

Variable Annuities

Society of Actuaries in Ireland Evening Meeting September 17, 2008

Variable Annuities Working Party

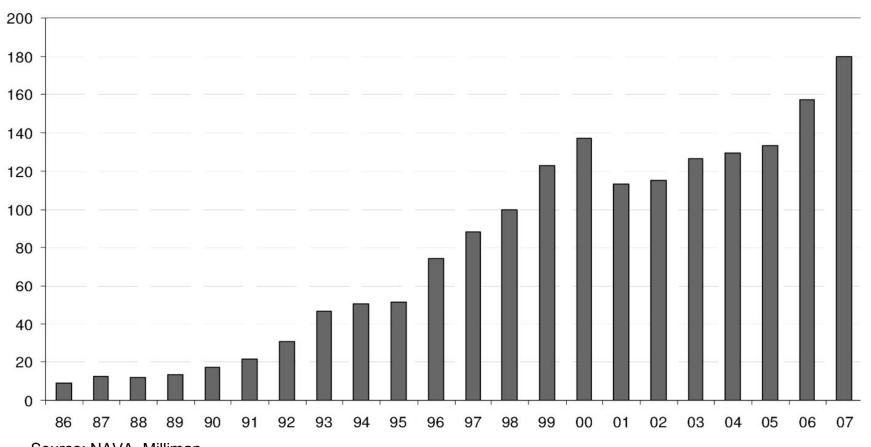
- Presented paper to Faculty and Institute in March 2008
- Working Party members
 - Colin Ledlie
 - Dermot Corry
 - Gary Finkelstein
 - Alan Ritchie
 - Ken Su
 - Colin Wilson
- Colin Ledlie, Dermot and Gary will present here today

Introduction (Section 1)

- Variable Annuity
 - Can be a confusing term
 - Originated in the US
 - We defined it as "any unit-linked or managed fund vehicle which offers optional guarantee benefits as a choice for the customer"
- Similar products available for many years e.g. Maturity Guarantees Working Party in 1980
- Fagan proposed a form of hedging for these types of guarantees in 1977 but the 1980 Working Party took the view that there would be practical disadvantages to this method
- Advances in hedging techniques have been the key enabler in recent years

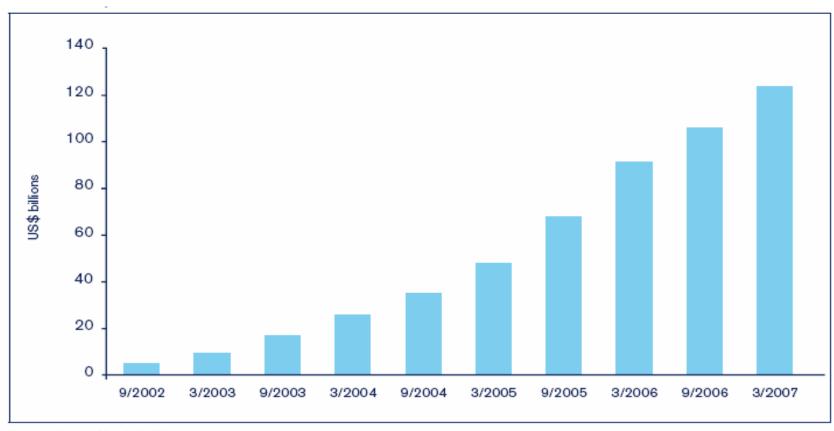
Agenda

- Definitions
- Market Context
- Sample Product
- Customer Outcomes
- Risk Management
- Pricing
- Hedging and Market Risk Management
- Reserving and Capital
- Regulatory Issues
- Discussion Points


Definitions (Section 2)

- GMDB Guarantee on death. May guarantee premium paid or the guarantee may include additional feature
- GMAB Accumulation benefit. As above with guarantee at surrender/maturity rather than death
- GMIB Income Benefit. Guarantees a minmum income at annuitisation
- GMWB Withdrawal Benefit. Guarantees a minimum withdrawal from the fund each year. Fund can still be surrendered so different from a traditional annuity.
- Variations of GMWB have withdrawal benefit payable for life

UK Market Opportunity (Section 3)


- Bridges the gaps left by the decline of with-profits and defined benefit pension schemes
- Traditional annuities give strong guarantees but inflexible and result in fixed interest investment for up to 30 years
- Drawdown (or ARFs in Ireland) allow investment in risky assets but no income protection if market falls
- UK market scale (2006) £9.6bn annuities, £2.6bn drawdown
- Face some regulatory challenges to product design

US Variable Annuity Sales (\$bn)

Source: NAVA, Milliman

Japanese Net VA Assets

Source: Hoken Mainichi Shimbun.

European and Asian Developments

- Launches in Korea, Hong Kong, Taiwan etc
- Growing interest in Continental Europe
 - Aegon, Allianz, AXA, ING, Generali, Met Life, Munich Re (Ergo)
 - Others at the planning stage
- UK market
 - Aegon, Hartford, Lincoln, Met Life
 - Standard Life, Prudential and AXA have all announced that they are considering entering the market
- Majority of above based in Ireland but activity also in Luxembourg
- Germany changing regulations to allow VA business to be written by domestic German companies

Sample Product Design (Section 5)

- Guaranteed Minimum Withdrawal Benefit for life
- 5% pa of original premium guaranteed income at age
 65 for life
- Annual Step-Up (subject to 15% maximum to age 75)
- 60% Equity Backing Ratio
- Charge for Guarantee 0.75% pa

Customer Outcomes (Section 6)

- Stochastic Analysis of outcomes
- Initially examine two selected scenarios one bad (38) and one good (81)
- Compare VA with income drawdown
- Then move on to probability distributions of outcomes
- Treating Customers Fairly considerations

Simulation 38 – Fund Value and Guarantee Base

Variable Annuities

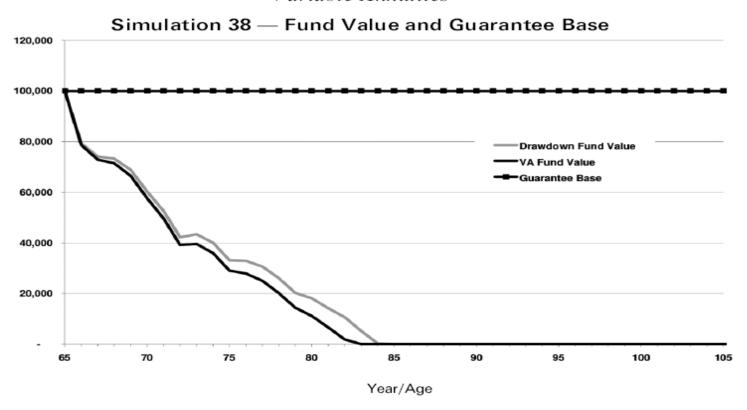


Figure 6.2.4a. Fund value and guarantee base, Scenario A

Simulation 81 – Fund Value and Guarantee Base

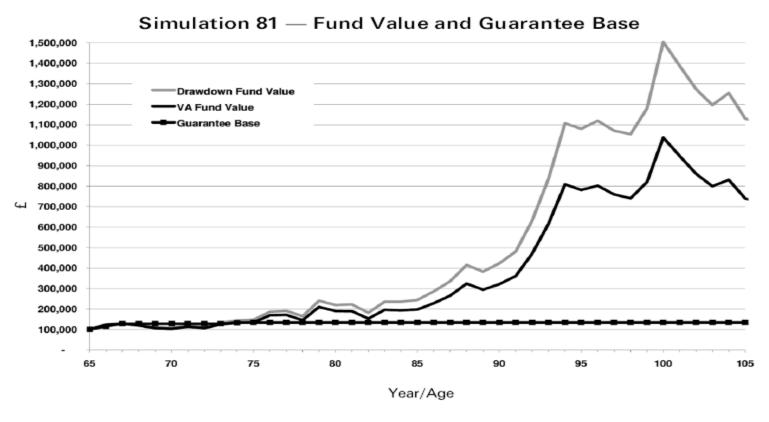


Figure 6.2.4b. Fund value and guarantee base, Scenario B

Probability Distribution – Income from Drawdown

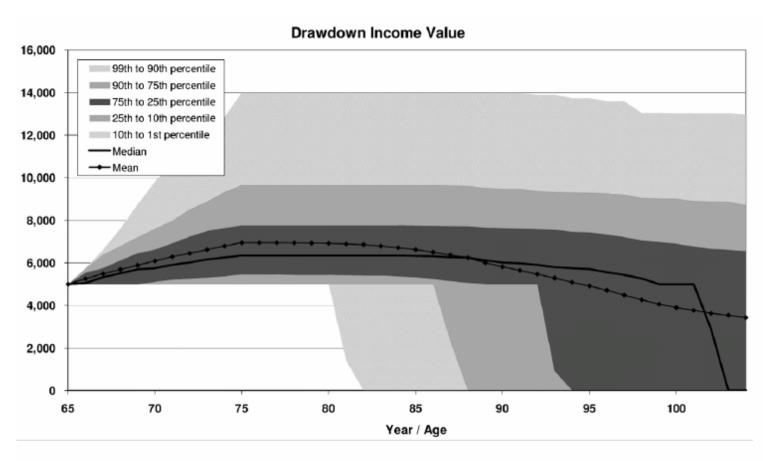


Figure 6.3.3b. Percentiles of income through time, Drawdown

Probability Distribution – Income from VA

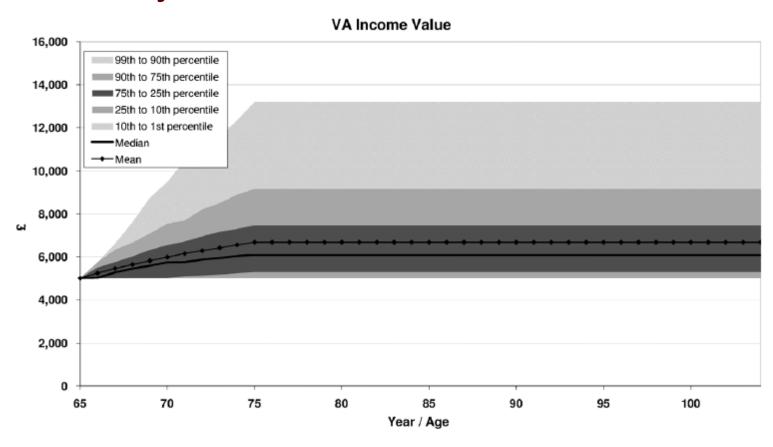


Figure 6.3.3a. Percentiles of income through time, Variable Annuity

Treating customers fairly

- Consider how the guarantee operates in a range of scenarios and appropriateness of product
- Information requirements for the distributor to allow them to understand the product
- Review products post sale continuing to meet needs. Should they notify customer if guarantee is well out of the money?
- Careful consideration of any ability to review charges and/or benefits

Key Market Risks (Section 9)

- Equity asset value movements (referred to as Delta)
- Bond asset value movements (if bonds in portfolio)
- Changes in interest rates (Rho)
- Equity market volatility (Vega)
- Interest Rate volatility
- Correlation between interest rates and equity markets
- Performance of funds compared with underlying indices (basis risk)
- Pricing is normally fixed for a period of time
 - Ideally changes with market conditions

Key Non-Market Risks

- Lapse behaviour (or turning off guarantee)
- Mortality/Longevity
- Funds chosen by the policyholder
- Start of withdrawals
- Amount of withdrawals per annum
- Business mix ages, genders etc

Pricing (Section 7)

- Key elements for market consistent pricing
 - Economic scenario generator
 - Model to project guarantee income and claim payments
 - Assumptions on key variables
 - Mortality
 - Lapse, including dynamic behaviour if appropriate
 - Election rates
 - Etc.

Pricing of Sample Product in paper

- Market Consistent Cost at 30/06/07 = 0.49 % pa
- Sensitivity
 - 1% absolute fall in interest rates 0.82 % pa
 - 25% relative increase in equity vol 0.67 % pa
 - Longevity 80% of central assumptions 0.60 % pa
 - Defer withdrawals for 3 years 0.38%
 - Flat withdrawals rather than dynamic 0.37%

Price to the customer

- Range of factors
 - Economic price
 - Competitive position
 - Perceived value of guarantee to customers
 - Willingness to change price if markets change
 - Hedging strategy
 - Capital and reserving requirements
 - Sensitivity of the price to assumptions

Hedging and Market Risk Management (Section 10)

- "Greeks" commonly used to describe the market risks
- Delta risk that UL fund falls in value
 - Delta = $\partial V_1 / \partial V_A$ (where V_A denotes value of UL fund)
- Gamma convexity of the liability option
 - Gamma = $\partial \Delta / \partial V_A = \partial^2 V_L / \partial V_A^2$
- Rho Risk of interest rate change
 - Rho = $\partial V_L/\partial r$ (where r is the interest rate)
- Vega Volatility of the underlying assets
 - Vega = $\partial V_L / \partial \delta_A$

Hedging Techniques

- Dynamic Hedging
 - Using "Greeks" select assets which will move in the same way as the liability
 - Dynamically adjust hedge assets as value of "Greeks" changes
 - Depends on highly liquid assets with low trading costs
- Static Hedging
 - Use over the counter options
 - Work well for simple guarantees such as GMAB
 - Exotic hedges needed for more complex guarantees
 - Some rebalancing almost certainly required e.g. demographic variations
 - Can be used as a core with a form of dynamic hedging for the rebalancing

Market Risk Management – Reinsurance

- Growing market in reinsurance
- Risk appetite varies market, mortality/longevity, lapse, election
- Limited availability of full risk transfer
- Provides alternative for smaller books or new entrants
- Reinsurance company may have minimum size and other limitations

Impact of Hedging - Examples

- We examine the implications of various market stresses on the option value
 - With no hedging and different hedge strategies
- Then look at longer term profit and loss distribution projections
- This gives us some possible input for economic capital

Instantaneous Stresses (Section 10)

Table 10.8.4(a)

		Market movement			(economic value)		
#	Equities	Interest rates	Equity volatility	Swaption volatility	Unhedged	Delta rho	Delta rho vega
(i) (ii) (iii) (iv) (v) (vi)	-5% -25%	−1% −1%	+6% +6%	+3% +3%	-253 $-1,959$ $-1,939$ $-1,542$ -200 $-5,767$	-14 -762 -266 $-1,542$ -200 $-2,900$	-2 -286 -189 54 -200 4

Projection over time – Unhedged

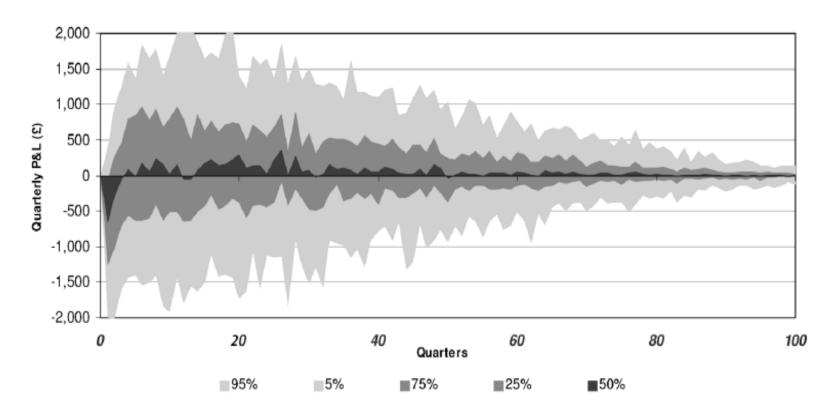


Figure 10.9.5(a). Unhedged quarterly P&L distribution WB product (£)

Hedged

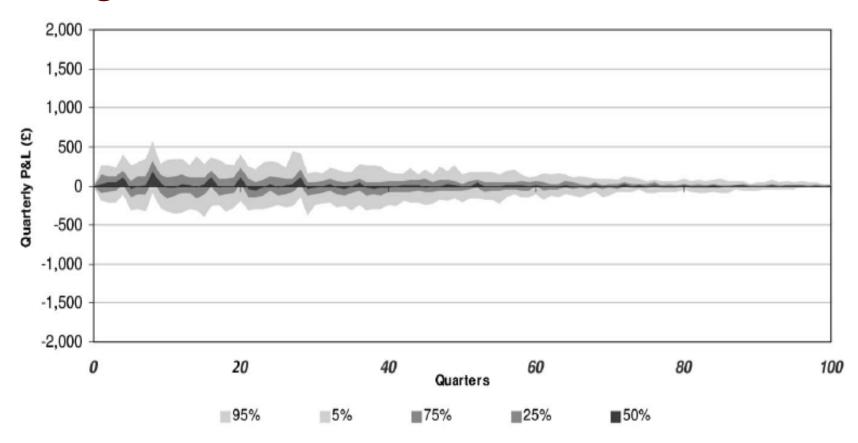


Figure 10.9.5(c). Delta rho vega hedged quarterly P&L distribution WB product (£)

Measures of Economic Capital at Risk

	Immediate Stress (capital strain/AV)	Cash Flow Projection (PVFP/AV)
Unhedged	5.8 %	12.9 %
Delta-Rho Hedge	2.9 %	2.5 %
Delta-Rho-Vega Hedge	0.0%	2.0%

Reserving and Capital (Section 8)

- Stochastic approach needed to reserving
- Most common approach in Ireland is to use Conditional Tail Expectation (CTE) approach
- CTE approach adapted from the US method
- This involves projecting cashflows over the life of the policy for each scenario calculating reserve
- CTE reserve is average of worst scenarios
- Allowing for hedging involves nested stochastic projections of profits for each scenario

Solvency Margin

- Products carry investment risk => 4% solvency margin
- May be possible to issue base UL product and rider as distinct products => 4% applies to rider only
- Financial Regulator likes to see minimum total capital based on CTE 90
- Solvency II will lead to a change in approach
 - Easier to identify the impact of the different market aspects
- Solvency II does not currently allow adequately for Dynamic Hedging
- However also poor at dealing with basis risk, dynamic lapse, longevity etc

Regulatory Constraints (Section 11)

- HMRC limits on income drawdown (know as GAD limits) complicate market in the UK
- Can limit income payout when markets fall
- Can force higher income when markets rise
- Undesirable and lobbying for change
- Not an issue in Ireland though 3% ARF minimum withdrawal could cause similar issues

Market Conditions

	30/06/07	07/03/08
FTSE 100	6608	5700
10 Year Equity Implied Volatility	20.0%	27.1%
20 Year Swap Rate	5.49%	4.90%
Swaption Volatility (10 year option on 10 year swaps)	12.0%	11.4%
Cost of Guarantee	0.49 %	0.96%

Discussion Topics (1)

- Is the authors' optimism regarding the prospects for the product justified?
- Is there a genuine consumer benefit from these products?
- Will domestic companies succeed in this market or will companies with established track records elsewhere dominate?

Discussion Topics (2)

- Will hedging techniques perform as intended in extreme market conditions?
- What changes to legislation would facilitate better outcomes for the customer (and acceptable outcomes for HMRC)?
- Are actuaries well equipped to develop and market these products?