Equity Release Working Party

Pricing & Risk Capital In the Equity Release Market 27 March 2008

Who are we?

Ged Hosty (Chair) - In Retirement Services

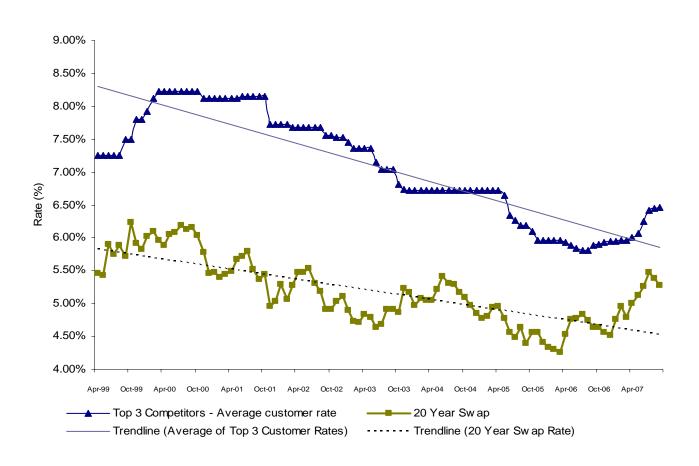
Steve Groves - Partnership Assurance

Colin Murray - Watson Wyatt

Mikir Shah - FPK

Agenda

- Introduction
- Types of product
- Assumptions
- Modelling House Price Inflation
- Cost of Funds
- Expenses
- Cost of "No Negative Equity Guarantee"
- Results
- Summary



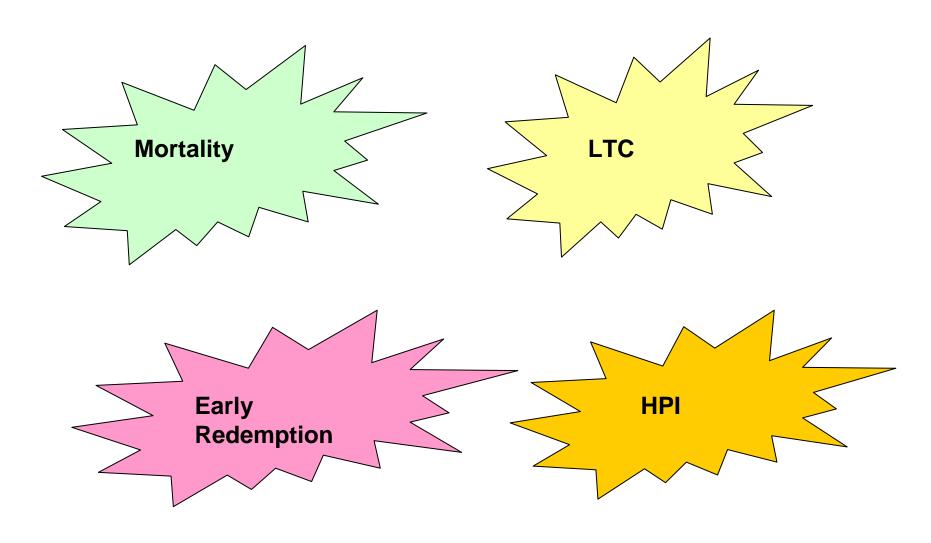
Health Warning

- All work based on sample products
- Results could change significantly with change in assumptions/product types
- Product providers need to examine their own business carefully and generate their own assumptions

Introduction

Product Types

- Lifetime Mortgages
 - Lump sums
 - Drawdown
 - Fixed rate/Variable rate
 - Protected equity
 - Higher LTVs/Interest rates
 - Fixed Repayments



Product Types

- Reversions
 - Cash
 - Income
 - Stepped
- Impaired lives

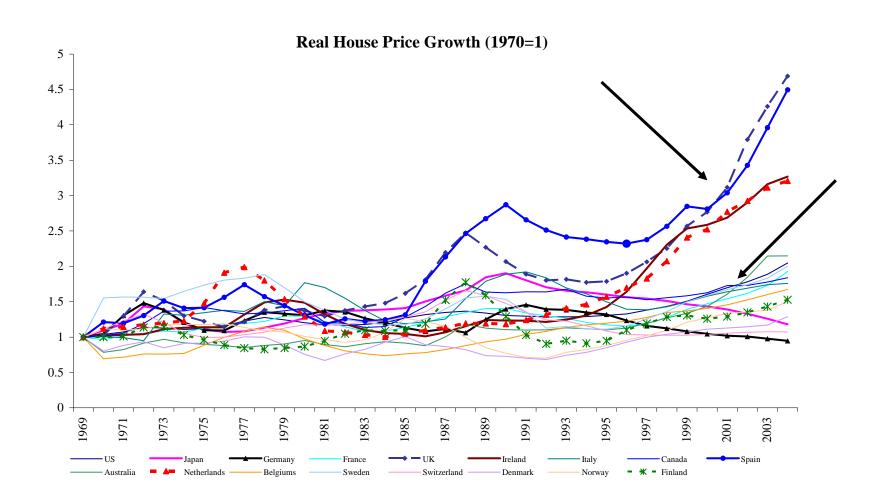
"Interesting" Risks

Mortality

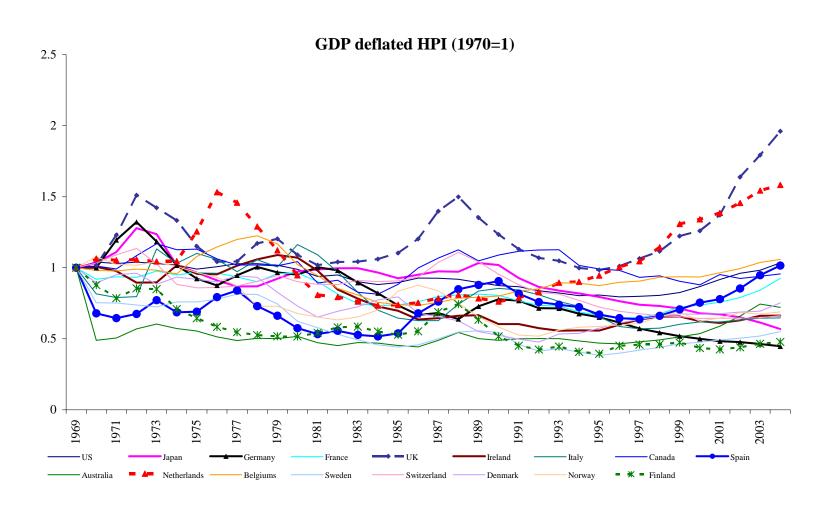
- Little experience
- No reinventing the wheel
- Heavily dependent on factors such as sales channel, marketing, product features
- Used PNXA (U=2007) (with early selection)
- Adjusted for social class
- Improvements at P-Sac

Long Term Care

- No further data over the last 2 years.
- Assumptions unchanged from last ERWP report.
- Males addition of 2% to 5% to mortality
- Females addition 3% to 13% to mortality


Early redemptions

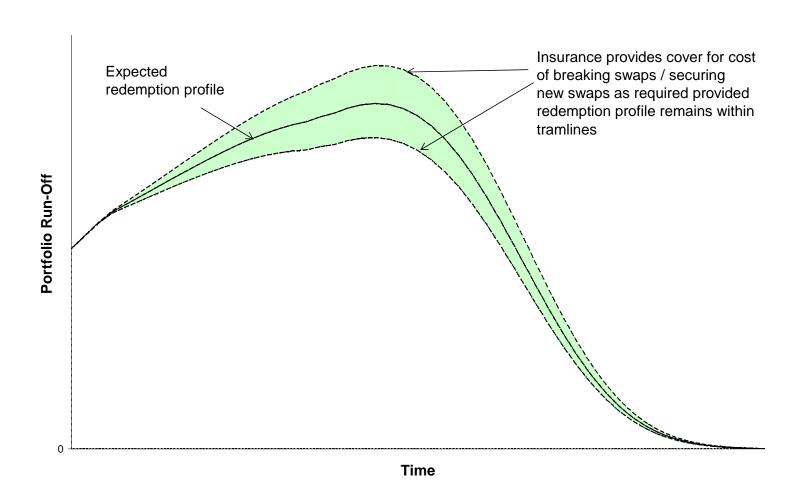
- Little experience (Norwich Union)
- Some are LTCs in disguise
- Flat redemption charges are "one way bet" on interest rates
- Need to consider
 - Redemption charge scale
 - Prevailing interest rate
 - Distribution channel
 - Product design
 - Competitive positioning
- Assumed rates
 - 1%-2% in years 1 to 2
 - Rising to 2.5% in years 4-5
 - Reducing to 0.5% by year 11
 - 0.25% by year 20


House price inflation

- Reviewed OECD data (min/max long term)
- Analysed UK data
 - Regional data
 - Autocorrelations
 - Desmoothed
- Derived range assumptions for pricing
- Not predicting house prices!

OECD Data

OECD Data


UK Property

- Average annual HPI since 1974 just under 9% p.a.
- Max 9.3% p.a. in London, min 8.3% p.a.
 Scotland
- Volatility of 5% p.a.
- Autocorrelation (1 step) 0.66
- Desmoothing (1 step) volatility of 11% per annum.

Assumption

- Min = OECD data = CPI ?
- Max =
 RPI (2.5%) + Economic Growth (2.5%) =
 5% p.a.
- How much desmoothing is appropriate?
- Assumed 4.5% HPI and 8% volatility (plus 3% for binary risk)

Cost of Funds

Cost of Funds

- Cost of funds based on cost of swaps for the redemption profile
- Extra margin above swaps for "insurance"
- Base cost of funds given by:
 - Average swap rate weighted by cashflows
 - Funders margin over LIBOR
 - Margin to cover risks
 - Providers cost of hedging for residual risks
 - No negative equity guarantee
- Margin over LIBOR assumed to be 40bps plus 25 bps for tramline insurance

Cost of Solvency Capital

- FSA capital requirement is 8% of mortgage outstanding plus additional drawdown
- Weighting of 35% if projected mortgage amount is less than 80% of house value
- Cost of capital assumed to be 2% p.a.
- Annual cost 7 bps

Expenses

Heading	Amount
Distribution	2.5% of advance
Marketing	1.0% of advance
Administration	£500 initial
	£60 p.a. renewal
	£350 termination
Expense inflation	3% p.a.
Other costs	Passed to customer
	(e.g. valuation)

NNEG Cost

Using option pricing methodology

- Two approaches
 - Quasi market consistent/risk neutral
 - "Real world"

NNEG Cost

- Quasi market consistent
- Risk free rate of 4.75% p.a.
- Current rental yield of 3.3% p.a. (net)
- Forward HPI rate of 1.5% p.a.
- Volatility of 11% p.a.

Quasi Market Consistent

Sample case	Option price as a	Option price as an annual
	percentage of initial	percentage of the
	mortgage	outstanding mortgage
Male 65	18%	0.73%
Female 65	19%	0.74%
Joint life 65	29%	0.90%
Male 70	12%	0.64%
Female 70	13%	0.67%
Joint life 70	20%	0.82%
Sample Portfolio	15%	0.67%

Sensitivities – 0% forward rate

Sample case	Option price as a	Option price as an annual
	percentage of initial	percentage of the
	mortgage	outstanding mortgage
Male 65	29%	1.22%
Female 65	31%	1.24%
Joint life 65	45%	1.45%
Male 70	20%	1.09%
Female 70	22%	1.13%
Joint life 70	32%	1.34%
Sample Portfolio	25%	1.11%

Sensitivities - Volatility

Sample case	Volatility of 14%	Volatility of 17%
Male 65	21.4% (0.9% p.a.)	24.1% (1.0% p.a.)
Female 65	22.6% (0.9% p.a.)	25.9% (1.0% p.a.)
Joint life 65	32.7% (1.0% p.a.)	36.2% (1.1% p.a.)
Male 70	14.6% (0.8% p.a.)	17.1% (1.0% p.a.)
Female 70	16.0% (0.8% p.a.)	19.2% (1.0% p.a.)
Joint life 70	23.7% (1.0% p.a.)	27.3% (1.1% p.a.)

"Real world" pricing

- Stochastic model
- Log normal distribution
- HPI at 4.5% p.a.
- Volatility of 11% p.a.

"Real world" results

Sample case	Option price as a percentage of initial	Option price as an annual percentage of the
	mortgage	outstanding mortgage
Male 65	2.5%	0.10% p.a.
Female 65	2.6%	0.10% p.a.
Joint life 65	4.1%	0.13% p.a.
Male 70	1.8%	0.10% p.a.
Female 70	2.0%	0.10% p.a.
Joint life 70	3.2%	0.13% p.a.
Sample Portfolio	2.7%	0.12% p.a.

Results

Heading	Amount
Average swap rate	5.10%
Funder's margin	0.40%
Tramline insurance	0.25%
Cost of solvency	0.07%
Cost of NNEG (?)	0.12%
Expenses	0.30%
Profit (?)	0.45%
Cost to Borrower	6.70%

Summary

- Margins getting tighter but little experience to go on.
- A lot of risks unknown (e.g. mortality, redemptions etc.)
- Pricing basis needs to be tailored to individual company and product features
- Possible that profits are being made
- If NNEG on a market consistent basis, unlikely to be profits!