. 
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Targeting Volatility 
The considerations in the last section lead to the concept of targeting volatility.  A typical algorithm 

would calculate the annualised realised volatility over, say, the last 20 days and adjust the exposure 

to the stock or index so that if this were indeed the underlying volatility going forward the volatility 

of the adjusted exposure would be the target volatility. There would usually be a “cap” applied to 

the calculated exposure.  A typical algorithm would therefore be as follows: 

𝐸𝑥𝑝𝑜𝑠𝑢𝑟𝑒 𝑡𝑜 𝑠𝑡𝑜𝑐𝑘/𝑖𝑛𝑑𝑒𝑥 = 𝑀𝑖𝑛 (
𝑇𝑎𝑟𝑔𝑒𝑡 𝑉𝑜𝑙𝑎𝑡𝑖𝑙𝑖𝑡𝑦

𝑅𝑒𝑎𝑙𝑖𝑠𝑒𝑑 𝑉𝑜𝑙𝑎𝑡𝑖𝑙𝑖𝑡𝑦20 𝑑𝑎𝑦𝑠
⁄ , 𝐶𝑎𝑝)  

From the observations in the last section it should be noted that this mechanism has a relatively 

modest impact on hedging effectiveness.  Its main purpose is to minimise underlying volatility risk in 

the pricing itself.   

The rationale for a target algorithm could either be that there is too much uncertainty in the future 

underlying volatility or else that we expect it to vary with time.  The assumption is that recent 

realised volatility will be a likelihood estimator of underlying volatility in the immediate future.  In 

Table 410 we are targeting 20% volatility using a 20 day algorithm. 

Table 4:  Effect of a target algorithm in adjusting underlying volatility 

Cap 
Underlying Volatility 

15.0% 20.0% 30.0% 

100.0% 15.0% 19.1% 20.9% 

110.0% 16.4% 20.0% 21.0% 

120.0% 17.7% 20.5% 21.0% 

130.0% 18.8% 20.7% 21.0% 

140.0% 19.6% 20.9% 21.0% 

150.0% 20.1% 20.9% 21.0% 

No Cap 21.0% 21.0% 21.0% 

 

Note that if there is no cap in place the adjusted underlying volatility is slightly greater than the 

target volatility of 20%.  That is because the algorithm itself contributes an element of volatility. 

The cap has minimal effect when underlying volatility is high or even equal to the target volatility.  

However, if the underlying volatility is low the cap can have a fairly significant effect in 

undershooting the target volatility. 

 

 

 

 

                                                           
10 The table was constructed using Monte Carlo methods as the presence of the cap makes analytical methods 
somewhat intractable 
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What to hedge 
At this stage I take a diversion and look at the so called “Stop/Loss” hedging strategy11.  Under this 

strategy the delta is calculated by reference to the intrinsic value of the option i.e. the pay-off if the 

stock price at the maturity of the option was the current price.  The intrinsic value by definition 

satisfies the boundary conditions so if we can successfully delta hedge it we should be alright.  When 

out the money the intrinsic value is zero and so too is the delta.  When in the money the delta is 

negative unity as each euro fall in the stock increases the intrinsic value by a euro as can be seen in 

Figure 5. 

Figure 5:  Stop Loss strategy for a Put option 

 

This is equivalent to using a delta hedging strategy with zero12 volatility.  The second derivative i.e. 

the convexity (aka gamma) would appear to be everywhere zero and since we know that convexity 

losses are the main source of variability in a delta hedging strategy we may be surprised that this 

stop-loss strategy is almost as inefficient as an unhedged strategy, producing a CTE90 of 27 or 82% 

of that for the unhedged CTE90.  The conundrum is explained by noting that all the convexity is 

concentrated at the “at the money” point.  The second derivative is infinitely positive at this point.  

The convexity losses are picked up in those simulations which oscillate a lot about the at the money 

point. 

The above strategy is therefore easily dismissed as a practical proposition but there are a few 

alternatives that could plausibly be used instead of the IFRS Risk Neutral strategy discussed above.  

An obvious alternative candidate would be to hedge the Real World option value13.    

                                                           
11 This section draws on similar comments in Hull pp 310-311 
12 An unhedged strategy is equivalent to hedging infinite volatility. 
13 Meaning here using the real world equity return in the Black Scholes option formulae.  Strictly speaking a 
Real World option value is not a valid concept as consideration of the discount rate forces one towards 
construction of a replicating portfolio and thus toward the risk neutral martingale framework. 
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Yet another candidate would be to hedge the CTE90 of final outcomes. These three dynamic future 

hedging strategies can be categorised broadly as follows: 

Table 2:  Description of Hedging Strategies 

Strategy Broad description 

Risk Neutral Option Value The market consistent value of the option and what is used in IFRS 
accounts 

Real World Option Value The actual expected value of future outcomes albeit discounting using 
the Real World expected return on the stock 

CTE90 The Solvency I capital requirement 

 

For completeness I also look at the results for a static delta hedge i.e. maintaining the opening short 

position on the hedging program which is 33% of the nominal value of stock in the Put option; this 

would involve continually rolling over the short futures. 

Figure 6:  Overall P&L outcomes for various hedging strategies 

 

Figure 6 shows how these various strategies fare. 

The average final outcome is relatively insensitive to choice of hedge strategy but reflects the extent 

to which a particular strategy is shorting the equity risk premium.  Since the opening position in each 

case is the Risk Neutral option value the Risk Neutral strategy is neutral. 

The more interesting statistic is the CTE90 worst outcomes.  The two expected value hedging 

strategies are dramatically effective in reducing this CTE90 with the Real World strategy nearly as 

effective as the Risk Neutral strategy but not quite.   

The Solvency I Capital hedging strategy gives similarly poor results to the Stop/Loss or Intrinsic Value 

strategy.   
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The static strategy is even worse than the unhedged strategy.  It is noteworthy that the static 

strategy does dampen the 10% worst unhedged scenarios producing a conditional expectation of 

14.7 for those scenarios, thus apparently being almost 60% effective in reducing the unhedged 

CTE90 of 33.8.  However, whist the static hedge is this effective in these particular scenarios it is 

others which dominate the worst 10% of its own scenarios.  The message here is that an effective 

hedging strategy has to be dynamic.14 

                                                           
14 I ignore the availability of derivative capital market instruments which might more closely match the liability 
as ultimately these need to be delta hedged in the primary market.  Nonetheless, especially when it comes to 
interest rate optionality there can be a role for swaptions in dampening the need to dynamically rebalance. 
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The One Year View 
Up till now I have considered the variability of the final outcome.  The final outcome, once it has 

been reached is of course an absolute.  The outcome over one year requires some measure at the 

end of the year of the potential final outcome.  In IFRS accounting this is usually the market 

consistent Risk Neutral value of the option.  Figure 7 shows the effect on the IFRS outcome over one 

year of various hedging strategies. 

Figure 7:  One Year IFRS P&L of different hedging strategies 

 

The picture is directionally very similar to the same figure for the final outcomes albeit the figures 

are scaled back.  The gap between the Real World CTE90 and the Risk Neutral CTE90 has widened 

somewhat which is not surprising since we are actually measuring the outcome using the Risk 

Neutral value of the option. 
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Another measure which we might be interested in would be the Solvency I Capital.  This is the CTE90 

requirement set by the CBI for VA business sold before 2011.  The picture for this one year measure 

is shown in Figure 8. 

Figure 8:  One Year Solvency I capital changes under different hedging strategies 

 

The average position in all cases is a fairly significant positive outcome with again the relativities 

being based on the comparative “shortness” of the strategy.  This reflects the release of solvency 

capital as one gets a year closer to the maturity of the option. 

Not surprisingly the Solvency I Capital hedging strategy is the most effective at dampening the 

dispersion in its own outcome with the one year worst CTE9015 of this strategy being an actual 

release of 0.7 of capital. 

                                                           
15 Just to be clear the measure which is being examined over one year is the change in the Solvency I capital 
requirement which is itself a CTE90 of final outcomes.  The table shows the one year worst CTE90 of this 
measure. 
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Historic Effectiveness of Hedging Strategy 
The effectiveness of a hedging strategy is not known until the final outcome.  We can, using our 

model, simulate what the distribution of this measure might be.   Hedging Effectiveness is defined by 

the following formula: 

𝐻𝑖𝑠𝑡𝑜𝑟𝑖𝑐 𝐻𝑒𝑑𝑔𝑖𝑛𝑔 𝐸𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒𝑛𝑒𝑠𝑠 = [1 − |
𝐻𝑒𝑑𝑔𝑒𝑑 𝑃&𝐿

𝑈𝑛ℎ𝑒𝑑𝑔𝑒𝑑 𝑃&𝐿
|]

+

   (A) 

Note that this is a somewhat different concept from that used in Figure 3.  Figure 3 is a prospective 

statistical measure; it compares the CTE90 of the hedged strategy with the CTE90 of an unhedged 

strategy and is the concept most relevant in setting capital requirements.  The historic hedge 

effectiveness is a measure of how much the P&L has been dampened by the effect of the hedging 

strategy; it should be measured as the percentage change in the absolute levels of the respective 

P&Ls.  A 100% effective hedging strategy would produce zero P&L. 

Figure 9:  Simulated historic hedge effectiveness over the full term 

 

Figure 9 shows the simulated historic hedge effectiveness over the full term of the option assuming 

underlying volatility and hedge volatility were both 20%.  The simulations have been ordered from 

least unhedged P&L outcome to greatest and we note that, as expected, it finishes as a horizontal 

line at a height equal to the accumulated initial value above the X axis.  The hedge effectiveness as 

calculated by the above formula has been plotted against these simulations.   

From Table 2 we know that the CTE90 hedge effectiveness is around 90%.  From Figure 9 we see that 

we will only be reasonably assured of observing this level of historic hedge effectiveness if the 

outcome has in fact finished in the “tails”.  If the final outcome is somewhere in the middle the 

observed historic hedge effectiveness can be anywhere.  Indeed we note that if the actual unhedged 

outcome is near breakeven we will get negative historic hedge effectiveness and since this has been 

zeroised we see a little gap in the figure.  
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As there is little or no experience of the final outcomes of actual VA hedging strategies the term 

“historic effectiveness” is invariably reserved for measuring the historic effect in stabilising the 

change in a prospective measure, usually the IFRS LOV but also possibly the capital requirement.  

The following is a quote from the CBI’s recent paper on stress testing VAs. 

“The effectiveness of the hedging program at offsetting total guarantee liability movement in the 

base scenario is not to exceed that based on a credible amount (2 years or more) of historical data.” 

I presume that the CBI is indicating that it measures effectiveness by the historic ability of the 

hedging program to neutralise changes in LOV caused by the realised changes in the underlying 

stochastic drivers.  In our case the only stochastic driver is the stock price. Figure 10 shows the 

effectiveness of the hedging strategy on dampening first year IFRS LOV outcomes in each of the 

1,000 simulated scenarios. 

Figure 10:  One year hedge effectiveness plotted against unhedged P&L 

 

Note: the underlying volatility is taken as the base case 20% and the hedging strategy is Risk Neutral 

also with 20% volatility 

Figure 10 is similar to Figure 9 in that it tells us is that this measure of effectiveness is really only 

credible at the extremes of unhedged P&L.  The average historic hedge effectiveness on the one year 

view is 80% and its standard deviation is 26%.  It is difficult to see how two observations could give 

anything which could be described as a credible indication of the “correct” result which we know 

from Table 2 is 90%.   

In Figure 11 below, using the same ordering of the simulations, I show the probability of observing a 

hedge effectiveness of over 85% in one year’s P&L outcome.  
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Figure 11:  Probability of observing one year hedge effectiveness greater than 85% 

 

Note: Underlying volatility and hedging volatility are both 20%.  Excessive noise has been removed by 

the technique of moving averages across the simulations as ordered. 

In recent times experience has been somewhat in one extreme and therefore actual company 

hedging P&Ls are showing plausible values for effectiveness.  The situation is also considerably 

complicated in that durational interest rate matching is usually covered within the same hedging 

paradigm using the so called “rho” sensitivity to determine appropriate swap hedges.  Since a good 

swap hedge will also inherently include an interest rate convexity hedge this element of the hedging 

strategy will always appear highly effective.  This further complicates inferring the “optionality” 

hedge effectiveness from historic results albeit it biases the observation towards overstatement 

whilst the random nature in the above figures would tend to bias it towards understatement.   

It is not unreasonable for the CBI to want the allowance for hedge effectiveness in the CTE 

calculation to be underpinned by historic metrics from the hedging program.  The above 

demonstrates that the crude hedge effectiveness factor in equation (A) is not fit for that purpose. 
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P&L Attribution 
Let us recall the key Taylor expansion. 

𝛿𝐿𝑜𝑣 = ∆δs + Θδt +
Γ

2
(𝛿𝑠)2 + 𝑜(𝛿𝑡)                      (1) 

 

Taking expectations of this equation and using the bra-ket (<>) convention for expectations we get: 

< 𝛿𝐿𝑜𝑣 >= ∆< δs > +Θδt +
Γ

2
< (𝛿𝑠)2 > +𝑜(𝛿𝑡)                      (2) 

Subtracting (2) from (1) we get: 

𝛿𝐿𝑜𝑣−< 𝛿𝐿𝑜𝑣 >= ∆(δs−< δs >) +
Γ

2
((𝛿𝑠)2 −< (𝛿𝑠)2 >) + 𝑜(𝛿𝑡)                      (3) 

Where we note that the Θ terms cancel out but we still have a 𝑜(𝛿𝑡) term as this residual term is not 
necessarily the same quantity in (1) and (2). 

If we note that the expectation of overall P&L is zero then analysing the difference between actuals 
and expectations of the various constituents of P&L will give an attribution of it. 

Thus from (3) and assuming a full delta hedge is in place so that at the net balance sheet level ∆= 0 
we get the key P&L attribution formula: 

𝑃&𝐿 =
𝛤

2
((𝛿𝑠)2 −< (𝛿𝑠)2 >) + 𝑜(𝛿𝑡) 

Or in words: 

𝑃&𝐿 =
𝐺𝑎𝑚𝑚𝑎

2
(𝑅𝑒𝑎𝑙𝑖𝑠𝑒𝑑 𝑉𝑜𝑙𝑎𝑡𝑖𝑙𝑖𝑡𝑦 − 𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑉𝑜𝑙𝑎𝑡𝑖𝑙𝑖𝑡𝑦) + 𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙 𝑇𝑒𝑟𝑚 

 

 

The residual “unexplained” term tends to cause great angst as we do not like to see things 

unexplained.  In this simple case it would of course have been “explained” if we had used the higher 

order terms of the Taylor expansion as there is nothing else at play.  Figure 12 illustrates the 

situation. 
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Figure 12:  Unexplained/residual hedge P&L 

 

Again here the technique is to order the simulations by Hedge P&L from lowest to highest.  Note 

how the “unexplained” tends to be greatest in the loss making situations which is not surprising as 

these are where the explained losses are themselves highest due to high realised volatility.  We see 

that in this very simple situation the Taylor higher order noise or the unexplained by gamma alone is 

not insignificant being of the order of 25bp of the nominal amount of the host contract.  And of 

course when P&L itself is close to zero we get the irony that the unexplained appears very high in 

relation to that P&L.   

We can expect that the Taylor higher order effect would reduce in relation to the gamma effect with 

increased frequency of rebalancing using the usual square root adjustment and since in practice re-

balancings are much more frequent than monthly it is possible that in practical VA situations the 

higher order Taylor effects are indeed negligible. 
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The CBI Stress Tests 
Figure 13 illustrates the effect of the CBI stress tests on this simple contract at its inception. 

Figure 13: The CBI stress tests 

 

 

The cumulative effect is very similar to the unhedged CTE90.  They effectively eliminate any credit 

for hedge effectiveness, at least for the simple example in this paper. 

I have interpreted the stress test for volatility as referring to the underlying volatility and the above 

figure shows the average of the simulated outcomes, given these stressed parameters.   

An alternative approach would be to assume that the stress test refers in a quasi-deterministic way 

to realised volatility.  Further assumptions are then needed such as that the price changes in a 

deterministic up/down fashion with uniform jumps at rebalancings or, alternatively, gamma could be 

estimated from other aspects of the model.  I expect the results to be similar to the stochastic 

approach which I took above. 

In passing, I allude to the G1 stress test which reads as follows: 

“10% proportionate reduction in the effectiveness of the hedging programme at offsetting the total 

guarantee liability movement for the full projection term in addition to the solvency II capital charge 

for operational risk at 31/12/2012” 

The stress appears to be applied to the economic balance sheet and as this will not actually reflect 

the effects of the future hedging program I found it difficult to interpret for my example.  In a 

Solvency I context, which does allow for the effects of the hedging strategy, this is more meaningful 

and would amount to a stress of c. 3.0 in the example. 
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Solvency II 
Figure 14 illustrates my understanding of how the current Standard Formula would apply in this 

simple example. 

Figure 14: Solvency II standard formula 

 

The gross SCR i.e. ignoring the hedge instruments and diversification, is close enough to the 

Solvency I unhedged CTE90.   The hedged Solvency I is in this example exaggeratedly low because of 

the 90% hedge effectiveness.  The Net SCR is equivalent to 63% hedge effectiveness which is at the 

lower range of that shown in Figure 3. 

Noteworthy is the significant relief from the current hedging position.  This is at variance with the 

evidence of Figure 6 which actually indicated that the current balance sheet hedge position, if it is 

maintained, is at even higher risk than a fully unhedged position.  Of course, given the complexity of 

VA products most writers will not be using the Standard Formula.  
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Practical Afterthoughts 
Throughout this paper I have been able to indulge in the simplifications of the Black Scholes ivory 

tower.  In practice many complications present themselves of which the following list is far from 

exhaustive. 

 VA products invariably contain demographic and behavioural dimensions which, as well as 

being unhedgable, considerably complicate the hedging models. 

 Generally VA products are much longer term than five years and may even allow regular 

premiums or future top ups. 

 Given the complications, closed form solutions would rarely be utilised.  Instead simulations 

are performed, perhaps nightly, not only to evaluate the LOV but more importantly its 

attendant “greeks” which feed into the hedge trading platform.  A greek is calculated by 

running the simulations again for each parameter being hedged by slightly tweaking that 

parameter in isolation and using the difference between that run and the base run to 

approximate the greek. 

 Interest rate played a small part in the example in the paper but for much longer term 

products it becomes more important and in the case of a GMIB16 it becomes especially 

significant as it now includes optionality.  In particular, there is not just one interest rate but 

in practice hedging programs might split up the yield curve into say 10 durational “buckets”. 

 Basis risk can be present whereby the hedging tradable does not precisely match the fund to 

which the options apply. 

 Volatility targeting has been mentioned in the paper and presents its own complications. 

 Higher order greeks such as gamma can be hedged but it should be noted that there are no 

natural buyers of convexity risk in the way that there are natural buyers and sellers of the 

primary instruments.  Selling convexity risk is really just passing the parcel. 

 P&L attribution can in practice be particularly intricate with such things as the second order 

“cross greeks” playing a role.  

 Product charges must be allowed for and have themselves a stochastic dimension. 

 Last but not least dynamic hedging incurs transaction costs.   

                                                           
16 GMIBs guarantee a level of life income and are akin to Guaranteed Annuity Options. 
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Appendix 1:  Illustration of Convexity Effects 

I find the following visualisation a useful demonstration of why we always have convexity increases 

in an option value. 

Figure 15:  Illustration of the cause of convexity of option values 

 

The bell curve17 in the diagram represents the simulated distribution of the final maturity price at 

some point in time prior to maturity. 

The At The Money Point is 100.  Those simulations which are to the left of this point are “in the 

money” and those simulations to the right are “out the money”.  The value of the option under a risk 

neutral measure for the bell curve is (ignoring discount for simplicity) the sum of the intrinsic values 

of each simulation.  The intrinsic value to the left of the ATM point is “100 – S” whilst to the right it is 

0.  We can see that the delta of the aggregate of these value is the (negative) cumulative distribution 

function up to the ATM point.  Gamma, being the derivative of delta, is the probability density 

function at the ATM point18. 

A delta hedge effectively follows a stop-loss strategy for each simulation.  Simulations to the left of 

ATM are fully hedged and to the right have no hedge in place.  To more clearly follow the rest of the 

explanation imagine that such a delta hedge is in place. 

                                                           
17 I have ignored the “log” nature of the actual price model and produced a symmetric bell curve.  It does not 
impact on the illustration. 
18 Whilst delta is negative a double negative makes gamma positive.  For a Call option both delta and gamma 
are positive, delta being the sum of “S – 100” for the simulations to the right of the ATM point and gamma 
being the same as for the Put option. 
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Now, if we have a small change 𝛿𝑠 in the stock price the bell curve will make a small shift either to 

the left or the right.  If it is a price fall the curve shifts to the left and that means that the simulations 

within the narrow strip in the diagram have moved from OTM to ITM.  As they have not been 

hedged the writer of the option loses on average 
1

2
𝛿𝑠 on each of these simulations.  The area of the 

strip represents the number of simulations involved and its size is Γ𝛿𝑠 so that gives a total loss 

of
Γ

2
𝛿𝑠2. 

Similarly if the small change was positive the curve will shift to the right and the strip now represents 

simulations which we have hedged but which now enjoy the Put floor.  In other words we continue 

to lose on the hedge instruments backing these simulations without a corresponding fall in the 

liability. 

We can also see that the closer we are to the ATM point the greater is gamma.  Also as we approach 

maturity, the bell curve tightens (we are more certain of the final outcome) with it becoming more 

peaked.  So the most dangerous combination for the hedging strategy is to be at the money 

approaching maturity.  That will not necessarily mean that we will make losses.  To make losses we 

need the realised volatility to exceed the expected volatility, but it does mean that the variability of 

the outcome has increased.   
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Appendix 2: Black Scholes and other formulae  

Black Scholes formulae for a Put option19: 

Value of Put option (p) 

𝑝 = 𝑋𝑒−𝑟𝑡𝑁(−𝑑2) − 𝑆𝑁(−𝑑1) 

where: 

X is exercise price 

r is the risk free rate 

t is time to maturity 

𝑑2 =
ln (

𝑆
𝑋

) + (𝑟 − 𝜎2

2⁄ ) 𝑡

𝜎√𝑡
 

𝑑1 = 𝑑2 + 𝜎√𝑡 

and N() is the cumulative standard Normal distribution.  Note that N(-d2) is the probability of the 

option being in the money at maturity. 

Delta of Put option (𝚫): 

Δ = −𝑁(−𝑑1) 

This might seem rather obvious from the above formula for p but it should be noted that d1 and d2 

are both dependent on S and it is somewhat coincidental that the Δ can be calculated as if they did 

not have that dependence 

Gamma of Put option (𝚪): 

Γ =
𝑁′(𝑑1)

𝑆𝜎√𝑡
 

where N’() is the derivative of the cumulative standard Normal distribution i.e. the probability 

density function of that distribution as follows: 

𝑁′(𝑥) =
1

√2𝜋
𝑒−

1
2

𝑥2

 

Closed Form Formulae for the CTE90 of a Put option 

Value: 

The present value of the CTE90 of a Put option is given by the following integral: 

10 × 𝑒−𝑟𝑡 ∫ 𝑝(𝑠)(𝑋 − 𝑠)+𝑑𝑥
𝑆.1

𝑀

−∞

 

where p(s) is the p.d.f. of the value of the stock, s, at maturity, and r is the discount rate 

𝑆.1
𝑀 is the 10th centile of the maturity value, and equals: 

                                                           
19 Hull pp241 – 242, 326 
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𝑆 (exp (𝑟 − 𝜎2

2⁄ ) 𝑡 −  𝑧.9 ∗ 𝜎√𝑡), where 𝑧.9 is the 90th centile of the standard Normal distribution 

(𝑋 − 𝑠)+ is X - s if X > s otherwise 0 

The factor of 10 reflects the conditionality as the integral of the p.d.f. over that range is, by 

definition, 0.1. 

The situation is complicated by whether one is evaluating a Risk Neutral market consistent value or a 

Real World value which is more associated with CTE90.  For the purpose of this paper I used Real 

World r both for the p.d.f. but also for the discount rate as this makes the math a bit more tractable. 

To evaluate the above integral we recognise two possibilities: 

Possibility 1:  𝑆.1
𝑀 > 𝑋 

In this case the discounted integral is simply the value of the Put with exercise price X 

Possibility 2:  𝑆.1
𝑀 < 𝑋 

In this case the value of the discounted integral is the value of a Put with exercise price 𝑆.1
𝑀  

plus . 1𝑒−𝑟𝑡(X - 𝑆.1
𝑀) so that the value of the CTE90 becomes: 

𝑒−𝑟𝑡(X - 𝑆.1
𝑀)+ 10 x value of Put option with exercise price 𝑆.1

𝑀 

In summary, the value of CTE90 of a Put option is given by the following formula:  

10 × 𝑃𝑢𝑡 (𝑒𝑥𝑒𝑟𝑐𝑖𝑠𝑒 𝑝𝑟𝑖𝑐𝑒 = 𝑀𝑖𝑛(𝑋, 𝑆.1
𝑀)) + 𝑒−𝑟𝑡(𝑋 − 𝑆.1

𝑀)+ 

Delta: 

Again we recognise two possibilities. 

If 𝑆.1
𝑀 > 𝑋 delta of the CTE90 is simply 10 times the delta of the Put with exercise price X. 

If 𝑆.1
𝑀 < 𝑋 we have two parts.  The derivative of (𝑋 − 𝑆.1

𝑀) is minus the derivative of 𝑆.1
𝑀 with respect 

to S i.e. − exp((𝑟 − 𝜎2

2⁄ ) 𝑡 −  𝑧.9 ∗ 𝜎√𝑡)).   

To calculate the delta of the option part we revert to the formula for a Put option and we note that 

in this case both N(d1) and N(d2) are independent of S as ln(S/𝑆.1
𝑀) is independent of S.  However X is 

now dependent on S.  The delta of the option part is therefore: 

10 × (e(r−.5∗𝜎2)t−𝑧.9∗𝜎√𝑡 × 𝑒−𝑟𝑡𝑁(−𝑑2) − 𝑁(−𝑑1)) 

combining the two parts we have the delta of the Put option when 𝑆.1
𝑀 < 𝑋 as follows: 

10 × (e(r−.5∗𝜎2)t−𝑧.9∗𝜎√𝑡 × (𝑒−𝑟𝑡𝑁(−𝑑2) − .1𝑒−𝑟𝑡) − 𝑁(−𝑑1)) 

Note that this formula has no dependence on S.  However S does determine when we switch over 
from using this constant delta to using the one applicable when the 10th centile maturity price is 
greater than the exercise price. 
Figure 16 illustrates the situation at inception. 
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Figure 16:  CTE90 of Put option at inception and its Delta hedge 

 

We can see that Figure 16 bears similarities to Figure 5 for the Stop/Loss strategy. 
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Appendix 3: A generalised approach to the attribution of stochastic P&L 

The objects of our interest are Liabilities and Assets.  I will generically denote a typical object by the 

letter ℒ by analogy with the Lagrangian20 of classical mechanics, although the object could equally be 

an asset or a liability. 

We have a configuration space of 𝑞𝑖s and t, where, to avoid getting too abstract, we can regard t as 

time. The 𝑞𝑖s will typically be various index values or prices and various interest rates, yields or swap 

rates.  In keeping with the analogy we will sometimes refer to them as co-ordinates.   

Each 𝑞𝑖 has a stochastic relationship with respect to t but of course t cannot be stochastic with 

respect to itself21.  We are interested in how our objects evolve with t, so we see that t stands out in 

several ways from the other parameters of the configuration space.   

Each object has associated with it a Lagrangian (for want of a better word) which determines its 

value and which has as many derivatives as we may need, as follows: 

Property A: ℒ = ℒ(𝑞1,𝑞2,𝑞3 … , 𝑞𝑛,𝑡) 

In practice the LOV is the Lagrangian of most interest.  It is invariably calculated from stochastic 

simulations of the liability outcomes based on an ESG model.  Provided the number of simulations is 

large enough and the ESG is reasonably well behaved we can expect, by the law of large numbers, 

that the LOV will approximately have the required level of smoothness. 

In general the 𝑞𝑖s need not follow a geometric Brownian motion but we do require their variation to 

be of the order of √𝛿𝑡: 

Property B: 𝛿𝑞𝑖 = 𝑂(√𝛿𝑡) 

It follows from these properties that the Taylor expansion of any Lagrangian to first order of 

smallness in 𝛿𝑡 is as follows: 

𝛿ℒ = ∑  
𝜕ℒ

𝜕𝑞𝑖
𝛿𝑞𝑖𝑖 + ∑

1

2

𝜕2ℒ

𝜕𝑞𝑖𝜕𝑞𝑗
𝛿𝑞𝑖𝛿𝑞𝑗𝑖,𝑗 +

𝜕ℒ

𝜕𝑡
𝛿𝑡 + 𝑜(𝛿𝑡)  (1) 

Taking expectations of (1) we get (using the notation that <…> means expectation): 

< 𝛿ℒ >=  ∑
𝜕ℒ

𝜕𝑞𝑖
< 𝛿𝑞𝑖 >𝑖 + ∑

1

2

𝜕2ℒ

𝜕𝑞𝑖𝜕𝑞𝑗
< 𝛿𝑞𝑖𝛿𝑞𝑗 >𝑖,𝑗 +

𝜕ℒ

𝜕𝑡
𝛿𝑡 + 𝑜(𝛿𝑡)  (2) 

Note that < 𝛿𝑞𝑖𝛿𝑞𝑗 > is quite different from < 𝛿𝑞𝑖 >< 𝛿𝑞𝑗 >.   

Rearranging (2) we get: 

𝜕ℒ

𝜕𝑡
𝛿𝑡 =< 𝛿ℒ > − ∑

𝜕ℒ

𝜕𝑞𝑖
< 𝛿𝑞𝑖 >𝑖 − ∑

1

2

𝜕2ℒ

𝜕𝑞𝑖𝜕𝑞𝑗
< 𝛿𝑞𝑖𝛿𝑞𝑗 > +𝑜(𝛿𝑡)𝑖,𝑗  (3) 

We now substitute (3) into (1) and gather together some terms to arrive at the main result of the 

formalism: 

𝜹𝓛− < 𝜹𝓛 >= ∑
𝝏𝓛

𝝏𝒒𝒊
(𝜹𝒒𝒊−< 𝜹𝒒𝒊 >)𝒊 +

𝟏

𝟐
∑

𝝏𝟐𝓛

𝝏𝒒𝒊𝝏𝒒𝒋
(𝜹𝒒𝒊𝜹𝒒𝒋−< 𝜹𝒒𝒊𝜹𝒒𝒋 >)𝒊,𝒋 + 𝒐(𝜹𝒕)   (℘) 

                                                           
20 There are loose similarities with the notation and methods in this note to Lagrange’s reformulation of 
Newton’s laws but it would be wrong to expect the analogy to stretch too far 
21 If t changes by 1 week then the change in t is completely determined as 1 week!    
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Note that the term in 
𝜕ℒ

𝜕𝑡
  falls out.  Assuming that our expectation of P&L is zero the LHS is the 

contribution to actual P&L and the RHS is its attribution. 

In many situations there is a risk neutral measure whereby we have the following identities: 

< 𝛿ℒ >= 𝑟ℒ𝛿𝑡, < 𝛿𝑞𝑖 >= 𝑟𝑞𝑖𝛿𝑡,   < 𝛿𝑞𝑖𝛿𝑞𝑖 >= 𝜎𝑖
2𝑞𝑖

2𝛿𝑡,   < 𝛿𝑞𝑖𝛿𝑞𝑗 > = 𝜌𝑖𝑗𝜎𝑖𝜎𝑗𝑞𝑖𝑞𝑗𝛿𝑡 

where 𝑟 is the risk free rate, 

 𝜎𝑖 is the standard deviation of 𝑞𝑖 and 

 𝜌𝑖𝑗  is the correlation between 𝑞𝑖 and 𝑞𝑗 

in which case (℘) becomes: 

𝛿ℒ − 𝑟ℒ𝛿𝑡 = 

∑ (
𝜕ℒ

𝜕𝑞𝑖
(𝛿𝑞𝑖 − 𝑟𝑞𝑖𝛿𝑡) +

1

2

𝜕2ℒ

𝜕𝑞𝑖
2 ((𝛿𝑞𝑖)2 − 𝜎𝑖

2𝑞𝑖
2𝛿𝑡))𝑖 + ∑

𝜕2ℒ

𝜕𝑞𝑖𝜕𝑞𝑗
(𝛿𝑞𝑖𝛿𝑞𝑗 − 𝜌𝑖𝑗𝜎𝑖𝜎𝑗𝑞𝑖𝑞𝑗𝛿𝑡)𝑖>𝑗 + 𝑜(𝛿𝑡)  

where we have used the fact that  
𝜕2ℒ

𝜕𝑞𝑖𝜕𝑞𝑗
=

𝜕2ℒ

𝜕𝑞𝑗𝜕𝑞𝑖
 

Example 1: 

As a simple example of the application of ℘ , let us consider a holding of stock S. 

Its Lagrangian is as follows: 

𝑆 =  𝑁𝑞 (4)  

Where N is the stockholding and q is the stock price.  Note that there is no explicit t dependence and 

that in general an object does not necessarily have a dependence on all the co-ordinates of the 

configuration space. 

We have 

𝜕𝑆

𝜕𝑞
= 𝑁 ; 

𝜕2𝑆

𝜕𝑞2
= 0; < 𝛿𝑆 >= 𝑟𝑆𝛿𝑡 𝑎𝑛𝑑 < 𝛿𝑞 >= 𝑟𝑞𝛿𝑡 

Thus we get from ℘ 

𝛿𝑆 − 𝑟𝑆𝛿𝑡 = 𝑁(𝛿𝑞 − 𝑟𝑞𝛿𝑡) 

and substituting from (4) we get: 

𝛿𝑆 = 𝑁𝛿𝑞  which, of course, is exactly what we expect. 

Example 2: 

In this example we consider the Black Scholes Option value (V) with one degree of freedom (co-

ordinate). 

This time the co-ordinate q is the actual value of the underlying and we have the following: 

𝜕𝑉

𝜕𝑞
= Δ ; 

𝜕2𝑉

𝜕𝑞2
= Γ; < 𝛿𝑞 >= 𝑟𝑞𝛿𝑡 𝑎𝑛𝑑 < 𝛿𝑞 · 𝛿𝑞 >= 𝜎2𝑞2𝛿𝑡  
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Thus from ℘: 

𝛿𝑉 = 𝑟𝑉𝛿𝑡 + Δ(𝛿𝑞 − 𝑟𝑞𝛿𝑡) +
Γ

2
((𝛿𝑞)2 − 𝜎2𝑞2𝛿𝑡) 

Where we have used the risk neutral assumption that < 𝛿𝑞 >= 𝑟𝑞𝛿𝑡; < 𝛿𝑉 >= 𝑟𝑉𝛿𝑡  
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