

Society of Actuaries in Ireland

How Powerful are your Rating Factors? Chris Reynolds and Andrei Halasz

2012

Disclaimer

The following presentation is for general information, education and discussion purposes only.

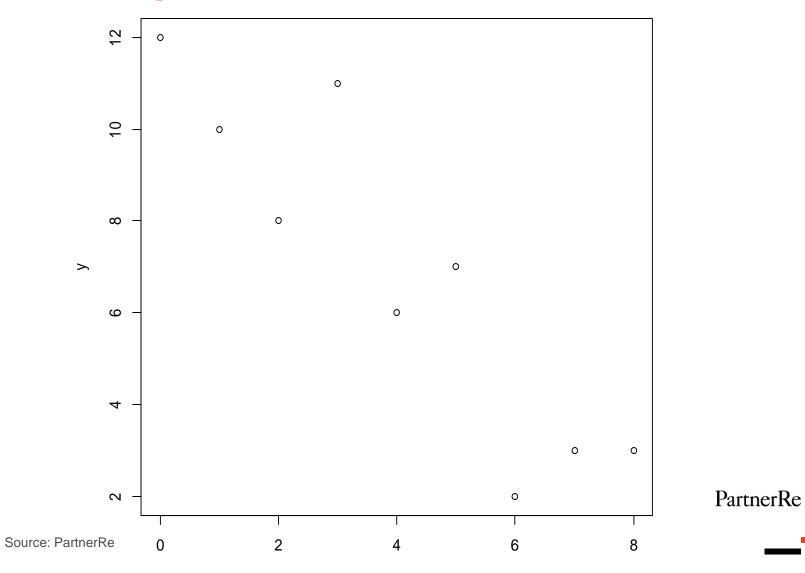
Views or opinions expressed, whether oral or in writing do not constitute legal or professional advice.

Random Structure

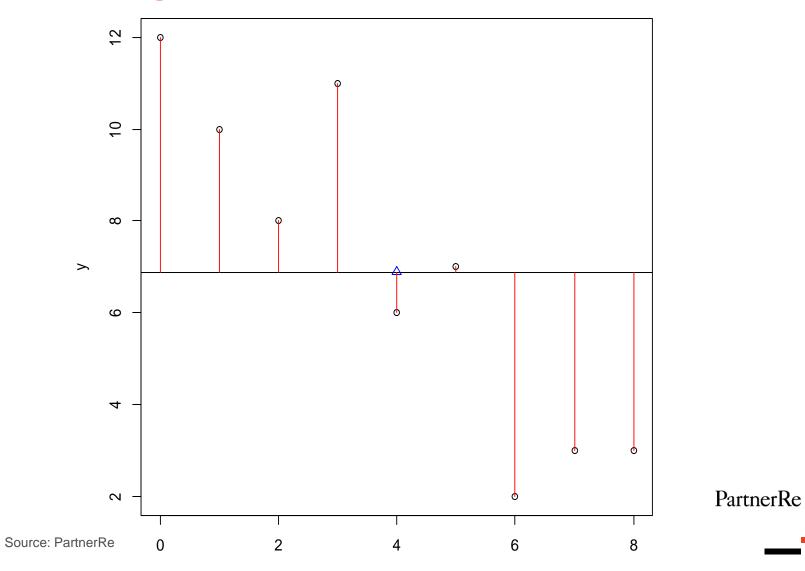
Responses vary even for constant values of the predictor

$$Y_i \sim N(\mu_i, \sigma^2)$$

Systematic Structure

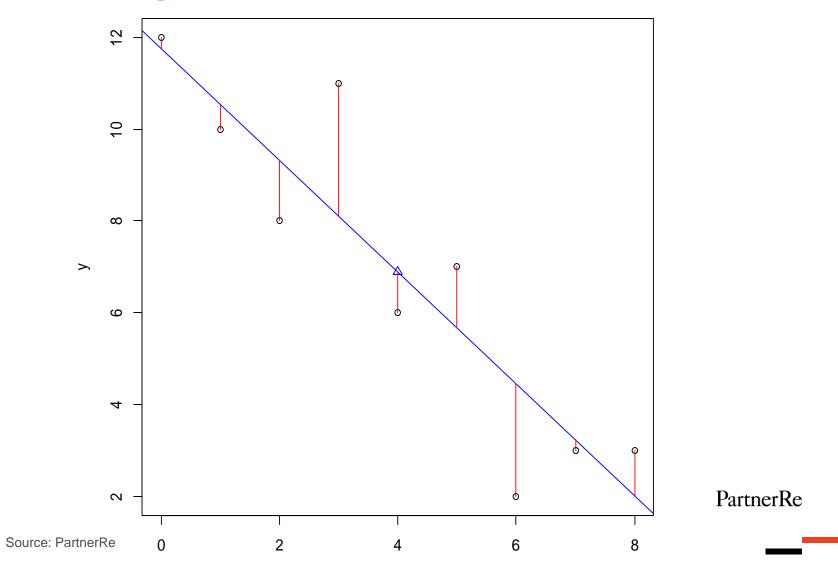

The simplest way to express the dependence of the response μ_i on the predictor x_i is to assume a linear function

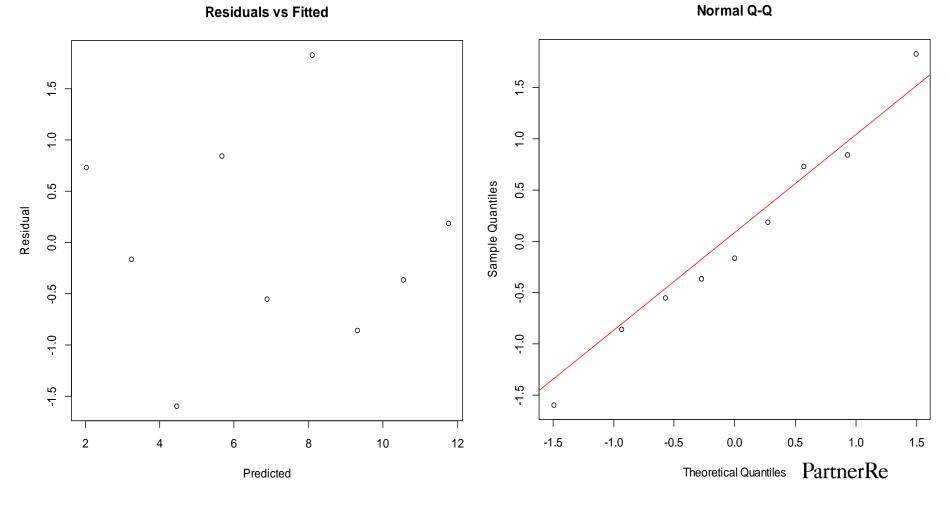
$$\mu_i = \alpha + \beta x_i$$



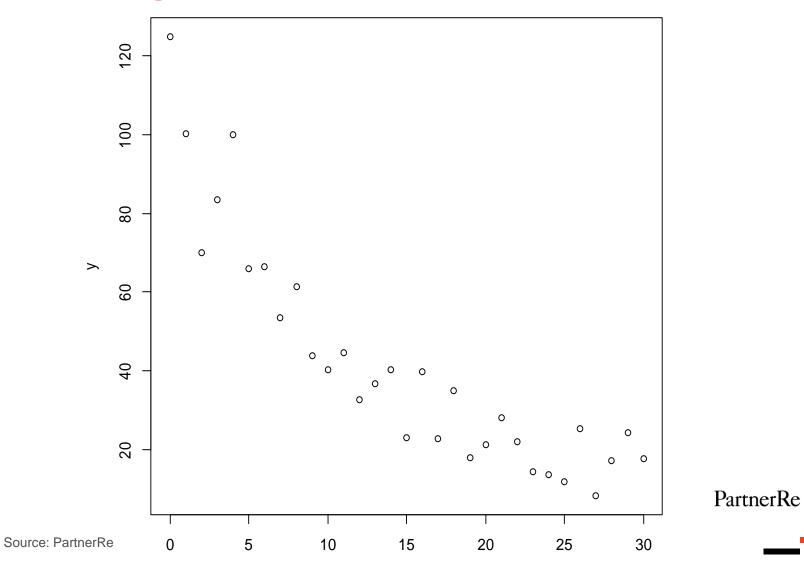
5

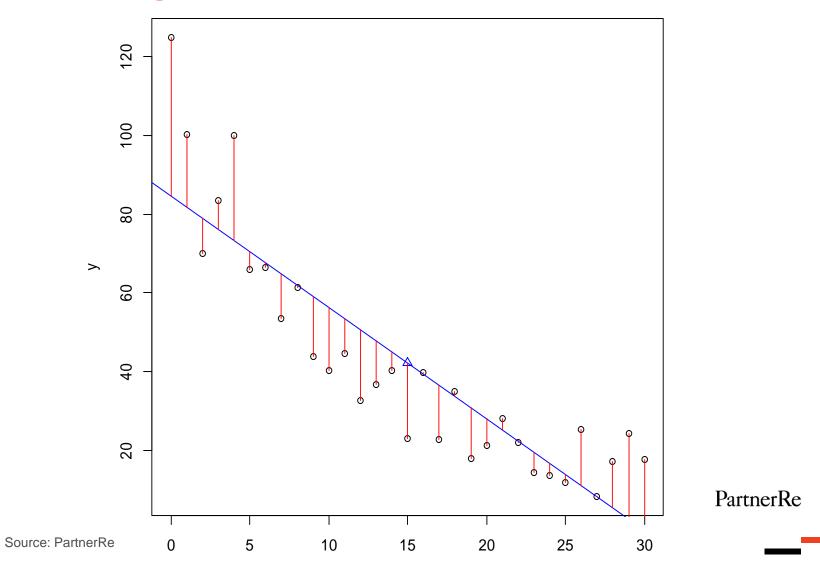
Linear Regression





x




Source: PartnerRe

x

Residuals vs Fitted

З З \sim \sim 0 0 Sample Quantiles Residual ~ ~ \cap $\overline{}$ $\overline{}$ -2 -1 PartnerRe Theoretical Quantiles Predicted

Normal Q-Q

Source: PartnerRe

- 1 The relationship between the response and the predictor may not be linear;
- 2 A normal distribution for the response may be inappropriate;
- 3 The variance will often increase linearly with the mean, so a constant variance assumption may be inappropriate.

What do we do???

We generalise the model framework. PartnerRe

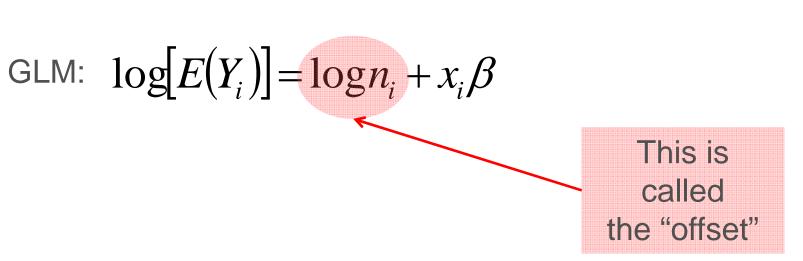
The 3 part GLM Recipe

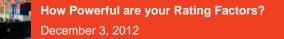
1 Random Component Identify the response variable Y and assume a probability distribution for it

2 Systematic Component Specify what the explanatory variables X are. This gives the linear component $\alpha + \beta X_i$

3 Link

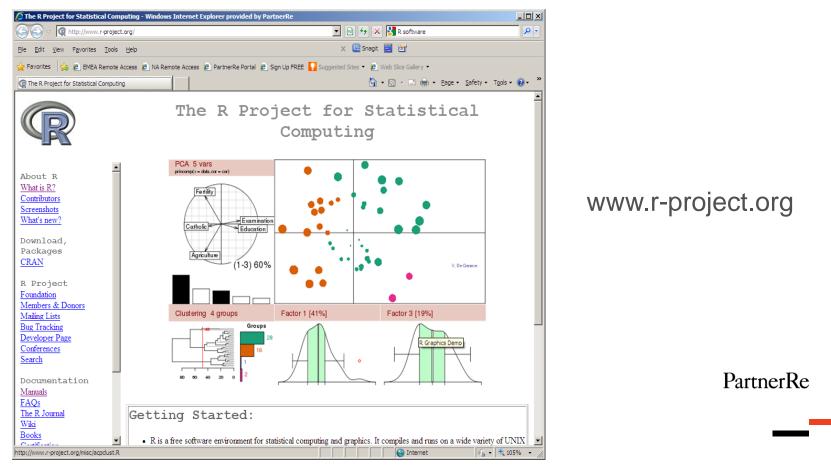
Specify the relationship g between the mean E(Y) and the systematic component X:

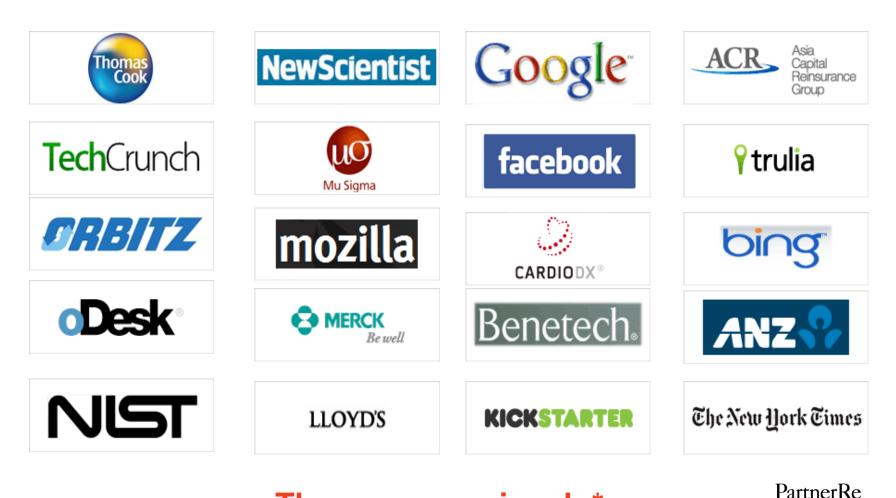

$$g(\mathbf{E}[Y_i]) = \alpha + \beta X_i$$
PartnerRe



Poisson Regression

Number of Deaths:
$$Y_i \sim Po(n_i \mu_i) \Rightarrow E(Y_i) = n_i \mu_i$$


Gompertz: $\mu_i = e^{x_i \beta}$


R Software – What is it?

"R is an open-source, object-oriented statistical programming language. In the past decade, it has become the global lingua franca of statistics"

R – Should a company trust free software?

These companies do*

*Source : <u>http://www.revolutionanalytics.com/what-is-open-source-r/companies-using-r.php</u>

How Powerful are your Rating Factors?

Real time demonstration

- **Using HMD* mortality data**
- Years 1960 onwards
- Ages 20 65
- **UK**, Ireland, Poland & Russia
- * Human Mortality Database (www.mortality.org)

PartnerRe

Creating a GLM model - start simple & build vs start with saturated and strip down

- •One approach might be to start simple and build up
- But it's often easier in the GLM world to start with all available rating factors
 - strip out factors (or combinations of factors) that don't add much value

Term Assurance data - Our dataset

- Several companies
- Many thousands of claims
- •All UK, "normal" term assurance
- Chosen datasets with rich rating factors
 - e.g. rated status, joint v single, distribution channel, underwriting year, sum assured size, etc.

PartnerRe

19

Model – Investigation 1

Take a grouped dataset split by

- Age Bands of 5
- Sex
- Smoker
- Duration

Model – Investigation 1

Fit an AGE * SEX * SMK * DUR model

Use Exposure as the "offset"

Analyse the significance of each factor

The principle of Parsimony (Occam's Razor) – simplify the model to the "simplest acceptable model"

22

Model – Investigation 1 : Age * Sex * Smk * Dur

Call:		6					
g]m(formula = MG1\$ MG1\$SMOKER * M					MGI\$SEX	×	
Deviance Residuals	:						
Min 1Q	Median	3Q	Max				
-3.2464 -0.6364	0.0055	0.7708	2.5557				
Coefficients:							
			Estimate	Std. Error	t value	Pr(> t)	
(Intercept)			-1.210e+01	2.846e-01	-42.498	< 2e-16	***
MG1\$AGE			9.095e-02	5.582e-03	16.295	< 2e-16	***
MG1\$SEXM			9.848e-01	3.464e-01	2.843	0.004884	**
MG1\$SMOKERS			-1.034e+00	5.251e-01	-1.969	0.050243	
MG1\$DUR			1.405e-01	7.600e-02	1.849	0.065830	
MG1\$AGE:MG1\$SEXM			-8.488e-03	6.699e-03	-1.267	0.206497	
MG1\$AGE:MG1\$SMOKER	S		3.756e-02	1.008e-02	3.726	0.000246	***
MG1\$SEXM:MG1\$SMOKE	RS		1.458e+00	6.194e-01	2.354	0.019457	×
MG1\$AGE:MG1\$DUR			-2.373e-04	1.476e-03	-0.161	0.872363	
MG1\$SEXM:MG1\$DUR			-2.842e-01	9.357e-02	-3.038	0.002668	**
MG1\$SMOKERS:MG1\$DU	R		1.531e-01	1.447e-01	1.058	0.291215	
MG1\$AGE:MG1\$SEXM:M	G1\$SMOKEF	25	-2.955e-02	1.189e-02	-2.486	0.013663	×
MG1\$AGE:MG1\$SEXM:MG1\$DUR			4.330e-03	1.780e-03	2.432	0.015808	*
MG1\$AGE:MG1\$SMOKER	S:MG1\$DUF	٤	-3.618e-03	2.746e-03	-1.317	0.189065	
MG1\$SEXM:MG1\$SMOKE	RS:MG1\$DL	JR	-1.875e-01	1.738e-01	-1.079	0.281919	
MG1\$AGE:MG1\$SEXM:M	G1\$SMOKER	S:MG1\$DUR	4.276e-03	3.284e-03	1.302	0.194135	

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for quasipoisson family taken to be 1.271398)

Null deviance: 10548.47 on 239 degrees of freedom Residual deviance: 272.92 on 224 degrees of freedom AIC: NA

Number of Fisher Scoring iterations: 4

23

Model – Investigation 1 : Age * Sex * Smk * Dur

Console ~/ 🔗

call:

glm(formula = MG1\$DTHS ~ MG1\$AGE + MG1\$SEX + MG1\$SMOKER + MG1\$DUR +
MG1\$AGE:MG1\$SEX + MG1\$AGE:MG1\$SMOKER + MG1\$SEX:MG1\$SMOKER +
MG1\$AGE:MG1\$DUR + MG1\$SEX:MG1\$DUR + MG1\$AGE:MG1\$SEX:MG1\$SMOKER +
MG1\$AGE:MG1\$SEX:MG1\$DUR + offset(log(MG1\$EXPO)), family = quasipoisson)

Deviance Residuals:

Min	10	Median	3Q	Max
-3.4709	-0.6370	-0.0157	0.7362	2.5731

Coefficients:

	Estimate	Std. Error	t value	Pr(> t)	
(Intercept)	-12.261799	0.250419	-48.965	< 2e-16	***
MG1\$AGE	0.094960	0.004853	19.569	< 2e-16	***
MG1\$SEXM	1.184994	0.303860	3.900	0.000127	***
MG1\$SMOKERS	-0.513008	0.253163	-2.026	0.043889	*
MG1\$DUR	0.189013	0.064526	2.929	0.003742	**
MG1\$AGE:MG1\$SEXM	-0.013148	0.005837	-2.253	0.025237	*
MG1\$AGE:MG1\$SMOKERS	0.025282	0.004787	5.282	2.98e-07	***
MG1\$SEXM:MG1\$SMOKERS	0.835884	0.307339	2.720	0.007036	**
MG1\$AGE:MG1\$DUR	-0.001400	0.001240	-1.129	0.259894	
MG1\$SEXM:MG1\$DUR	-0.343461	0.078550	-4.372	1.87e-05	***
MG1\$AGE:MG1\$SEXM:MG1\$SMOKERS	-0.015298	0.005778	-2.648	0.008669	**
MG1\$AGE:MG1\$SEXM:MG1\$DUR	0.005693	0.001490	3.820	0.000172	***
Signif. codes: 0 '***' 0.001	'**' 0.01	'*' 0.05 ['] .	.' 0.1 '	' 1	

(Dispersion parameter for quasipoisson family taken to be 1.272148)

Null deviance: 10548.47 on 239 degrees of freedom Pa Residual deviance: 277.45 on 228 degrees of freedom Pa AIC: NA

Number of Fisher Scoring iterations: 4

PartnerRe

Model – Investigation 1 : Age * Sex * Smk * Dur

Console ~/ 🗇

call:

glm(formula = MG1\$DTHS ~ MG1\$AGE + MG1\$SEX + MG1\$SMOKER + MG1\$DUR +
MG1\$AGE:MG1\$SEX + MG1\$AGE:MG1\$SMOKER + MG1\$SEX:MG1\$SMOKER +
MG1\$SEX:MG1\$DUR + MG1\$AGE:MG1\$SEX:MG1\$SMOKER + offset(log(MG1\$EXPO)),
family = quasipoisson)

Deviance Residuals:

Min	1Q	Median	3Q	Max
-3.4289	-0.6567	-0.0245	0.7375	3.4940

Coefficients:

	Estimate	Std. Error	t value	Pr(> t)	
(Intercept)	-12.025798	0.144692	-83.113	< 2e-16	***
MG1\$AGE	0.090308	0.002721	33.194	< 2e-16	***
MG1\$SEXM	0.210538	0.179932	1.170	0.24317	
MG1\$SMOKERS	-0.519027	0.268181	-1.935	0.05417	
MG1\$DUR	0.117522	0.012862	9.137	< 2e-16	***
MG1\$AGE:MG1\$SEXM	0.005571	0.003324	1.676	0.09514	•
MG1\$AGE:MG1\$SMOKERS	0.025376	0.005071	5.005	1.11e-06	***
MG1\$SEXM:MG1\$SMOKERS	0.934566	0.326615	2.861	0.00461	**
MG1\$SEXM:MG1\$DUR	-0.042665	0.015503	-2.752	0.00639	**
MG1\$AGE:MG1\$SEXM:MG1\$SMOKERS	-0.017194	0.006139	-2.801	0.00553	**
Signif. codes: 0 '***' 0.001	'**' 0.01	'*' 0.05 '.	' 0.1'	' 1	

(Dispersion parameter for quasipoisson family taken to be 1.437646)

Null deviance: 10548.47 on 239 degrees of freedom Residual deviance: 313.08 on 230 degrees of freedom AIC: NA

Number of Fisher Scoring iterations: 4

Model – Investigation 1 : Age * Sex * Smk * Dur

Console ~/ 🔊

Call:

glm(formula = MG1\$DTHS ~ MG1\$AGE + MG1\$SMOKER + MG1\$DUR + MG1\$AGE:MG1\$AGE:MG1\$SEX +
MG1\$AGE:MG1\$SMOKER + MG1\$SEX:MG1\$SMOKER + MG1\$SEX:MG1\$DUR +
MG1\$AGE:MG1\$SEX:MG1\$SMOKER + offset(log(MG1\$EXPO)), family = quasipoisson)

Deviance Residuals:

Min	10	Median	3Q	Max
-3.4806	-0.6930	-0.0417	0.7281	3.2266

Coefficients:

	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	-11.890175	0.086314	-137.756	< 2e-16 ***
MG1\$AGE	0.087918	0.001805	48.704	< 2e-16 ***
MG1\$SMOKERS	-0.649344	0.244500	-2.656	0.00846 **
MG1\$DUR	0.114614	0.012615	9.086	< 2e-16 ***
MG1\$AGE:MG1\$SEXM	0.009228	0.001145	8.063	4.02e-14 ***
MG1\$AGE:MG1\$SMOKERS	0.027839	0.004628	6.016	6.96e-09 ***
MG1\$SMOKERS:MG1\$SEXM	1.137887	0.277364	4.102	5.67e-05 ***
MG1\$DUR:MG1\$SEXM	-0.038779	0.015160	-2.558	0.01117 *
MG1\$AGE:MG1\$SMOKERS:MG1\$SEXM	-0.020943	0.005254	-3.986	9.02e-05 ***
Signif. codes: 0 '***' 0.001	***' 0.01	'*' 0.05 '.	' 0.1 '	' 1

(Dispersion parameter for quasipoisson family taken to be 1.445737)

Null deviance: 10548.47 on 239 degrees of freedom Residual deviance: 315.05 on 231 degrees of freedom AIC: NA

PartnerRe

Number of Fisher Scoring iterations: 4

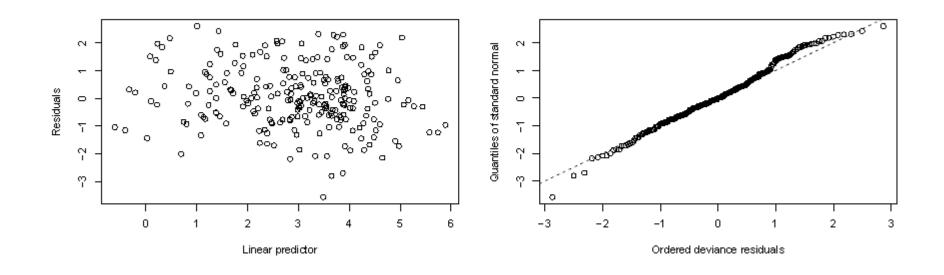
>

Model – Investigation 1 – Model Comparison

the co

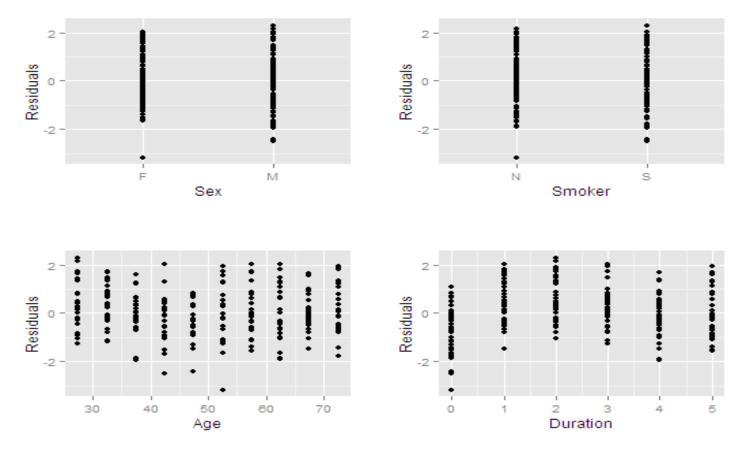
Variable removed	Residual Deviance	Degrees of Freedom	Anova (F test) Pr(> F)
FULL MODEL	272.92	224	
Age:Sex:Smoker:Dur	Δ 2.16	Δ 1	0.19
Sex:Smoker:Dur	Δ 1.56	Δ 1	0.27
Age:Smoker:Dur	Δ 0.18	Δ 1	0.71
Smoker:Dur	∆ 0.60	Δ1	0.48
Age:Dur	∆ 35.63	Δ2	***
Sex	Δ 1.98	Δ 1	0.24

Model – Investigation 1 – Final model

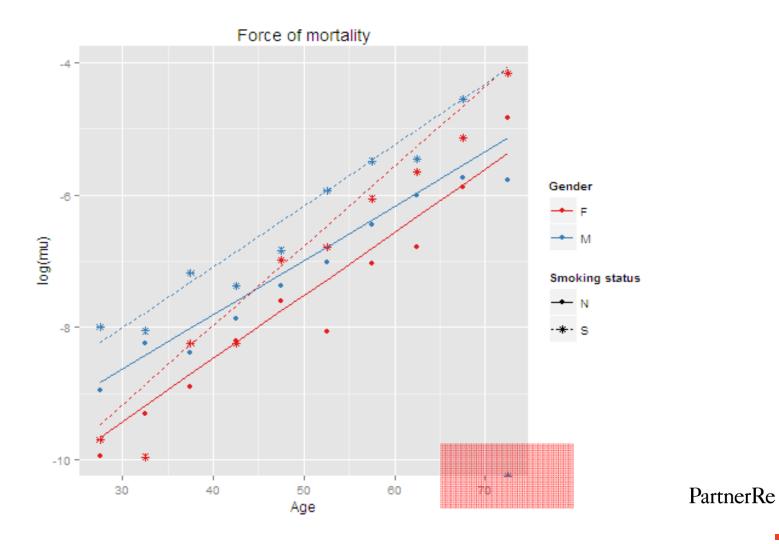

```
So the simplified model is:

\mu(x, \text{dur}, \text{Sex}, \text{Smoker}) = \begin{bmatrix}
-12.262 + 0.095x + 1.185\chi_{\text{MALE}} \\
-0.513\chi_{\text{SMOKER}} + 0.189 \, dur \\
-0.013x\chi_{\text{MALE}} + 0.025x\chi_{\text{SMOKER}} \\
+0.836\chi_{\text{MALE}}\chi_{\text{SMOKER}} - 0.001x \, dur \\
-0.343 \, dur\chi_{\text{MALE}} - 0.015x\chi_{\text{MALE}}\chi_{\text{SMOKER}} \\
+0.006x \, dur\chi_{\text{MALE}}
\end{bmatrix}
```

E.g. μ (37.5,5, M, NS) = 0.0003958 Observed = 0.0003601


Model – Investigation 1 – Diagnostic plots

PartnerRe


Model – Investigation 1 – Diagnostic plots

PartnerRe

Model – Investigation 1 – Diagnostic plots

Model – Investigation 1 – Overdispersion

manage a second second second

Console ~/ 🔗

call:

glm(formula = MG1\$DTHS ~ MG1\$AGE + MG1\$SEX + MG1\$SMOKER + MG1\$DUR +
MG1\$AGE:MG1\$SEX + MG1\$AGE:MG1\$SMOKER + MG1\$SEX:MG1\$SMOKER +
MG1\$AGE:MG1\$DUR + MG1\$SEX:MG1\$DUR + MG1\$AGE:MG1\$SEX:MG1\$SMOKER +
MG1\$AGE:MG1\$SEX:MG1\$DUR + offset(log(MG1\$EXPO)), family = quasipoisson)

Deviance Residuals:

Min	10	Median	3Q	Max
-3.4709	-0.6370	-0.0157	0.7362	2.5731

Coefficients:

Estimate	Std. Error	t value	Pr(> t)	
-12.261799	0.250419	-48.965	< 2e-16	***
0.094960	0.004853	19.569	< 2e-16	***
1.184994	0.303860	3.900	0.000127	***
-0.513008	0.253163	-2.026	0.043889	×
0.189013	0.064526	2.929	0.003742	**
-0.013148	0.005837	-2.253	0.025237	*
0.025282	0.004787	5.282	2.98e-07	***
0.835884	0.307339	2.720	0.007036	**
-0.001400	0.001240	-1.129	0.259894	
-0.343461	0.078550	-4.372	1.87e-05	***
-0.015298	0.005778	-2.648	0.008669	**
0.005693	0.001490	3.820	0.000172	***
	-12.261799 0.094960 1.184994 -0.513008 0.189013 -0.013148 0.025282 0.835884 -0.001400 -0.343461 -0.015298	-12.261799 0.250419 0.094960 0.004853 1.184994 0.303860 -0.513008 0.253163 0.189013 0.064526 -0.013148 0.005837 0.25282 0.004787 0.835884 0.307339 -0.001400 0.001240 -0.343461 0.078550 -0.015298 0.005778	-12.261799 0.250419 -48.965 0.094960 0.004853 19.569 1.184994 0.303860 3.900 -0.513008 0.253163 -2.026 0.189013 0.064526 2.929 -0.013148 0.005837 -2.253 0.025282 0.004787 5.282 0.835884 0.307339 2.720 -0.001400 0.001240 -1.129 -0.343461 0.078550 -4.372 -0.015298 0.005778 -2.648	0.094960 0.004853 19.569 < 2e-16 1.184994 0.303860 3.900 0.000127 -0.513008 0.253163 -2.026 0.043889 0.189013 0.064526 2.929 0.003742 -0.013148 0.005837 -2.253 0.025237 0.025282 0.004787 5.282 2.98e-07 0.835884 0.307339 2.720 0.007036 -0.01400 0.001240 -1.129 0.259894 -0.343461 0.078550 -4.372 1.87e-05 -0.015298 0.005778 -2.648 0.008669

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for quasipoisson family taken to be 1.272148)

Null deviance: 10548.47 on 239 degrees of freedom Residual deviance: 277.45 on 228 degrees of freedom AIC: NA Null deviance: 9457.61 on 239 degrees of freedom Residual deviance: 254.71 on 228 degrees of freedom PartnerRe AIC: 1456.5

Number of Fisher Scoring iterations: 4

Model – Investigation 2

Take a grouped dataset split by

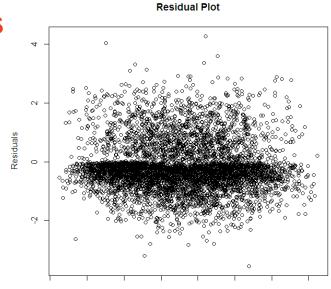
- Age Bands of 5
- Sex
- Smoker
- Duration

and SA Band, Rated, JL Status, Distribution Channel

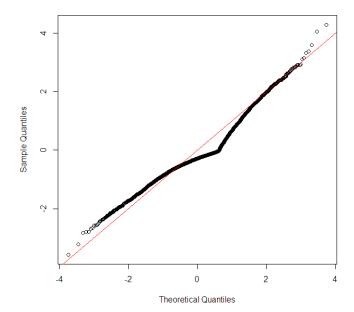
Model – Investigation 2

Fit the following model : AGE * SEX * (SMK + DUR) + SA + R + JS + CHANNEL

Use Exposure as the "offset"

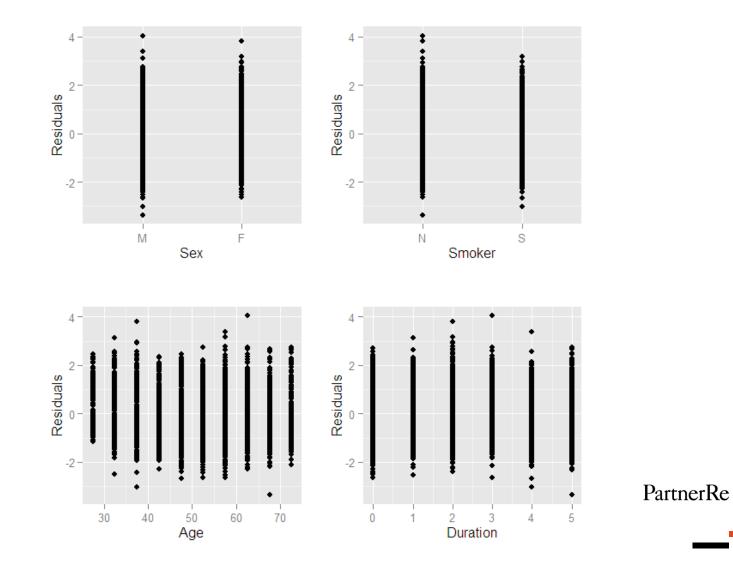

Analyse the significance of each factor and simplify

How Powerful are your Rating Factors? December 3, 2012

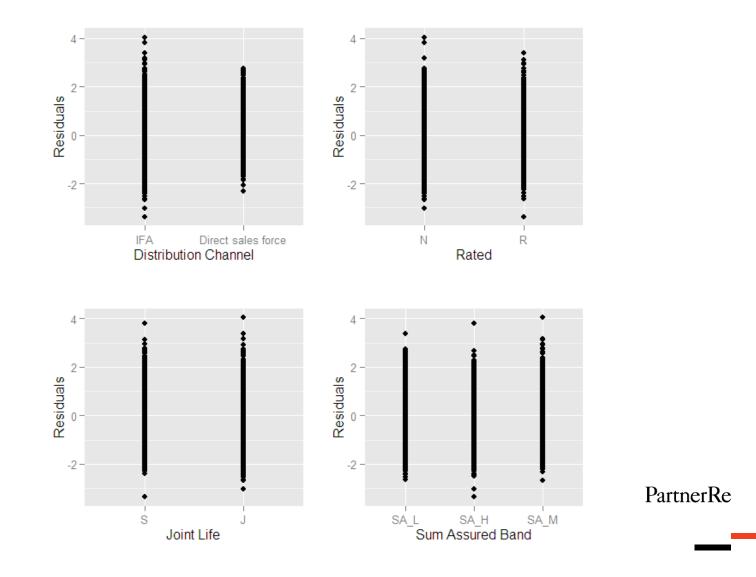

34

Model – Investigation 2 - Results

R Console		_ 0
File Edit Misc Packages Windows Help	-	
Call:		
	et(log(MG2\$EXPO)) + MG2\$AGE * MG2\$SEX *	
MG2\$SMOKER + MG2\$AGE * MG2 MG2\$SA + MG2\$CHANNEL, fami	2\$SEX * MG2\$DUR + MG2\$R + MG2\$SJ +	
MG2\$5A + MG2\$CHANNEL, IANI	IIV - "duasibolssou")	
Deviance Residuals:		
Min 1Q Median	3Q Max	
-3.5530 -0.6371 -0.2856 0.		
Coefficients:		
_	Estimate Std. Error t value Pr(> t)	
	-1.055e+01 1.675e-01 -62.957 < 2e-16 ***	
IG2 \$AGE	7.348e-02 3.067e-03 23.955 < 2e-16 ***	
IG2\$SEXF IG2\$SMOKERS	-1.211e+00 2.832e-01 -4.278 1.92e-05 ***	
IG2 \$ DUR IG2 \$ DUR	2.317e-01 1.628e-01 1.423 0.154699 -1.282e-01 4.188e-02 -3.061 0.002213 **	
G2\$BOR	5.521e-01 2.912e-02 18.958 < 2e-16 ***	
G2\$SJJ	-9.762e-02 2.332e-02 -4.186 2.89e-05 ***	
G2\$SASA H	-2.857e-01 2.977e-02 -9.597 < 2e-16 ***	
IG2\$SASA M	-9.944e-02 2.953e-02 -3.367 0.000765 ***	
IG2\$CHANNELDirect sales force	7.972e-02 3.593e-02 2.219 0.026560 *	
IG2\$AGE:MG2\$SEXF	1.347e-02 5.437e-03 2.478 0.013249 *	
IG2\$AGE:MG2\$SMOKERS	1.102e-02 3.023e-03 3.647 0.000268 ***	
IG2\$SEXF:MG2\$SMOKERS	-8.466e-01 2.872e-01 -2.948 0.003211 **	
IG2\$AGE:MG2\$DUR	3.965e-03 7.739e-04 5.123 3.11e-07 ***	
IG2\$SEXF:MG2\$DUR	3.387e-01 7.322e-02 4.626 3.81e-06 ***	
	1.510e-02 5.398e-03 2.796 0.005185 **	
IG2\$AGE:MG2\$SEXF:MG2\$DUR	-5.616e-03 1.388e-03 -4.046 5.29e-05 ***	
	`**' 0.01 `*' 0.05 `.' 0.1 ` ' 1	
ignii. codes: 0 (asso 0.001	0.01 0.01 0.05 0.0 0.1 0.1	
Dispersion parameter for guas	sipoisson family taken to be 1.124377)	
Null deviance: 15026.8 or	n 5504 degrees of freedom	
esidual deviance: 4251.4 or	n 5488 degrees of freedom	
AIC: NA		
Number of Fisher Scoring itera	ations: 5	
>		
1		



Normal Q-Q Plot



Model – Investigation 2 - Results

Model – Investigation 2 - Results

Typical model outputs from Model 2

Rating Factor	Loading to Intercept
Rated	174%
Joint Life	91%
Medium SA	91%
High SA	75%
Direct Sales Force	108%

Intercept:

Male – Non Smoker – Non Rated – IFA – Single Life

Model – Investigation 3

Take a grouped dataset split by

- 5 Year Age Band
- Sex
- Smoker
- Duration
- and SA Band, Rated, JL Status, Channel.

```
Fit the following model :
AGE * [SEX * (SMK + DUR) + SA + R + JS + CHANNEL]
Use Expected as the "offset"
```


How Powerful are your Rating Factors?

39

Model – Investigation 3 - Results

R Console						_ 🗆 ×
Eile Edit Misc Packages Windows Help						
Deviance Residuals:						
Min 10 Median 30	Max					
-3.4957 -0.6593 -0.3260 0.0712	3.9661					
Coefficients:						
	Estimate	Std. Error	z value	Pr(> z)		
(Intercept)	1.0066208	0.1977162	5.091	3.56e-07	***	
MG3\$AGE	-0.0137769	0.0035806	-3.848	0.000119	***	
MG3\$SEXF	-0.2004565	0.2578580	-0.777	0.436928		
MG3\$SMOKERS	0.1483953	0.1500640	0.989	0.322722		
MG3\$DUR		0.0389286			*	
MG3SRR		0.1429907				
MG3\$SJJ		0.1138074				
MG3SSASA H		0.1486198				
MG3\$SASA M		0.1623397				
MG3SCHANNELDirect sales force		0.1693607				
MG3SAGE:MG3SSEXF		0.0049667				
MG3SAGE:MG3SSMOKERS		0.0027911				
MG3\$SEXF:MG3\$SMOKERS		0.2663103				
MG3\$AGE:MG3\$DUR		0.0007195				
MG3\$ABE.MG3\$DOR MG3\$SEXF:MG3\$DUR		0.0676442				
MG3\$AGE:MG3\$RR						
		0.0025711				
MG3\$AGE:MG3\$SJJ		0.0021192				
MG3\$AGE:MG3\$SASA_H		0.0027044			~ ~	
MG3\$AGE:MG3\$SASA_M		0.0029125				
MG3\$AGE:MG3\$CHANNELDirect sales fo						
MG3\$AGE:MG3\$SEXF:MG3\$SMOKERS		0.0050058				
MG3\$AGE:MG3\$SEXF:MG3\$DUR	-0.0026716	0.0012864	-2.077	0.037815	*	
Signif. codes: 0 '***' 0.001 '**'	0.01 **' 0.05	·./ 0.1 · ·	1 1			
(Dispersion parameter for poisson	family taken to	o be 1)				
Null deviance: 4907.4 on 5504	degrees of f	reedom				
Residual deviance: 4219.2 on 5483	-					
AIC: 10512						
Number of Fisher Scoring iteration	s: 5					
> [
2						
<u>1</u>						

40

Model – Investigation 3 - Results

_ D × R Console File Edit Misc Packages Windows Help Call: glm(formula = MG3\$DTHS ~ MG3\$AGE + MG3\$DUR + MG3\$R + MG3\$SJ + MG3\$SA + MG3\$CHANNEL + MG3\$AGE:MG3\$R + MG3\$AGE:MG3\$SJ + MG3\$AGE:MG3\$ Residuals offset(log(MG3\$EXPE)), family = poisson) Deviance Residuals: Min 10 Median 30 Max -3.4249 -0.7128 -0.3382 0.2258 3.9327 Coefficients: Estimate Std. Error z value Pr(>|z|)7.955 1.79e-15 *** (Intercept) 0.812147 0.102096 MG3\$AGE -0.010465 0.001801 -5.810 6.26e-09 *** MG3\$DUR -0.051076 0.006180 -8.265 < 2e-16 *** Normal Q-Q Plot MG3\$RR 1.136706 0.142338 7.986 1.39e-15 *** MG3\$SJJ -0.643878 0.112556 -5.721 1.06e-08 *** MG3\$SASA H -0.474477 0.116498 -4.073 4.64e-05 *** MG3\$CHANNELDirect sales force 0.109819 0.033996 3.230 0.00124 ** MG3\$AGE:MG3\$RR -0.009979 0.002558 -3.901 9.58e-05 *** MG3\$AGE:MG3\$SJJ 0.010811 0.002090 5.172 2.31e-07 *** \sim MG3\$AGE:MG3\$SASA H 0.005190 0.002227 2.330 0.01979 * ____ Sample Quantiles Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 `' 1 (Dispersion parameter for poisson family taken to be 1) 0 Null deviance: 3752.2 on 3695 degrees of freedom Residual deviance: 3087.4 on 3686 degrees of freedom AIC: 8237.9 N Number of Fisher Scoring iterations: 5 > -2 0 2 Theoretical Quantiles

Residual Plot

Model – Investigation 3 – Model Comparison

S.

Store

Variable removed	Residual Dev	DOF	AIC	Anova (χ² test)
FULL MODEL	3071.6	3676	8242	
Age:Channel	Δ 0.43	Δ 1	Δ -1.6	0.51
Age:Duration	Δ 0.00	Δ 1	Δ -2.0	0.93
Sex:Duration	Δ 0.81	Δ 1	∆ -1.2	0.37
Sex:Smoker	Δ -0.17	Δ 1	Δ -0.8	0.69
Age:Smoker	∆ -0.25	Δ1	∆ -1.7	0.62
Sex	∆ -0.88	Δ1	∆ -1.2	0.35
Smoker	∆ 3.98	Δ 1	Δ 2.0	*

What happens if we remove gender from Model 2?

Control of

Variable removed	Residual Dev	AIC	Anova (χ² test)
FINAL MODEL	4251.4	10535	
Gender	Δ 346.6	Δ 334	* * *
Age	Δ 5925	Δ 5919	***

Removing gender & age from Model 2

Q.L.

qx	27.5 MNS	37.5 MNS	47.5 MNS	27.5 FNS	37.5 FNS	47.5 FNS
Age & Sex + RF	0.000167	0.000426	0.001089	0.000181	0.000399	0.000876
Age + RF	0.000151	0.000380	0.000956	0.000151	0.000380	0.000956
Just RF	0.001467	0.001467	0.001467	0.001467	0.001467	0.001467
(Age+RF) vs (Age+Sex+RF)	-10%	-11%	-12%	-17%	-5%	9%
(Just RF) vs (Age+Sex+RF)	776%	244%	36%	710%	268%	67%

Summary

- •Generalised Linear Models can be easily fitted with R;
- •Data should be analysed and understood before fitting a model ;
- •There are dangers of over-fitting or under-fitting a model;
- •Over-dispersion may be a common feature of mortality data;
- •Simplifying a model involves subjective decisions. No substitute for experience and common sense;
- •Checking the fit of your model is essential.

PartnerRe

Further Reading

CMI – Working Paper 58 (2011)

An Introduction to Generalized Linear Models, Dobson & Barnett (2008)

Statistics : An Introduction using R, Crawley (2005)

Generalized Linear Models for Insurance Data, Jong & Heller (2008)

Demystifying GLMs (Sessional Meeting - Australia), Henwood et al (1991)

Risk classification in life insurance: methodology and case study, Gschlössl, Schoenmaekers and Denuit (2011)

Actuarial Graduation Practice and Generalised Linear and Non-Linear Models, Renshaw (1991)

