# Capital Aggregation and Attribution

Curt Burmeister Vice President, Risk Solutions



#### Copula Based Risk Aggregation



#### **Copula Based Risk Aggregation**

#### **Copula Risk Aggregation Steps**

- 1. Generate Correlated Market Risk Scenarios on IR Curves, EQ Indices, etc
- 2. Generate Correlated Non-Market Risk Scenarios on N(0,1) Risk Drivers
- 3. Value assets using market risk scenarios
- 4. Value non market risks using marginal risk distributions

#### Scenarios are correlated $\Rightarrow$ values are additive

#### **Key Benefits**

- Full drill down into Market Risk
- Hedge analysis
- Stress tests



#### **Scenario Generation**





# Capital Aggregation and Aggregation



#### Concepts

#### Aggregation Rules

- Determines how much capital each node can transfer to its parent node
- Examples include fungibility rules, caps on transfers, percentage ownership of subsidiary, tax considerations, etc.

Transferable Capital

- The amount of capital for each business hierarchy child node can share with its parent node
- The transferable capital is aggregated up the business hierarchy to calculate SCR



#### Concepts

Capital Attribution

- Allocation of capital down the reporting hierarchy from a parent node its children
- Aggregation rules are typical non-linear (max, min, etc)

Methods for Aggregation & Attribution

- Quantile attribution upper empirical cumulative distribution function value or UCEV (order statistic)
- Smoothed values use an L-estimator such as Harrell-Davis weights
- Biting Scenario use an L-estimator to smooth the risk factors to create a new scenario



## References for Harrell-Davis Weights

Harrell-Davis Weights

- Harrell, EE. And C.E. Davis, 1982, "A new distribution-free quantile estimator," Biometrika, 69(3): 635-640.
- Mausser, H., 2001, "Calculating Quantile-based Risk Analytics with *L*-estimators," Algo Research Quarterly, 4(4): 33-47



## Harrell-Davis (HD) Weights

**HD Weights** 



© 2009 Algorithmics Incorporated. All rights reserved.

9

#### **Triangle Distribution Weights**

**Triangle Weights** 



© 2009 Algorithmics Incorporated. All rights reserved.

## Gaussian (Truncated) Weights

**Gaussian Weights** 



# Aggregation & Attribution Case Study



#### Case Study

Reporting hierarchy with four product lines

10,000 Monte Carlo scenarios

Aggregation Rules applied to NAV and Attribution applied to  $\Delta NAV$ 

Limits applied to transferable capital up the hierarchy

Calculate SCR

- 1.Quantile
- 2.Use HD Weights as to smooth SCR values
- 3. Use HD Weights to smooth risk factors for biting scenario

Two alternative attribution methods using HD Weights:

- 1. Use HD Weights to smooth SCR values
- 2. Use HD Weights to smooth risk factors for biting scenario



#### A Simple Reporting Hierarchy



## NAV Sorted by Group

| Order | Scenario  | Α      | В       | D       | С      | E      | F      | G       | Group  |
|-------|-----------|--------|---------|---------|--------|--------|--------|---------|--------|
| 45    | SSMC_5474 | 5.7471 | 28.3337 | 25.8269 | 8.5202 | 6.4567 | 3.7442 | 31.0991 | 8.7108 |
| 46    | SSMC_1594 | 6.6216 | 19.3178 | 28.9337 | 6.4848 | 7.2334 | 3.4296 | 31.4823 | 8.7280 |
| 47    | SSMC_824  | 7.4212 | 16.2818 | 30.5021 | 5.9258 | 7.6255 | 3.3878 | 31.5251 | 8.7282 |
| 48    | SSMC_5908 | 6.6182 | 22.3473 | 27.9640 | 7.2414 | 6.9910 | 3.5581 | 31.3725 | 8.7326 |
| 49    | SSMC_7811 | 5.3369 | 30.5722 | 25.1125 | 8.9773 | 6.2781 | 3.8138 | 31.1211 | 8.7337 |
| 50    | SSMC_5762 | 7.6980 | 11.2231 | 32.4361 | 4.7303 | 8.1090 | 3.2098 | 31.7287 | 8.7346 |
| 51    | SSMC_3041 | 6.6725 | 21.3790 | 28.2554 | 7.0129 | 7.0638 | 3.5192 | 31.4387 | 8.7395 |
| 52    | SSMC_1908 | 6.6234 | 22.7543 | 28.3017 | 7.3444 | 7.0754 | 3.6050 | 31.3536 | 8.7396 |
| 53    | SSMC_98   | 6.1500 | 25.1527 | 26.6300 | 7.8257 | 6.6575 | 3.6208 | 31.3915 | 8.7531 |
| 54    | SSMC_3487 | 5.4300 | 29.7629 | 25.5939 | 8.7982 | 6.3985 | 3.7992 | 31.2822 | 8.7703 |
| 55    | SSMC_5497 | 6.3882 | 24.4721 | 27.1761 | 7.7151 | 6.7940 | 3.6273 | 31.4636 | 8.7727 |



#### NAVs for

|           | Α   | В    | D    | С    | E    | F    | G  | Group |
|-----------|-----|------|------|------|------|------|----|-------|
| SSMC_7811 | 14  | 9981 | 21   | 9701 | 21   | 7281 | 38 | 49    |
| SSMC_5762 | 554 | 93   | 9791 | 42   | 9791 | 21   | 62 | 50    |
| SSMC_3041 | 120 | 8086 | 414  | 1711 | 414  | 509  | 48 | 51    |



#### NAV for Group scenarios 49, 50, 51

- Good for diversification
- Hard to use for

|           | Α   | В    | D    | С    | E    | F    | G  | Group |
|-----------|-----|------|------|------|------|------|----|-------|
| SSMC_7811 | 14  | 9981 | 21   | 9701 | 21   | 7281 | 38 | 49    |
| SSMC_5762 | 554 | 93   | 9791 | 42   | 9791 | 21   | 62 | 50    |
| SSMC_3041 | 120 | 8086 | 414  | 1711 | 414  | 509  | 48 | 51    |

# **Aggregation Rules**

| Node                          | A   | В   | D   | С   | Ε   | F   | G   | Group |
|-------------------------------|-----|-----|-----|-----|-----|-----|-----|-------|
| Max<br>Transferable<br>Profit | 10  | 20  | 20  | 25  | 17  | 35  | 20  | None  |
| %Profit                       | 25% | 25% | 25% | 25% | 25% | 25% | 25% | None  |
| %Loss                         | 80% | 80% | 80% | 80% | 80% | 80% | 80% | None  |

For leaf nodes NAV for each scenario

value from asset and/or liability model

For aggregation nodes, NAV for each scenario

$$NAV_{Parent Node} = \sum_{i=Child Nodes} TNAV_i$$

For all nodes, TNAV for each scenario

aggregations rules applied to NAV



© 2009 Algorithmics Incorporated. All rights reserved.

.995% NAV (SCR)

1.Calculate the NAV for each of the Products for all 10,000 scenarios using valuation models

2.Sort the NAV from smallest to largest

3.Select scenario 50



- . 995% TNAV (Transferable NAV)
  - 1.Apply the aggregation rules to NAV for each of the 10,000 scenarios to calculate TNAV
  - 2.Sort the TNAV from smallest to largest
  - 3.Select scenario 50



Compute NAV and TNAV for each of the aggregation nodes

1. 
$$NAV^{Scenario=S} = \sum_{i=Child Nodes} TNAV_i^S$$

- 2. Sort the NAV from smallest to largest
- 3. Select scenario 50 for .995% NAV (SCR)
- 4. For each scenario apply aggregation rules to NAV to determine TNAV
- 5. Sort the TNAV from smallest to largest
- 6. Select scenario 50 for .995% TNAV



© 2009 Algorithmics Incorporated. All rights reserved.

#### Quantile Aggregated NAV and TNAV





#### HD Smoothed Aggregation Calculations

- 1. Order scenarios by Group
- 1. Calulate the HD Weights

2. .SCR = 995% HD NAV 
$$= \sum_{10,000}^{s=1} HD Weight_s * NAV_s$$

1. .995% HD TNAV = 
$$\sum_{10,000}^{s=1} HDWeight_s *TNAV_s$$

#### HD Smoothed Aggregated NAV and TNAV





## Comparing Quantile and HD SCR

| Node                       | A      | В       | D      | С      | E      | F      | G      | Group  |
|----------------------------|--------|---------|--------|--------|--------|--------|--------|--------|
| Aggregated<br>Quantile SCR | 3.8462 | 10.2231 | 3.6978 | 2.6488 | 0.9244 | 0.4586 | 8.5233 | 2.2028 |
| Aggregated<br>HD SCR       | 3.4986 | -2.3167 | 1.8357 | 0.2954 | 0.4589 | 0.1886 | 8.5781 | 2.1916 |



## **Biting Scenario Calculations**

- 1. Sort the Group NAV from smallest to largest
- 2. Apply HD Weights to the risk factor values in each scenario to compute a new biting scenario
- 3. Recalculate the NAV for the biting scenario
- 4. Calculate the TNAV for the biting scenario by applying the aggregation rules to the NAV



#### Biting Scenario NAV and TNAV





## Comparing Quantile, HD, & Biting Scenario SCR

| Node                       | А      | В       | D      | С      | E      | F      | G      | Group  |
|----------------------------|--------|---------|--------|--------|--------|--------|--------|--------|
| Aggregated<br>Quantile SCR | 3.8462 | 10.2231 | 3.6978 | 2.6488 | 0.9244 | 0.4586 | 8.5233 | 2.2028 |
| Aggregated<br>HD SCR       | 3.4986 | -2.3167 | 1.8357 | 0.2954 | 0.4589 | 0.1886 | 8.5781 | 2.1916 |
| Aggregated<br>Biting SCR   | 3.4744 | -3.2502 | 2.3463 | 0.0560 | 0.5866 | 0.1607 | 8.6296 | 2.1976 |



#### **HD** Attribution

Take advantage of the fact that

$$NAV_{Parent Node} = \sum_{i=Child Nodes} TNAV_i$$

Construct attribution weights

$$w_{i=Child Node} = \frac{TNAV_{i}^{.995}}{NAV_{Parent Node}^{.995}}$$

Attributed SCR =  $W_i * SCR_{Parent Node}^{HD}$ 



## Comparing Quantile, HD, & Biting Scenario SCR

| Node                        | А      | В       | D      | С      | E      | F      | G      | Group  |
|-----------------------------|--------|---------|--------|--------|--------|--------|--------|--------|
| Aggregated<br>Quantile SCR  | 3.8462 | 10.2231 | 3.6978 | 2.6488 | 0.9244 | 0.4586 | 8.5233 | 2.2028 |
| Aggregated<br>HD SCR        | 3.4986 | -2.3167 | 1.8357 | 0.2954 | 0.4589 | 0.1886 | 8.5781 | 2.1917 |
| Aggregated<br>Biting SCR    | 3.4744 | -3.2502 | 2.3463 | 0.0560 | 0.5866 | 0.1607 | 8.6296 | 2.1976 |
| Attribute HD<br>SCR (Group) | 0.0547 | -0.0362 | 0.0287 | 0.0185 | 0.0287 | 0.0472 | 2.1445 | 2.1917 |



#### **HD** Attribution

Take advantage of the fact that

$$NAV_{Parent Node} = \sum_{i=Child Nodes} TNAV_i$$

Construct attribution weights

$$w_{i=Child Node} = \frac{TNAV_{i}^{.995}}{NAV_{Parent Node}^{.995}}$$

Attributed SCR =  $W_i * SCR_{Parent Node}^{Biting Scenario}$ 



## Comparing Quantile, HD, & Biting Scenario SCR

| Node                                | А      | В       | D      | С      | E      | F      | G      | Group  |
|-------------------------------------|--------|---------|--------|--------|--------|--------|--------|--------|
| Aggregated<br>Quantile SCR          | 3.8462 | 10.2231 | 3.6978 | 2.6488 | 0.9244 | 0.4586 | 8.5233 | 2.2028 |
| Aggregated<br>HD SCR                | 3.4986 | -2.3167 | 1.8357 | 0.2954 | 0.4589 | 0.1886 | 8.5781 | 2.1917 |
| Aggregated<br>Biting SCR            | 3.4744 | -3.2502 | 2.3463 | 0.0560 | 0.5866 | 0.1607 | 8.6296 | 2.1976 |
| Attribute HD<br>SCR (Group)         | 0.0547 | -0.0362 | 0.0287 | 0.0185 | 0.0287 | 0.0472 | 2.1445 | 2.1917 |
| Attributed<br>Biting SCR<br>(Group) | 0.0543 | -0.0508 | 0.0367 | 0.0035 | 0.0367 | 0.0402 | 2.1574 | 2.1976 |



# Questions?



© 2009 Algorithmics Incorporated. All rights reserved.