

Stochastic Reserving 16 May 2012

Grainne McGuire grainne.mcguire@taylorfry.com.au

Let's suppose...

- Friday morning start of July
 - Quarter end data has just been made available for multiple lines
 - You have a meeting at 9am on Monday morning to discuss the experience in the June quarter [first quarter – year end is 31/3]

13C

- You also need to provide some updates for the budget.

from Monday:

Snapshot of experience

Monitoring Quarter:	101/04/2011	То	30/06/2011		Other Paymen	nt Types a <u>bles</u>	<u>m2</u>	<u>m3</u>						
Opening Estimate		Change ir	Liabilities Due	to Impac	t of Changes i	n:	Hindsight	Estimate						
Date: 01/04/2011	E	perience	Parar (Indio	meters cative)	Experi Para	ence and imeters	Date:	30/06/2011						
\$000s	\$00	s %	\$000s	%	\$000s	%		\$000	0s					
Dutstanding Claims 70,182	-54	-0.8%	-197	-0.3%	-743	-1.1%	Outstanding Cla	ims 69,43	39					
2012 Accident Year 17,946	2	0.0%	-263	4 50/	201		2012 Assidant V	ear 176	85					
Parameter Analysis		0.078		-1.5%	-201	-1.5%	2012 Accident f							
Parameter Analysis	Very Short	Term (0)	Short Term	(1)	-201 Short Term	-1.5%	Medium Term (3)	N	Medium Te	rm (4 - 5)	Very Short T	erm (6 - 10)	Long Terr	m (11+)
Parameter Analysis New Claims	Very Short	Term (0) <u>Graphs</u>	Short Term	-1.5% (1) <u>Graphs</u>	Short Term	-1.5%	Medium Term (3)	phs N	Medium Te	rm (4 - 5) <u>Graphs</u>	Very Short T	erm (6 - 10) <u>Graphs</u>	Long Ter	m (11+) <u>Gra</u> ț
Parameter Analysis New Claims	Very Short Short Te	Term (0) <u>Graphs</u> m (1)	Short Term	(1) Graphs (2)	Short Term	-1.5%	Medium Term (3) Gra Medium Term (4)	phs N	Medium Te	rm (4 - 5) <u>Graphs</u> rm (5 - 8)	Very Short T	erm (6 - 10) <u>Graphs</u> n (9 - 19)	Long Terr	m (11+) Grag m (20+)
Parameter Analysis New Claims Continuing Claims	Very Short Short Te	Term (0) <u>Graphs</u> m (1) <u>Graphs</u>	Short Term	-1.5% (1) <u>Graphs</u> <u>Graphs</u>	Short Term	-1.5% (2) Graphs m (3) Graphs	Medium Term (3) Gra Medium Term (4) Gra	phs N phs N	Medium Te Medium Te	rm (4 - 5) <u>Graphs</u> rm (5 - 8) <u>Graphs</u>	Very Short T	erm (6 - 10) <u>Graphs</u> n (9 - 19) <u>Graphs</u>	Long Terr	m (11+) <u>Grar</u> m (20+) <u>Grar</u>
Parameter Analysis New Claims Continuing Claims Payments Per Active	Very Short Short Te	Term (0) Graphs m (1) Graphs Term (0)	Short Term Short Term Short Term	(1) Graphs (2) Graphs (1)	Short Term Medium Tern Medium Term	-1.5% (2) Graphs (3) Graphs (2 - 4)	Medium Term (3) Gra Medium Term (4) Gra Medium Term (5 - 7)	phs N	Medium Te	rm (4 - 5) Graphs rm (5 - 8) Graphs m (8+)	Very Short T	erm (6 - 10) <u>Graphs</u> n (9 - 19) <u>Graphs</u>	Long Terr	m (11+) <u>Grap</u> m (20+) <u>Grap</u>
Parameter Analysis New Claims Continuing Claims Payments Per Active Claim Levels	Very Short Short Te Very Short	Term (0) Graphs m (1) Graphs Term (0) Graphs	Short Term Short Term Short Term	(1) Graphs (2) (1) Graphs	Short Term Medium Term	-1.5% (2) Graphs m (3) Graphs (2 - 4) Graphs	Medium Term (3) Gra Medium Term (4) Gra Medium Term (5 - 7) Gra	phs N	Medium Te V Medium Te Long Ter	rm (4 - 5) Graphs rm (5 - 8) Graphs m (8+) <u>Graphs</u>	Very Short T	erm (6 - 10) <u>Graphs</u> n (9 - 19) <u>Graphs</u>	Long Ter	m (11+) Grag m (20+) Grag
Parameter Analysis New Claims Continuing Claims Payments Per Active Claim Levels	Very Short Short Te Very Short	Term (0) Graphs m (1) Graphs Term (0) Graphs	Short Term Short Term Short Term	(1) Graphs (2) (1) Graphs (1) Graphs	Short Term Medium Term Medium Term	-1.5% (2) Graphs (3) (2 - 4) Graphs (2 - 4) Graphs	Medium Term (3) Gra Medium Term (4) Gra Medium Term (5 - 7) Gra	phs N	Medium Te	rm (4 - 5) Graphs rm (5 - 8) Graphs m (8+) Graphs	Very Short T	erm (6 - 10) Graphs n (9 - 19) <u>Graphs</u>	Long Terr	m (11+) Gra m (20+) Gra

Drill down to details

Possible impact [if improved experience continues]:

- -0.9% OCL to Mar11
- -0.3% 2012 accident year

Budget updates

Account:	A1	Payment Type:	m1		<u>:0 100l m1</u>	
onitoring Quarter		1				
Ionitoring Period	:	01/04/2011	То	30/06/2011		
Opening Estimate		Estimated Pa	ayments		Closing Estimate	
Date:	01/04/2011	From 1/04/2011 to	31/03/2012		Date:	31/03/2012
	\$000s			\$000s		\$000s
Outstanding Claims	70,182	Outstanding	Claims	7,480	Outstanding Claims	62,701
2012 Accident Year	17,946	2012 Accider	nt Year	6,686	2012 Accident Year	11,260
		Total		14,166	Total	73,962
		Adjuste	ed		Adjusted	
		From 1/04/2011 to	31/03/2012		Date:	31/03/2012
				\$000s		\$000s
		Outstanding	Claims	7,095	Outstanding Claims	62,344
		2012 Accider	nt Year	6,685	2012 Accident Year	11,000
		Total		13,780	Total	73,344

Stochastic reserving - uses

- Central estimate of liabilities
- Distribution of outstanding claims liabilities
- Distribution of reserves at the end of the year
- Stochastic monitoring of experience
- Insights into the claims experience for both actuaries and non-actuaries
- Faster repeat valuation work
- A major part of an overall risk management tool for
 - Reserves
 - Capital management

- 1. Background
- 2. Framework
- **3.** Modelling
- **4.** Using the models
- **5**. Summary
- 6. References

BACKGROUND

Why do we use stochastic reserving? Some personal thoughts

- Risk margins required for returns
 - 2001 HIH insolvency
 - APRA [prudential regulator] reforms
 - Risk margins for outstanding claims liability and premium liabilities
 - Intended to reflect a fair price for the portfolio
 - Pragmatic definition of Risk margin = max(75th percentile, [Coefficient of Variation]/2)
- Statutory schemes
 - State based third party motor bodily injury [CTP] and workers compensation large data sets and large liabilities
- Greg Taylor influence at least within Taylor Fry

The long and winding road

- Presentation today results from many years of work within Taylor Fry
 - Frequency and size models
 - GLMs
 - Implementing non-parametric bootstraps
 - Synchronous bootstrapping of residuals to account for correlations
 - Adaptive reserving models (reserving robots)
 - "Fast" bootstrap/simulation
 - Dealing with systemic error
 - Full stochastic framework for liability/variability/monitoring

Lines of business considered today

- Long tailed liability business with lots of data, e.g.
 - Motor bodily injury, workers' compensation, accident compensation
 - Large amounts of data
 - Claim numbers
 - Claim finalisations
 - Active claims
 - Payments per claim
 - Case estimates
 - Other claim characteristics
- (Of course stochastic methods may be used for other types of business too)

Definition of terms

- OCL: Outstanding claims liability
- PL: Premium Liabilities
- RM: Risk margin
- Thongs: common Australian footwear, otherwise known as flip-flops and not be confused with underwear
- CoV = Coefficient of Variation
- CTP: Compulsory third party motor insurance = motor bodily injury
- WC: Workers' compensation
- SI: superimposed inflation = claims inflation in excess of normal economic inflation
- UIUD: UnInflated and UnDiscounted values = future cashflows at current values normally as at the valuation date. Includes SI
- IUD: Inflated and UnDiscounted values = future cashflows adjusted for economic inflation at date of payment
- ID: Inflated and Discounted values = future cashflows inflated to date of payment then discounted to valuation date
- GLM: Generalised Linear Model
- DRM: Dynamic risk model/DFA/Asset liability model

Definition of terms

- OCL: Outstanding claims liability
- PL: Premium Liabilities
- RM: Risk margin
- Thongs: common Australian footwear, otherwise known as flip-flops and not be confused with underwear
- CoV = Coefficient of Variation
- CTP: Compulsory third party motor insurance = motor bodily injury
- WC: Workers' compensation
- SI: superimposed inflation = claims inflation in excess of normal economic inflation
- UIUD: UnInflated and UnDiscounted values = future cashflows at current values normally as at the valuation date. Includes SI
- IUD: Inflated and UnDiscounted values = future cashflows adjusted for economic inflation at date of payment
- ID: Inflated and Discounted values = future cashflows inflated to date of payment then discounted to valuation date
- GLM: Generalised Linear Model
- DRM: Dynamic risk model/DFA/Asset liability model

Acknowledgements

- ACC (Accident Compensation Corporation, New Zealand) team
 - Swee Chang, Tore Hayward, Rutger Keijser, Bee Wong Sim, Jinning Zhao
- Taylor Fry
 - Richard Brookes, Martin Fry, Ben Locke, Julie Sims, Greg Taylor, plus all those who were involved in all the building blocks constructed over the years (research, SAS code development etc)
- Any shortcomings in this presentation are due to me alone.

FRAMEWORK

© Taylor Fry Pty Ltd

Definition (within this presentation)

- What is stochastic reserving?
 - The use of statistical models in claims reserving
 - Using the properties of these models to
 - Estimate outstanding claims liability and premium liabilities
 - Assess uncertainty in the liability estimates
 - Monitor emerging experience
 - Both deterministic (central estimates, monitoring, scenarios) and stochastic (uncertainty measures, simulations) output

Today's focus

- For a particular line of business:
 - What do we model?
 - How do we model it?
 - How do we allow for variability?
- Some uses of the resulting models, e.g.:
 - OCL calculation
 - Stochastic monitoring
 - OCL uncertainty
 - One-year claims reserve uncertainty
 - both of these require inputs from an asset model

Modelling

© Taylor Fry Pty Ltd

BUILDING RESERVING MODELS

What do we model?

Remember: long tail liability classes with lots of data

- Chain ladder on payments or incurred costs
 - Ignores all the information we have on claim numbers
- Case estimates
 - Useful for experience in the tail
 - Not so helpful for more recent years payments based models better here
- Claim Number and claim size models
 - Number and size trends may be very different and easier to model (and project) separately

Number and size models

- Payments per claim incurred (PPCI)
 - 1. Total number of incurred claims per accident period
 - 2. Average payment per claim in each development period
- Payments per claim finalised (PPCF)
 - 1. Total number of incurred claims per accident period including reporting pattern
 - 2. Claim finalisations by accident and development period
 - 3. Average claim size of a finalised claim
- Payments per active claim (PPAC)
 - 1. Total number of incurred claims per accident period including reporting pattern
 - Continuance rates of claims ie what proportion of claims in one development period stay active in the next
 - 3. Average payment per active claim

Which PP...??

- PPCF
 - Average claim size model, good for when payments typically made in lump sums (eg a lump sum motor bodily injury settlement)
- PPAC
 - On-going payments
 - Income replacement
 - Regular medical expenses
 - Care
 - Typically large number on benefits for short periods (eg knee injury that takes 3 months to recover from); smaller number on benefits indefinitely (until retirement /death)

How do we model?

- Traditional actuarial techniques
 - For each development period. averages over
 - All experience, most recent 1/2/3 years etc
 - Depending on claims experience, legislative changes, different assumptions may be required by accident period
 - Selecting assumptions manually using averages and actuarial judgement
- Disadvantages
 - Subjective
 - Can be difficult to discern trends in several directions (accident/development/calendar)
 - Time consuming
 - Repeat work is still time consuming
- What about the statistical approach? Generalised linear models?

Statistical models - Advantages

- Generalised linear models (GLMs)
 - Flexible set of models with readily available software
 - More objective basis for modelling.
 - Significance tests of parameters, Goodness of fit, model diagnostic tests, graphical tools
 - Multivariate models
 - Can capture complicated experience with a small number of parameters (relative to a chain ladder/picking averages)
 - Easier identification of trends and shifts [jumps] in experience
 - Opens the door to:
 - Better communication: graphical tools for illustrating assumption setting non-actuaries are placed in the same position of knowledge and judgement as the actuaries
 - Stochastic monitoring
 - drill down to the drivers of movement in liabilities
 - Automatically update liability estimate each quarter
 - Simulation (uncertainty/risk margins/risk management)

Statistical models - Disadvantages

- Time needed to become a good modeller
 - Good modelling skills are not acquired overnight
 - Bad models can lead to bad results
- Blindly projecting (good) models can lead to silly results
 - Actuarial judgement is still required to determine how trends are projected forward
 - This disadvantage is equally shared with non-statistical models.

A quick Captain Cook* at GLM reserving models

- What is our dependent variable
 - Numbers of reported claims in a particular cell of an accident/development period triangle
 - Average claim size of individual claims
 - Total payments in an accident/development period divided by total number of active claims
- What explanatory variables can we use?
 - We must know future values of these variables
 - E.g. Accident/development/experience [calendar time] period

OR

- Be able to estimate their future values and gain more from using the estimated future variable than we lose through the additional uncertainty of having to estimate another quantity
 - Future finalisation of a claim
 - Number of active claims in the previous development period
- * "Captain Cook" = look (rhyming slang).

Still with Captain Cook

- Models with claim specific characteristics [age, gender, employment, earnings, injury etc] will lead to better estimates for an individual claim size but are usually not used for reserving
 - IBNR? When will the claim finalise?
- Beware of correlated variables
 - E.g.. accident, development and experience periods
- We also need to consider
 - Exposure measure
 - Error structures
 - Outliers
 - Whether data needs to be segmented
 - Parameterisation of model
 - Interactions

- [There is a reason why it takes time to become a good modeller]

Incurred claims model – raw development period effect

Model is dev_qtr, rep_qtr

© Taylor Fry Pty Ltd

Incurred claims model – fitted development period effect

Model is 8 dev_qtr terms

Dev_qtr 8+

Payments per active claim – raw payment period effect for different development qtr groups

Payments per active claim – fitted payment period

Dev_qtr 8+ group represented by 6 parameters (excl seasonality)

Dev_qtr 8+

inear Predictor

Checking the models – actual vs expected analysis

Triangular actual vs expected

© Taylor Fry Pty Ltd

Checking the models - residual graphs

USING THE MODELS

© Taylor Fry Pty Ltd

Central estimate of liabilities

- How do we go from parameters to a projection?
 - Consider the PPAC projection payment period effect
 - Extract of parameter file shown below payment quarter effects for development quarters 8 and higher [corresponds to graph]
 - Model uses a log link
 - Put the formula together

VIEWTA	BLE: Ver3.Ver3_p	i i		
	Parameter	Level1	DF	Estimate
87	dq_ge8*first_0*pq_9_29		1	0.0302
88	dq_ge8first_0flin_pq_9_28		1	-0.0047
89	dq_ge8*first_0*pq_29_55		1	-0.0393
90	dq_ge8first_0flin_pq_29_55		1	0.0251
91	dq_ge8*first_0*pq_ge56		1	-0.1476
92	dq_ge8first_0flin_pq_56_74		1	-0.0074
93	Cosla		n	N 2871

- dq_ge8 = (dev_qtr ge 8)
- pq_9_29 = (9 le pay_qtr le 29)
- lin_pq_56_74 = min(28, max(0, pay_qtr-56))
- first_0 = 1 if claim is a continuing claim, 0 otherwise [new claim]

Setting projection assumptions

- The model fitting graphs may be helpful in determining future assumptions
 - For dev_qtr 8+ group, why has the experience been as shown?
 - What does this tell us about what assumptions we should use going forward?
 - What other external information do we know (e.g. recent court decisions)
 - Use judgement to select appropriate assumptions for the projection

Getting the number

- Combine the results from all submodels to calculate the central estimate of liability
 - i.e. for accident period i and development period j, the liability under a PPAC model =
 - (new claims + continuing claims)*(payment per active claim)
 - Sum up across all future triangle cells to get the current values estimate of liability
 - Add economic inflation to get IUDs (Inflated and Undiscounted)
 - Add discount rates to get IDs (Inflated and Discounted)

Distribution of liabilities

- To estimate the distribution of liabilities we must account for the following errors:
 - Parameter error
 - The form of the model is correct but the parameters are not estimated correctly due to random variability
 - Process error
 - The form of the model is correct and the parameters are correct but future experience will not be exactly as estimated due to random variability
 - Systemic error
 - Future systemic changes
 - Model specification error
 - Does not include economic variability

Simulation

- Since we have built a full statistical model, we do not need to use the nonparametric bootstrap. Instead we use the statistical properties and model estimates – a "fast" bootstrap
 - Parameter error: Generate simulations of the parameter vector and calculate the liability using these parameters
 - Process error: Simulate using the mean [based on simulated parameters] and the distributional properties
 - Systemic error: ???
 - Systemic error is by far the most significant.
 - By its nature it is hard to quantify
 - In comparison the non-systemic error [parameter and process] is small

Systemic error

- Estimating the coefficient of variation
 - O Dowd, Smith & Hardy, Risk Margins Task Force in Australia
 - A quick "squizz*" at these comprehensive papers in relation to systemic error:
 - Scorecard approach to assess model specification error
 - Future/external systemic risk: identify, rank and quantify
 - Work out where you are on a scale of riskiness and assign a CoV
 - Industry benchmarks
- Getting a distribution
 - Scale everything to give a wider spread (judgementally assessed)
 - Explicitly simulate systemic changes
 - Systemic changes will show up as trends/level shifts in a future model
- * Squizz = look. Usage: take a squizz at this

Systemic error – explicit model

- Calibration of systemic error requires consideration of
 - Overall levels of variability for each line of business/payment type
 - What types of systemic changes to include?
 - Level shifts (permanent and temporary)
 - Trends
 - Relationships between different lines of business
 - How correlated are systemic effects?
 - Diversification benefit
 - Calibrated by the claims experience / views on possible future changes / industry benchmarks / scoring approach
 - Takes time and a number of iterations before settling on something reasonable

Economic risk

- Separate model of economic risk [asset model]
 - Stochastic inflation rates
 - Stochastic discount rates
- Australian risk margins require inflation risk to be included but not investment return risk
 - Risk margins incorporate stochastic inflation but are discounted at the current estimated risk-free rates

Outstanding claims liability - variability

- Consider the coefficient of variation (CoV) with and without
 - Systemic error
 - Economic (eg inflation) error
 - Set the base case as no systemic + no economic error
 - Systemic error has a huge impact

	No economic (inflation) error	With economic (inflation) error
No systemic error	1	1.5
With systemic error	2.5	2.8

Results depend on the model and the line of business

Using the simulation results

- Uncertainty measures for reporting
 - "Ultimo": Risk margins on technical provisions: measure of how variable the actual claim payments will be
 - Australian risk margin definition 75th percentile (subject to min [CoV]/2) pragmatic view on fair value of sales price of reserves
 - "One-year reserve risk" how variable the reserves are in a year
 - Can use an "actuary in a box"
 - Starting point = current projection of OCL + next year's liability
 - Each simulation is a "realisation of actual data"
 - Apply rules to adjust the starting point valuation based on this "actual data"
 - Allow for changes in inflation and discount rates
 - "Actual" inflation in the year
 - "Forecast" inflation and discount rates at the end of the year

Stochastic Reserving

Ultimo and one-year reserve risk

Ultimo: CoV = 16%

One-year: CoV = 5%

Results depend on the rules used by the automatic actuary for adjusting the liability – using rules which carry through more variation would lead to a larger CoV for the one-year reserve risk

Stochastic monitoring

- A framework for comparing actual emerging experience to expectations/projections
 - Test whether any deviations are significant in an objective way
 - If significant changes are found, estimate change in liability
 - Updates liability estimates (useful eg for budgeting)
 - Aside: stochastic monitoring useful beyond reserving – e.g. in pricing models
- Process is
 - Automatic
 - Fast

🛶 Fitted Linear Predictor 🛛 🗕 Actual Linear Predictor 🚽 — Lower Bound 🚽 — Upper Bound

Snapshot of experience

Monitoring Period:	1 01/04/2	011 To	30/06/2011		Other Paymen	ables	<u>m2</u>	<u>m3</u>						
Opening Estimate		Change	in Liabilities Due	to Impac	t of Changes i	n:	Hindsigh	t Estimate)					
Date: 01/04/2011	_	Experience	Paran (Indic	neters cative)	Experie Para	ence and meters	Date:	30/06/2011	1					
\$000s	;	\$000s %	\$000s	%	\$000s	%		\$00	00s					
Dutstanding Claims 70,182		-544 -0.8%	-197	-0.3%	-743	-1.1%	Outstanding C	laims 69,4	439					
2012 Accident Year 17,946		2 0.0%	-263	-1.5%	-261	-1.5%	2012 Accident	Year 17,0	685					
Parameter Analysis														
Parameter Analysis	Very SI	ort Term (0)	Short Term	(1)	Short Term	(2)	Medium Term (3)		Medium Te	rm (4 - 5)	Very Short Te	rm (6 - 10)	Long Terr	n (11+)
Parameter Analysis New Claims	Very SI	iort Term (0) <u>Graph</u>	Short Term	(1) <u>Graphs</u>	Short Term	(2) Graphs	Medium Term (3)	raphs	Medium Ter	rm (4 - 5) <u>Graphs</u>	Very Short Te	rm (6 - 10) <u>Graphs</u>	Long Terr	n (11+) <u>Gra</u>
Parameter Analysis New Claims	Very Sl	1ort Term (0) <u>Graph</u> t Term (1)	Short Term (Short Term)	(1) <u>Graphs</u> (2)	Short Term Medium Terr	(2) Graphs m (3)	Medium Term (3) G Medium Term (4)	raphs	Medium Ter Medium Ter	rm (4 - 5) <u>Graphs</u> rm (5 - 8)	Very Short Te	rm (6 - 10) <u>Graphs</u> (9 - 19)	Long Terr	n (11+) Gra n (20+)
Parameter Analysis New Claims Continuing Claims	Very Si	1ort Term (0) <u>Graph</u> t Term (1) <u>Graph</u>	Short Term (S Short Term (S	(1) Graphs (2) Graphs	Short Term Medium Terr	m (3) Graphs Graphs	Medium Term (3) G Medium Term (4) G	raphs raphs	Medium Ter Medium Ter	rm (4 - 5) <u>Graphs</u> rm (5 - 8) <u>Graphs</u>	Very Short Te	rm (6 - 10) <u>Graphs</u> (9 - 19) <u>Graphs</u>	Long Terr	n (11+) <u>Gra</u> n (20+) <u>Gra</u>
Parameter Analysis New Claims Continuing Claims Payments Per Active	Very Si Shor	ort Term (0) <u>Graph</u> t Term (1) <u>Graph</u> ort Term (0)	Short Term	(1) Graphs (2) Graphs (1)	Short Term Medium Tern Medium Term	(2) Graphs m (3) Graphs (2 - 4)	Medium Term (3) G Medium Term (4) G Medium Term (5 - 7	raphs raphs	Medium Ter Medium Ter Long Ter	rm (4 - 5) <u>Graphs</u> rm (5 - 8) <u>Graphs</u> m (8+)	Very Short Te	rm (6 - 10) <u>Graphs</u> (9 - 19) <u>Graphs</u>	Long Terr	n (11+) <u>Gra</u> n (20+) <u>Gra</u>
Parameter Analysis New Claims Continuing Claims Payments Per Active Claim Levels	Very Si Shor	oort Term (0) <u>Graph</u> t Term (1) <u>Graph</u> ort Term (0) <u>Graph</u>	Short Term (S Short Term (S Short Term (S	(1) Graphs (2) Graphs (1) Graphs	Short Term Medium Tern Medium Term	(2) <u>Graphs</u> m (3) <u>Graphs</u> (2 - 4) <u>Graphs</u>	Medium Term (3) G Medium Term (4) G Medium Term (5 - 7 G	raphs raphs raphs	Medium Ter Medium Ter Long Ter	rm (4 - 5) Graphs rm (5 - 8) Graphs m (8+) <u>Graphs</u>	Very Short Te	rm (6 - 10) <u>Graphs</u> (9 - 19) <u>Graphs</u>	Long Terr	n (11+) <u>Gra</u> n (20+) <u>Gra</u>
Parameter Analysis New Claims Continuing Claims Payments Per Active Claim Levels	Very Si Shor	nort Term (0) <u>Graph</u> t Term (1) <u>Graph</u> nort Term (0) <u>Graph</u> Like	Short Term (Short Term (Short Term (Short Term (Short Term (Short Term (Short Term ((1) Graphs (2) Graphs (1) Graphs Graphs	Short Term Medium Tern Medium Term	(2) Graphs m (3) Graphs (2 - 4) Graphs Possible Ir	Medium Term (3) G Medium Term (4) G Medium Term (5 - 7 G	raphs raphs raphs	Medium Ter	rm (4 - 5) Graphs rm (5 - 8) Graphs m (8+) <u>Graphs</u>	Very Short Te	rm (6 - 10) <u>Graphs</u> (9 - 19) <u>Graphs</u>	Long Terr	n (11+) <u>Gra</u> n (20+) <u>Gra</u>

Updated budgeting figures

Account:	A1	Payment Type:	m1	<u>Back t</u>	<u>o Tool m1</u>	
lonitoring Quarter	:	1		-		
Ionitoring Period	:	01/04/2011	То	30/06/2011		
Opening Estimate		Estimated Payme	ents		Closing Estimate	
Date:	01/04/2011	From 1/04/2011 to 31/0	3/2012		Date:	31/03/2012
	\$000s			\$000s		\$000s
Outstanding Claims	70,182	Outstanding Claim	ıs	7,480	Outstanding Claims	62,701
2012 Accident Year	17,946	2012 Accident Yea	ır	6,686	2012 Accident Year	11,260
		Total		14,166	Total	73,962
		Adjusted			Adjusted	
		From 1/04/2011 to 31/0	3/2012		Date:	31/03/2012
				\$000s		\$000s
		Outstanding Claim	ıs	7,095	Outstanding Claims	62,344
		2012 Accident Yea	ır	6,685	2012 Accident Year	11,000
		Total		13,780	Total	73,344

Repeat Valuation Work

- Quicker process with stochastic models
 - Stochastic monitoring identifies emerging experience that differs from expected using objective statistical tests
 - Models with no significant deviations may be refit in same form, leading to re-estimated parameters
 - Attention can be focussed on those classes where significant deviations have been identified
 - Even without statistical monitoring in place, statistical tests and graphical output speed up the modelling process

Stochastic reserving is bonza*

- Stochastic reserving is a full framework for reserving:
 - Full distribution of the liability
 - Stochastic monitoring
 - Faster repeat valuation work
 - Significant part of an asset-liability risk management model
 - Output (especially graphical) that is easy to communicate to non-actuaries

* Bonza = great / grand

AN INCOMPLETE LIST OF REFERENCES

© Taylor Fry Pty Ltd

Distributions / stochastic monitoring

- Predictive distributions of outstanding liabilities in general insurance. P.D. England and R.J.Verrall (2006) <u>http://cassknowledge.co.uk/sites/default/files/article-attachments/371~~richardverrall_</u> predictive_distributions_of_general_insurance_outstanding_liabilities.pdf
- Dynamic risk modelling. R Keijser and M Fry http://www.actuaries.asn.au/Library/Events/ACS/2011/ACS2011PaperFryKeisjer.pdf
- Non-life insurance technical provisions prediction errors: "ultimo" and one-year perspectives.
 D Marron and R Mulligan available from https://web.actuaries.ie/
- A framework for estimating uncertainty in insurance claims costs. C O'Dowd, A Smith and P Hardy <u>http://actuaries.asn.au/Library/gipaper_odowd-smith-hardy0510.pdf</u>
- A framework for assessing Risk Margins. The Risk Margins taskforce (Institute of Actuaries of Australia, 2008)

http://www.actuaries.asn.au/Libraries/HomePage/Framework_for_assessing_risk_margins_final.sflb.ashx

- A statistical basis for claims experience monitoring. G Taylor (2010) http://actuaries.asn.au/Library/Events/GIS2010/GIS10_Paper_Taylor.pdf
- Adaptive reserving using Bayesian revision for the Exponential Dispersion Family. G Taylor and G McGuire (2007) <u>http://www.economics.unimelb.edu.au/ACT/wps2007/No165.pdf</u>

Stochastic models

- Stochastic claims reserving in general insurance. (2002) P.D. England and R.J.Verrall www.actuaries.org.uk/system/files/documents/pdf/sm0201.pdf
- Individual claim modelling of CTP data. G McGuire (2007) <u>http://actuaries.asn.au/Library/6.a_ACS07_paper_McGuire_Individual%20claim%20modellingof%</u> <u>20CTP%20data.pdf</u>
- Loss reserving an actuarial perspective. G Taylor (2000). Kluwer Academic Publishers, Boston
- Loss reserving with GLMs: a case study. G Taylor and G McGuire (2004) <u>http://www.casact.org/pubs/dpp/dpp04/04dpp327.pdf</u>
- There are many more relevant papers out there!