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distribution for Risk Premiums
using Bootstrapping



Direct Modelling of Risk Premiums

Direct modelling of Risk Premium (or claims cost per policy) using “traditional”
severity distributions is problematic due to the large spike at zero. We need a
distribution which accommodates a point mass at zero coupled with a wide
spread of positive values.
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Tweedie Distribution

m Exponential Dispersion Models are (loosely) a family of densities
characterised by the variance = [scale parameter].V(mean) where
V() is called the variance function.

m The Tweedie distributions are a class of exponential dispersion
models where the variance function is a power function V() = pP.

m The case p=1 corresponds to a poisson distribution while p=2
corresponds to a gamma distribution. The case 1<p<?2 correspond
to compound poisson distributions.

m Tweedie distributions have a point mass at zero and a continuous
density for values greater than zero (see appendix 1).

m The density function for the incurred claims cost and risk premium is
an exponential density (so GLM theory applies!) with a variance
function V(u)=c?uP with 1<p<?2.
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Model Form

m We are trying to fit a model of the form
Y = exp(age+gender+licence+cover+group+NCD+area)
where y=(total claims)/exposure = observed claim rate per unit of
exposure. E(Y) = p and Var(Y) = 2/w.(V(n)) = «2/w.uP where w is the
exposure.

As Y has an exponential distribution the model can be fitted using standard
GLM methods.

Linear Predictor : age+gender+licence+cover+group+NCD+area

Link Function: Ln()

Variance Function: V(u)=pP

Weights : Exposure

Main complications come from the form of the variance function (you need to

specify the form of the deviance increment when using standard software) and the
estimation of p.
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Quasi (Log) Likelihood

Y7,
m Define the quasi-likelihood function as Qs y) = s{(Y't)/UzV(t)}dt
y

m The function Q(u,y) behaves like an ordinary likelihood. The main difference being that
you are only specifying the relationship between the mean and the variance
(Var(Y)=s2V(Y)) of the response variable Y. In a normal likelihood formulation you
need to specify the complete density function for the response variable.

m Define the quasi-deviance as D(y;u) = -2+>Q(u;y).
m Maximum (quasi) likelinood is equivalent to minimum (quasi) deviance.
m If V(y) = c then solving then D(y;n)= (y-p)?/c - the familiar minimum sum of squares
m With V(y) = uPp # 0,1,2 then
D(y;n) = 2+{(1/(1-p))~(y(y*P-uP))-(1/(2-p))~(y*P-u@P)}

This is the form of the deviance increment we need.
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Extended Quasi Likelihood

mThe quasi-deviance function cannot be used to select a value for the p
parameter in the variance function. To see this consider the quasi-deviance
as a function of a function of p (note that D = 0)

y
D(u;y;p) = Zj{(y—t)/yp}dt — 0 as p — oofor £ >1
u

mFitting the p parameter using a minimum deviance criteria will
result in a very large p value and the contribution of the other
parameters will be swamped.

mDefine the Extended Quasi Likelihood as
Q* = -1/2{ZIn(2rc2yP)}-1/2D(w;y;p)/c?

mHere the additional term is an increasing function of p and
counterbalances the effect of the reducing deviance. Note that the
deviance also enters Q+ through the estimated scale parameter 2.
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Extended Quasi-Likelihood function

Extended Quasi Likelihood
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Final Model

Linear Predictor : age+gender+licence+cover+group+NCD+area
Link Function: Ln()

Variance Function: V(u)=pP; P = 1.25

Weights : Exposure

SAS Code used in fit

m  proc genmod data = summary_input2;

class group age cover gender licence ncd area;
a=_MEAN_;
y=_RESP_;
p=1.25;
d=0;
ity GE 0 then d=2*((y**(2-p)-((2-p)*y*a**(1-p))+((1-p)*a**(2-p)))/((1-p)*(2-P)));
variance var = a**p;
deviance dev = d;
model risk_premium=age gender licence cover group ncd area/noint scale=deviance link=log;
weight exposure;
output out=genout pred=rp stdresdev=resid stdreschi=resid2 resdev=r;

run;
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Results from fit

*While the model fitted has been kept simple — so as to facilitate the
bootstrap procedure the fit still seems reasonably good.

Standarised deviance residuals v linear predictor Standarised deviance residuals v Policyholder Age
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Bootstrapping regression models

The simplest regression model is y,=x",3+¢€; where (y;,x;) are the
response and the px1 vector of covariates for the jth case. There are
two approaches to bootstrapping this model.

Resample residuals

Setr,=y,— ij,B_’and rs; = (_rj — ave(r;))/sqrt(1-h;)) where h; is the
leverage of the jth observation. Note that rs; has zero mean and
constant variance.

Then set y;” = xX";,8” + g where g;is taken randomly from the set of
standardised residuals {rs,, rs,, ...rs,}. Refit the regression model
and obtain a new set of parameter estimates. Repeat this 10,000
times and you generate an empirical distribution for the parameter
estimates.
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Bootstrapping regression models

2. Resample cases {(y;,X)) ...(¥n.Xn)}

Under this approach you resample (with replacement) the original
cases and generate a bootstrap data set {(y;,X;)"...(Y,,X,) } to
which you fit the regression model and generate a new set of
parameter estimates. Repeat this 10,000 times and you generate
an empirical distribution for the parameter estimates. (As an aside
this approach to bootstrapping seems to offer an alternative
method for generating pseudo cumulative incurred claims
triangles without incurring the negative incremental claims
problems associated with re-sampling residuals.)
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Bootstrapping regression models

Comparison of Bootstrapping techniques (26 point sample)

m The approach of re-sampling cases
to generate pseudo data is the more

usual form of bootstrapping. The
approach is robust in that if an
incorrect model is fitted an
appropriate measure of parameter

uncertainty is still obtained. However

re-sampling residuals is more
efficient if the correct model has
been fitted.

The graphs shows both approaches
In estimating the variance of a 26
point data sample mean and a 52
point sample mean. In the larger
sample the two approaches are
equivalent.

13 November 2008 - Slide 12

Variance estimate

2
@
E
=
7]
]
]
o
c
©
=
@
>

—e—Cases
—m— Residuals

True Value

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Sample No

Comparison of Bootstrap techniques (52 point sample)

—e—Cases
—a— Residuals
True Value

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Sample No



Output from bootstrap

N Bootstrap Algorithm
1. Fit GLM to original data set and store parameter estimates.

2. Generate pseudo data set (same size as original data set)
from original data set by re-sampling with replacement from
original data set (I did this by generating a file of random
numbers and merging the original file onto the new file where
the original row number equalled the random number).

3. Refit the GLM to the pseudo data and store the parameters.
Repeat stages 2 and 3 N times.

5. Generate required statistics from parameter estimates
B1,B5,---By Where [3; is the vector of parameters output during
iteration 1.

o
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Output from bootstrap

m  The following graphs display the distribution of 2 parameter
estimates based on 1,000 iterations of the bootstrap.
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Empirical Parameter distributions

0 Risk Premium(1,1,1,1,1,1,1) is given by

exp(age(1)+gender(1)+licence(1)+cover(l)+group(1)+NCD(1)+area(l))

Where age(1) is parameter estimate for level one of the age variable,
gender(1) is the parameter estimate for level one of the gender
variable etc.
0 For the parameters estimated in the model we have an
multivariate empirical distribution (via the bootstrap).

0 In order to produce an empirical distribution for a risk premium
we

1. Randomly draw a vector of parameter estimates from the
multivariate empirical parameter distribution and calculate a risk
premium. Note that the re-sampling must preserve the dependence
structure between parameters.

2. Repeat step one N times to produce an empirical distribution.
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Risk Premium Distribution

mExtract from Parameter empirical distributions

Index P1(1) P1(2) P1(3) P1(4) P1(5) P1(6) P1(7) P1(8) P1(9) P2(1) P2(1) P3(1) P3(2)
5.681112 5.445491 4.920464 5.526682 4.825199 4.723221 4.695506 4.794742 4.698815 0.451008 0.582003
5.456503 5.193568 4.858869 4.918304 4.694945 4.471013 4.524467 4.780155 4.706512 0.411565 0.364002
6.571027 5.581127 5.264005 5.10033 5.222713 5.024645 4.971457 5.007636 4.861884 0.463174 0.411377

5.239579 5.292666 4.795608 5.297541 4.726769 4.697402 4.6389 4.697812 4.639287 0.461228 0.543496
5.173393 5.30584 4.855483 5.46932 4.683211 4.510123 4.556009 4.662907 4.481004 0.301002 0.571876
6.288829 5.551724 5.055563 6.002004 4.896509 5.018913 4.973691 5.018677 5.001962 0.517063 0.584115
4.285431 4.650733 4.118431 5.288863 4.02891 4.005287 3.998739 4.11361 4.222197 0.370499 0.962577

mExtract from Risk Premium empirical distributions

P1(1) P2(1) P4(1) P5(3) P6(1) P7(1) rp_para_error
5.6811 0.4612 0.0530 0.2548 1.0693 0.0047 1345
5.6811 0.4612 0.0530 0.2548 1.0693 0.0047 1345
6.5710 0.3705 0.0913 0.6565 1.0721 0.0569 4853

5.1734 0.4560 -0.0011 0.0438 1.1910 0.0486 729
5.1734 0.4560 -0.0011 0.0438 1.1910 0.0486 729
6.2888 0.4997 0.2177 0.3145 1.0165 0.0387 3184
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Bias Adjustment - Linear Predictor
Distribution
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Bias Adjustment - Linear Predictor
Distribution

m Parameters for Normal Distribution

Parameter Symbol Estimate
Mean L 7.451092
Std Dev c 0.804347

Linear Predictor (Ip) ~ N(u,c0?)
With a GLM E(Y) = Exp(n).
What we have calculated is Exp(Ip~ N(u,5?)) = Exp(p).exp(¥2. 62)

For an unbiased estimator we need to consider the random
variable I" = Ip- . ©2.

I'~N(u- ¥2. 62,6)
E(exp(I')) = exp(u- Y2. o?).exp(¥2. o?)=exp(Ip)/exp(¥2. c?) = exp(n)
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Risk Premium Distribution
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Full Predictive Distribution

m In order to examine the predictive distribution we need to add in the
process variance. Each element of the generated empirical distribution is
mean (u) of a Tweedie distribution with variance V(u) = o?ul-2s,

m In order to generate an observation from the predictive distribution we
need to generate an observation from this Tweedie distribution.

m A simplified approach is to assume that the observation comes from a
Gamma distribution with mean o.f=p and variance a.p?=c?u!-2°. (solving
gives a I'(1/c2u% 7, o2u°-2°) distribution)

P1(1) P2(1) P4(1) P5(3) P6(1) P7(1) LP rp_para_error Bias Adj alpha beta RP_full_pred
5.6811 0.4612 0.0530 0.2548 1.0693 0.0047 1345 .3 336
5.6811 0.4612 0.0530 0.2548 1.0693 0.0047 1345 . 37

6.5710 0.3705 0.0913 0.6565 1.0721 0.0569 4853 . 2345
5.1734 0.4560 -0.0011 0.0438 1.1910 0.0486 729 . 827
5.1734 0.4560 -0.0011 0.0438 1.1910 0.0486 729 .3 1156
6.2888 0.4997 0.2177 0.3145 1.0165 0.0387 3184 1.3 3664
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Full Predictive Distribution

12750 18750 21750 24750
R ful_pred
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Appendix 1

m Exponential Dispersion Densities — For full
detalls see Jorgensen (1987) or Jorgensen
and Paes Souza (1994)
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Exponential Dispersion Models

m Y~ED(p,0%) = P(y;0 1) = a(d,y).exp[A{y6-k(6)}]
Mean: u = k'(6) = 1(0)
Dispersion parameter: 2 = 1/A
Variance : ¢?V(un) where V(p) = v'(z (1)) = 7'(6) = k”(6)

m Tweedie Distribution
Y~EDP(u,5°)
Mean: p
Variance : 6?V(p) = o2.uP P € (-0,0] U [1, )

m Scale Property for Tweedie distribution
C.EDP(u,0%) = EDP(cp,c?Pc?)
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Exponential Convolution Model

Y~ED(t(6),A1) < AY — ED"(6,1A)

Z=1y~p(z;0 L)=a"(1;z).exp{z6-1k(0)}

Model ED*(6,A) has mean m=Au and variance AV(u) = AV(m/L)
Model satisfies convolution formula

ED*(6,A,) * ... * ED"(0,1,) = ED*(6,(A,+...+ 1) )
where * denotes convolution.
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Tweedie Model

N(t) = Poisson(mt) {number of claims}

Z,=TI'(-6,-a) z=0 0,6<0 {individual claim size}

Z(w) = ZZ,i=1 to N(w) {aggregate claims — w is exposure}
Z(w) ~— ED*(6, W) < Z(w)/Arow ~EDP(A% 1, A%t/ w)

AoeZ(w)/ Atew = Y(w) ~ EDP(u,c%/w) by scale property (c?=1/1)

Variance (Y(w)) = o?/w.V(n) = c?/w.uP p = (a-1)/(a-2) € (1,2)
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