
 

 

 

 

 

 

 

MODELING PARAMETER RISK IN PREMIUM 

RISK IN MULTI-YEAR INTERNAL MODELS  
 
 
 
 

DOROTHEA DIERS 

MARTIN ELING 

MARC LINDE  

 

 

 

WORKING PAPERS ON RISK MANAGEMENT AND INSURANCE NO. 119 

 

 

EDITED BY HATO SCHMEISER 

CHAIR FOR RISK MANAGEMENT AND INSURANCE 

 

 

NOVEMBER 2012 



1 
 

Modeling Parameter Risk in Premium Risk in Multi-Year Internal Models 
 
 

Dorothea Diers, Martin Eling, Marc Linde 
 
 
 
 
Abstract: 
 
The purpose of this paper is to illustrate the importance of modeling parameter risk in premium risk, 
especially when data are scarce and a multi-year projection horizon is considered. Internal risk models often 
integrate both process and parameter risks in modeling reserve risk, whereas parameter risk is typically 
omitted in premium risk, the modeling of which considers only process risk. We present a variety of methods 
for modeling parameter risk (asymptotic normality, bootstrap, Bayesian) with different statistical properties. 
We then integrate these different modeling approaches in an internal risk model and compare our results with 
those from modeling approaches that measure only process risk in premium risk. We show that parameter 
risk is substantial, especially when a multi-year projection horizon is considered and when there is only 
limited historical data available for parameterization (as is often the case in practice). Our results also 
demonstrate that parameter risk substantially influences risk-based capital and strategic management 
decisions, such as reinsurance. Our findings emphasize that it is necessary to integrate parameter risk in risk 
modeling. Our findings are thus not only of interest to academics, but of high relevance to practitioners and 
regulators working toward appropriate risk modeling in an enterprise risk management and solvency context. 
 
 
 
Keywords: Non-Life Insurance, Value-Based Management, Internal Risk Models, Solvency II, Parameter 
Risk 
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1. Introduction 

Under Solvency II, regulators in Europe will require insurers to use either a new standard formula 

or their own internal risk model in determining risk-based capital standards. Since their 

development in the 1990s, internal risk models have become an important tool for financial 

modeling and scenario analysis in the non-life and reinsurance industry. Today, they serve as a 

major instrument in assessing risk and return of strategic alternatives and thus support managerial 

decision making (see, e.g., Kaufmann et al., 2001; Eling and Toplek, 2009). Recent solvency 

discussions at the European level extended the use of such models to external risk management and 

regulation. 

The standard formula and internal risk models both need to adequately reflect the insurer’s risk 

situation, which means they need to be able to measure and evaluate every relevant risk to which 

the insurer is exposed. With regard to underwriting risk, premium and reserve risk are typically 

considered to be two separate risk category types. One of the underlying sources of risk, prediction 

risk, can be divided into parameter risk and process risk (see Cairns, 2000). The Solvency II 

standard formula and internal risk models integrate both process and parameter risks in modeling 

reserve risk, whereas parameter risk is often omitted in premium risk, the modeling of which 

considers only process risk. To our knowledge, this is also true in regulatory jurisdictions other than 

the European Union, such as the United States and Australia. This is surprising given discussion in 

business and academia about the importance of modeling parameter risk (see, e.g., Cairns, 2000; 

Borowicz and Norman, 2006a). 

This paper illustrates the modeling of non-life premium risk, including parameter risk, in an 

enterprise risk management framework. There are several approaches to modeling parameter risk 

and each has its own theoretical foundation. We thus present a variety of methods (asymptotic 

normality, bootstrap, Bayesian approaches) with different statistical properties and compare them in 

an application to a non-life insurance company. 
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We integrate parameter risk into the multi-year internal risk model presented in Diers (2011), which 

was extended in Diers (2012), and compare our results with modeling approaches that only measure 

process risk in premium risk. The results show that parameter risk is substantial, especially when a 

multi-year projection horizon is considered and only limited historical data are available for model 

parameterization (as is often the case in practice). Our findings also indicate that parameter risk can 

substantially influence risk-based capital and strategic management decisions, such as reinsurance. 

Our findings are thus not only important for academics, but also for practitioners and regulators 

working toward appropriate parameter risk modeling in an enterprise risk management and 

solvency context. To our knowledge, there are no model approaches or studies on parameter risk for 

projection periods of not just one, but several, accident years; however, consideration of multiple 

years is crucial when thinking strategically about enterprise risk management and, indeed, Solvency 

II requires implementation of multi-year risk capital projections in the “Own Risk and Solvency 

Assessment” process (ORSA; see Elderfield, 2009; CEIOPS, 2008). 

The remainder of this paper is structured as follows: Section 2 contains a brief summary of 

statistical estimation theory, demonstrates the sources and relevance of parameter risk in non-life 

insurance, and introduces the multi-year model framework for internal risk models to allow for 

parameter risk, where we extend the multi-year model approach presented in Diers (2011) and Diers 

(2012). Section 3 presents three approaches to modeling parameter risk: the asymptotic normality 

approach, the bootstrap method, and the Bayesian approach. Section 4 presents an application of 

these modeling approaches in a multi-year framework to show the influence of parameter risk on an 

insurance company’s risk situation. Section 5 concludes. 

2. Modeling Parameter Risk in Premium Risk 

2.1 Premium Risk in Non-Life Insurance 

Premium risk refers to the risk that future premiums will not be sufficient to cover claims. Usually, 

premium risk is one of the major risks for non-life insurers. Modeling premium risk using internal 
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models involves stochastic claims models (such as a collective risk model with a frequency-severity 

approach) assuming claim numbers and severities with parametric probability distributions. 

Selecting appropriate probability distributions, together with estimating their respective parameters, 

is usually based on the company’s own historical record of claim numbers and severities.1 Methods 

using statistical estimation and testing theory as well as exploratory data analysis aim at identifying 

a statistical law from the past and then extrapolating it into the future (see Diers, 2007). 

Internal models rely on a certain prediction process that may give rise to different sources of 

uncertainty—model uncertainty and prediction uncertainty, which can be divided into parameter 

risk and process uncertainty (see Cairns, 2000).2 Process risk describes uncertainty from the actual 

random process. Parameter risk results from uncertainty in estimating the parameters of a model. 

Application for steering purposes as well as reinsurance modeling may require a very granular 

modeling approach (on the level of business divisions, business units, individual hazards) in the 

internal model, requiring a large number of parameters to be specified. 

This paper is limited to modeling parameter risk in univariate distributions assuming independent 

claim severity; the reader is referred to Borowicz and Norman (2006b) for modeling parameter risk 

in dependency structures. 

2.2. Parameter Estimation and Risk 

Typically the estimation process is based on a data set ),,(: 1
)(

n
n yyy   of n observations 

containing historical claim sizes or numbers (on accident or underwriting period basis). For the 

most common claims models used in non-life insurance, )(ny can be treated as a sample of 

independent realizations iy  from a random variable Y. As we are assuming parametric distribution 

models, we treat the general distribution class of Y as known, that is, the distribution of Y (which we 

refer to as process distribution) has been fully specified except for an unknown parameter (we thus 

                                                 
1 One exception is catastrophe (CAT) claim modeling, which often draws on external sources due to the limits in a 

company’s own historical record. CAT claim modeling is not covered in this paper. 
2 Other sources of uncertainty include missing data and risk of change. 
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do not consider model risk). If this class is referred to as  d
Y Θθ:θFΓ  )( , element )( 0YF  

remains to be determined in the distribution family as corresponds to the original distribution of Y. 

Since d-dimensional parameter vectorθ0 is unknown, it will need to be deduced from the finite set 

of available observations. A (point) estimator ),...,(ˆ:ˆ
1 n

(n)(n) yyθθ  is a mapping from the space of all 

possible outcomes of the sample y(n)(in general a subset of n ) into the parameter space Θ  of 

feasible parameter values; hence (n)θ̂ compresses the sample information to one single value. The 

value of (n)θ̂ is dependent on the outcome of y(n) and therefore itself a realization of a random 

variable. This yields parameter risk. 

The degree of parameter risk depends on the quality of the estimation method actually used to 

determine (n)θ̂ (for quality criteria such as unbiasedness, consistency, and efficiency, see Witting, 

1985) and the size of the data set y(n). In most cases, parameter risk increases as the size n decreases, 

all else equal. 

The maximum likelihood method is commonly used in non-life insurance due to its superior 

(asymptotical) statistical properties, assuming Y with probability density function );( Yf . Due to 

the independence of the sample elements, the corresponding likelihood of the sample y(n)

)|(:); )()( nn ypyL(θ  can be further expressed as: 

.);(...);();(); 21
)( θyfθyfθyfyL(θ nYYY

n  (1) 

The unknown parameter (set) θ0 is estimated by 

 );maxarg:ˆ )()(
ML

nn yL(θ


  ,  (2) 

which we refer to as the maximum likelihood estimator (MLE; for details, see, e.g., Kiefer, 1987). 

Consequently, parameters estimated by the maximum likelihood method yield the highest 

probability for the data observed compared to any other method. The MLE is asymptotically 
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efficient given certain regularity conditions fulfilled for distribution classes as commonly used in 

non-life insurance. 

Parameter risk is not specific to either non-life insurance or premium risk, but inherent in any type 

of forecast. In modeling risk types such as reserve risk, process and parameter risk are accounted for 

in both the standard formula of Solvency II and in internal risk models (quantification of the 

prediction error either analytically or with Bayesian, bootstrap, or other simulation methods). By 

contrast, parameter risk is typically ignored in premium risk modeling, leaving only process risk. 

Changes in portfolio and practical data issues limiting the validity of records for estimating 

distribution parameters present a major challenge to premium risk modeling in non-life insurance. 

2.3. Framework for Modeling Parameter Risk in Premium Risk 

We now present the model framework for premium risk in a multi-year projection period taking 

parameter risk into account, while extending classical modeling approaches such as those presented 

in Diers (2007) and Eling and Toplek (2009). Let t denote the actual year - premium risk for a single 

future accident year t+i,i = 1,…,m, is usually measured from the corresponding underwriting result 

itUW : 

itititit SEPUW   , (3) 

where itS  denotes the total ultimate claims, Pt+I the earned premiums, and Et+i the costs. 

In the following we use the multi-year model framework presented in Diers (2011), which was 

extended in Diers (2012). In a multi-year framework, premium risk is measured from the cumulated 

underwriting result 

  
 


 

 
m

i

m

i
it

m

i

m

i
itititmtt SEPUWUW

1 11 1
],1[ .:  
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This paper focuses on modeling the cumulated ultimate claims   
m

i itmtt SS
1],1[ : with both the 

premiums Pt+i and the costs Et+I, each assumed as known.3 

Regarding claims modeling for premium risk, in internal risk models it is convenient to distinguish 

between catastrophe (CAT), large, and attritional claims. CAT claims generally are modeled using a 

different approach that combines geophysical models with external sources and therefore are not 

covered in this paper. Large claims are those claims that exceed a given threshold. Large claims are 

modeled with a collective risk model approach, whereas the bulk of attritional claims (all remaining 

claims below the threshold) is modeled directly as a total claim amount. 

Hence the annual total claim loss itS   of any future accident year t+i,i = 1,…,m, is calculated as the 

sum of large and attritional claims: 

 
A

it
L

itit SSS   ,where .
1 , 

   itN

k kit
L

it XS
 (4)

 

Xt+i,k, k = 1,…, itN   denotes single large claims up to the number Nt+i and A
itS  refers to the bulk of 

attritional claims in an accident year t+i. 

Our multi-year model framework extends the basic claims models to allow for stochastic 

parameters in order to account for parameter risk, and hence obtain a full predictive distribution of 

the total claim amount. 

Denoting process distributions with ASNX FFF ,, and the corresponding parameter estimators with 

X̂ , N̂ , AS
̂ , we make the following model assumptions for our multi-year claims predictive model: 

 Parameters X̂ , N̂ , AS
̂ are stochastic and follow certain parameter distributions.4 

                                                 
3 Multi-year projections also typically include premium cycles, inflation, and reinsurance cycles, none of which we 

describe here. 
4 Note that the traditional approach of ignoring parameter risk implicitly assumes perfect knowledge about the 

parameters and leads to a Dirac distribution having full probability mass in the estimated parameter value. 
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 Annual large claim numbers mtt NN  ,,1  per future accident year t+1,…,t+m are 

conditionally independent and identically  NF -distributed, conditional on  N
ˆ . 

 Single large claim sizes 
mtt NmtmtNtt XXXX

  ,1,,11,1 ,,,,,,
1

 to occur in future accident 

years t+1,…,t+m are conditionally independent and identically  XF -distributed, given 

 X
ˆ . 

 Large claim numbers are independent from single large claim sizes. 

 Attritional claims SA
t+1,...,S

A
t+m per accident year t+1,…,t+m are conditionally independent 

and identically  AS
F -distributed, given  AS

ˆ . 

 Attritional claims are independent from large claims. 

 

The predictive distributions in our model arise are based on a combination of process and parameter 

distributions, and are easy to apply in the simulation environment of internal risk models using the 

following two-step process: 

 Step 1: The parameters are randomly drawn from the associated parameter distribution. 

 Step 2: Claim sizes, claim numbers, and attritional claims are generated independently from 

the corresponding parametric process distributions according to the distribution parameters in 

the specific simulation. 

 

Figure 1 illustrates the two-step process for claim numbers. 

 

Figure 1: Two-step process for claim numbers 
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Note that according to our model framework, the randomly drawn parameter sets apply pathwise to 

each accident year in a multi-year projection; hence predicted overall claim losses from different 

accident years are dependent due to the common modeling of parameter risk. This is especially 

relevant for multi-year risk and capital projections, as it lowers the diversification benefit and 

balance over time. 

 

As we assume that the process distributions ASNX FFF ,, have already been fixed, we only have to 

determine the parameter distributions for X̂ , N̂ , AS
̂ , which is the subject of the next section. 

3. Methods for Modeling Parameter Risk  

Several methods for determining the parameter distributions can be found in the literature (see, e.g., 

Cairns, 2000; Mata, 2000). This paper will analyze three of these methods to quantify parameter 

risk in premium risk—the asymptotic normality approach, bootstrap methods, and the Bayesian 

approach (as described by Borowicz and Norman, 2006a). We briefly introduce these methods, 

summarize their key advantages and disadvantages, and illustrate their calculation using an example 

of large claim numbers modeling. 

 

 

 

 

 

 

Table 1: Observed claim numbers 

 

Accident year 
Number of 

claims 
2000 0 
2001 1 
2002 1 
2003 1 
2004 3 
2005 2 
2006 2 
2007 0 
2008 2 
2009 3 
2010 1 
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Table 1 is an example of a record of ultimate claim numbers of large claims from 11 accident years 

for a segment. We assume that the process distribution is given by a Poisson (λ) distribution5 (λ>0) 

with density 

 
,...2,1,0,

!

exp
);( 


 k

k

k
kfN


 

The Poisson distribution is commonly used for modeling claim numbers, where the parameter λ>0 

represents the expected number of claims per year. Note that in the Poisson model, mean and 

variance coincide.
 

For a given data set ),,( 1
)(

n
n yyy  , the MLE for parameter λ in the Poisson model is simply the 

sample mean 



n

i
i

n y
n 1

)( 1̂ . The estimator )(̂n  is unbiased, its variance is given by  
n

n  )(ˆVar ; 

however, for modeling purposes we need the full distribution of )(̂n . In the Poisson case, the 

distribution of )(̂n  does not fit a known parametric distribution class, but can be approximated and 

modeled with one the following methods. Note that for most distribution classes, the ML estimates 

in finite sample sizes have to be calculated with numerical methods; furthermore, mean and 

variance of MLE cannot be expressed with analytical closed-form formulas. 

3.1 Asymptotic Normality Approach	

This relatively simple approach to modeling parameter risk takes advantage of the fact that under 

the true distribution model )( 0YF , commonly used estimators are asymptotically normal, which 

means that for the sequence of estimators   Νn
n


)(̂  

   nn dn ,))((0,ˆ
0

  
0

)(  N holds,(5) 

                                                 
5 For simplicity, we desist from using statistical methods to select a suitable model for modeling claim frequencies 

here (e.g., Poisson or negative binomial). 
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Where )( 0 denotes the asymptotic variance-covariance matrix of the estimator. For the MLE, 

)(  is given by the inverse of the Fisher information matrix (see Borowicz and Norman, 2006a; 

for a straightforward mathematical description, see Millar, 2011). 

For a finite (but sufficiently large) sample, the distribution of the MLE may be approximated by a 

(multivariate) normal distribution with mean )(ˆ n  and variance-covariance matrix ).ˆ( )(1 nn 
 In 

the case of a Poisson (λ) distribution, the asymptotic variance of the MLE is  . 

3.2 Bootstrap Methods 

The bootstrap method, a well-known statistical re-sampling method (see Efron and Tibshirani, 

1993), is another approach to quantifying parameter risk. 

The basic concept lies in generating a sufficient number M of pseudo-records (1)y(n),…,(M)y(n) that 

have the same size and and are subject to the same laws of probability as the original data set )(ny . 

The estimation process is then applied to each of these pseudo-data records as in estimating )(ˆ n . 

This yields estimates ,ˆ,...,ˆ )()()()1( nMn  which is referred to as the bootstrap distribution of the 

estimator. 

It is important to distinguish between non-parametric and parametric bootstrapping methods. The 

non-parametric bootstrap method involves sampling with replacement from the original sample, and 

requires independent and identically distributed observations, whereas parametric bootstrapping 

involves creating new samples from )ˆ( )(n
YF  , the assumed parametric distribution class with the 

initially estimated parameter values. 

3.3 Bayesian Approach 

The Bayesian approach, as described in Borowicz and Norman (2006a), is a third alternative for 

modeling parameter risk. In contrast to classical statistics, the unknown distribution parameter is 

treated as a random variable in a Bayesian framework. This per se involves departure from the logic 
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described in Section 2; nevertheless, the Bayesian approach can be easily incorporated into our 

model framework using the posterior distribution of the parameter as the parameter distribution. 

Consider again )(ny  as observations from random variable Y and let   be the random parameter of 

the distribution of Y. With some initial knowledge on how the unknown parameters are 

distributed—via specification of a prior distribution )(p —one can produce a posterior 

distribution )|( )(nyp   using Bayes’s Theorem: 

.)()|(
)(

1
=)|( )(

)(
)(  pyp

yp
yp n

n
n   (6) 

As )|()|( )()( nn yLyp    is the likelihood function of the sample )(ny according to Equation (1), 

the posterior distribution of the parameter is simply proportional to the likelihood function under 

uniform (non-informative) prior distribution )(p (see also Borowicz and Norman, 2006a): 

)|()|( )()( nn yLyp   . (7) 

Considering the claim numbers example with Poisson(λ) distribution and a uniform (non-

informative) prior distribution, the posterior distribution of the parameter  =  is a Gamma 

distribution (see Fink, 1995): 

 
.

)(

/
=)|(

1
)(









 exp

yp n (8) 

with parameters 

n
yi

n

i

1
=and1=

1=

  . (9) 

3.4 Comparison of Approaches 

Although easy to implement, serious shortcomings of the asymptotic normality approach include 

that normal distribution can lead to non-feasible parameter values (such as negative claim 
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frequencies), its application is only asymptotically justifiable, and major departures from the 

assumed normal distribution are possible for finite sample sizes. 

The non-parametric bootstrapping method resamples only from values that have already appeared in 

the past and thus tends to underestimate extreme observations. However, this obviously limits the 

range of obtained parameters for non-parametric bootstrapping, a limitation that can be avoided by 

using parametric bootstrapping. The bootstrap method is applicable to arbitrary underlying 

distributions and estimators, and is therefore also applicable to any relevant non-life insurance 

model. However, the larger the original data set, the more time consuming the entire bootstrapping 

process. It is important to note that sufficiently large (observed) data sets often eliminate the 

necessity of considering parameter risk. We illustrate this aspect in an example in this section. 

Finally, considering the Bayesian approach, the choice of a priori distribution is unclear. 

Unfortunately, there is no general analytical solution for posterior distributions, so we have to fall 

back on numerical methods, such as the Gibbs/ARMS sampling methods (see Gilks et al., 1994, 

1995). 

For illustration, we present the parameter distributions for our Poisson claim numbers sample set 

achieved by employing the three approaches. We performed 60,000 simulations. We illustrate the 

influence of data size on parameter risk and compare the parameter distributions from the original 

data set of 11 years’worth of  history with 30-year sample achieved by adding another 19 

observations. As can be seen, the ML estimates of the Poisson parameter (11 years: 1.45; 30 years: 

1.50) differ slightly and the variance of the estimators decreases. 
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Figure 2: Frequencies for the Poisson parameter distributions underlying 11 and 30 years of observations 
 

As shown in Figure 2 and Table 2, each approach results in a different parameter distribution. For 

the 11-year data set, the asymptotic normality approach leads to negative and hence non-feasible 

parameters. The parameter distributions with 30 years of observations are more concentrated around 

the estimated parameter than is the case for the 11-year data sample. 

 

Table 2: Statistics of Poisson parameter distributions underlying 11 and 30 years of observations 

 

In the next step we present the resulting predictive distributions for future claim numbers and 

compare it to the pure Poisson process distribution without parameter risk. Due to shortcomings of 

the non-parametric bootstrap approach, which tends to underestimate extreme observations, and of 

the asymptotic normality approach, which leads to negative, hence non-feasible, parameter values, 

we focus on the parametric bootstrap and the Bayesian approaches. 

Asymptotic 
Normality

Non-
parametic
Bootstrap

Parametic
Bootstrap

Bayes
Asymptotic 
Normality

Non-
parametic
Bootstrap

Parametic
Bootstrap

Bayes

Mean 1.45 1.45 1.45 1.55 1.50 1.50 1.50 1.53
Standard Deviation 0.36 0.30 0.36 0.37 0.22 0.21 0.22 0.23
Min -0.12 0.27 0.18 0.42 0.53 0.63 0.60 0.74
Max 3.02 2.64 3.27 4.00 2.46 2.43 2.53 2.85
50th percentile 1.45 1.45 1.45 1.52 1.50 1.50 1.50 1.52
60th percentile 1.55 1.55 1.55 1.61 1.56 1.53 1.56 1.58
70th percentile 1.65 1.64 1.64 1.72 1.62 1.60 1.62 1.64
80th percentile 1.76 1.73 1.73 1.85 1.69 1.67 1.69 1.72
90th percentile 1.92 1.82 1.91 2.04 1.79 1.77 1.79 1.83
95th percentile 2.05 1.91 2.09 2.21 1.87 1.87 1.87 1.92

11 Years 30 Years
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Figure 3: Percentile plot for prediction distributions of claim numbers for 11 years of observations 

 

Table 3: Statistics for prediction distributions of claim numbers for 11 years of observations 

Note that the predictive distributions have a higher variance than mean; thus we observe a higher 

probabilty for more extreme claim numbers (see Figure 3 and Table 3). 

4. Application in a Non-Life Insurance Company 

4.1 Model Framework and Assumptions 

To illustrate the influence of parameter risk on internal model results and strategic decision making, 

we perform a simulation study using the multi-year model outlined in Section 2.3. We consider a 

monoliner for m=1 and m=5 subsequent accident years. The study was carried out using TW Igloo 

simulation software. Because of the disadvantages of the asymptotic normality and non-parametric 

bootstrap approaches (see Section 3.1), in this section we concentrate on the Bayesian and 

parametric bootstrap methods. For simplicity, we do not include premiums or costs, but focuses on 

cumulative claims for m years. 

Without 
Parameter 

Uncertainty

Parametic
Bootstrap

Bayes

Mean 1.45 1.45 1.55
Standard Deviation 1.21 1.26 1.30

Prediction distribution
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The constant premiums and costs yields a parallel shift in the overall distribution result, but this 

does not affect the parameter risk analyzed in this paper. We thus ignore premiums and costs in the 

following. Apart from modeling gross claims, this study illustrates the influence of parameter risk 

on the effect of risk reduction measures such as reinsurance. The reinsurance contract is applied to 

simulated gross claims, assuming a stop-loss contract on total claims by accident year. The 

following common assumptions are made regarding the process distributions (see Diers, 2007): 

 Large claim losses X follow a Pareto (α) distribution (α>0, Threshold T>0) with density: 

,,);;(
1

Tx
x

T
Txf X 





  

 Large claim numbers N follow a Poisson (λ) distribution, as introduced in Section 3. 

 For attritional claims SA, we assume a Gamma (α,β) distribution (α,β>0) with density: 

 
.0,

)(

/exp
=);;(

1






x
xx

xf AS 




  

The data set consists of fictive claim figures (11 accident years distinguishing between large and 

attritional claims) and is available upon request. Separation into attritional and large claims is based 

on a large loss threshold of T=1.2 million, resulting in 16 observed large claims above this 

threshold. 

4.2 Results—Parameter Risk 

The distribution parameters were estimated using the maximum likelihood method applied to 11 

years’ worth of data. We obtained: 

 45.1ˆ N  for Poisson number of claims, 

 56.1ˆ X for Pareto large claim size, 

 57.8ˆ AS


 
and 1.33ˆ AS

 for the Gamma attritional claims. 
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As we are only analyzing the 11-year data set in this study, we omit the superscript indicating 

sample size. Assuming a uniform prior, the posterior distribution of the Pareto parameter X for a 

given data set ),,( 1
)(

k
k xxx  is a Gamma (α,β) distribution (see Fink, 1995) with 

.

lnln

1
=and1=

1=

Tkx

ßm

i

k

i







 

 

Even under a uniform prior, the two-variate posterior distribution for the Gamma parameter vector 

is complex, and we thus do not include it here. For details, the reader is again referred to Fink 

(1995). 

Parameter Distributions 

Sixty-thousand simulations were run to obtain the parameter and process distributions. The 

distributions for the Poisson parameter are discussed above in Section 3. 

 

Figure 4: Pareto alpha parameter distribution 



18 
 

 

Table4: Statistics for Pareto alpha parameter distribution 

In the Pareto large claim size model, it is important to note that the lower the parameter α, the 

thicker the tail of the Pareto distribution and hence the more risky the loss distribution. In the case 

of α<1, we have an infinite mean model. As can be seen from Figure 4 and Table 4, the parameter 

estimate is far above 1, but around 5% of the parameters lie in the infinite mean. This might cause 

simulations with extreme single losses when sampling from the Pareto process distribution. 

Comparing the mean of the bootstrap parameter distribution to the initial estimate of alpha (1.56), 

we notice a small bias in the ML estimation. 

 

Figure 5: Scatter plot—Simulated Gamma parameters for attritional claims obtained from the Bayesian 
approach 

Parametic
Bootstrap

Bayes

Mean 1.66 1.65
Standard Deviation 0.44 0.40
Min 0.67 0.48
Max 6.38 4.54
5th percentile 1.08 1.05
25th percentile 1.35 1.37
50th percentile 1.59 1.62
75th percentile 1.89 1.90
95th percentile 2.47 2.36

Pareto Alpha
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Regarding the attritional losses, the ARMS method was used to generate the posterior parameter 

vector distribution for the Gamma distribution in the Bayesian approach (see Gilks et al., 1994, 

1995). Figure 5 shows the simulated alpha and beta parameters (60,000 simulations). As can be seen 

from the figure, it preserves the negative dependency between alpha and beta parameters. 

4.3 Results—Total Gross Claim Losses 

The bulk of attritional claims and large claim losses are simulated independently and aggregated to 

the total gross loss.This procedure is repeated for each of the subsequent accident years; the total 

losses are path-wise aggregated. 

Figure 6 reveals that incorporation of parameter risk leads to a higher probability of more extreme 

total losses, with the Bayesian approach even more extreme than the parametric bootstrapping case. 

Most especially for the multi-year case there is a significant distance between the loss distribution 

without parameter risk and the full predictive distributions (containing parameter risk). In this paper 

we limit ourselves to using only value-at-risk as a risk measure and employ a confidence level of 

99.5%. Results for tail-value-at-risk, other percentile levels, and comparisons basedon 5 or 30 years 

of data are available on request. 

 

Figure 6: Percentile plot of the total gross claim loss for one and five accident years 
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Number of future 
accident years m 

 Without parameter risk Bayes Parametric bootstrap

1 
 

Mean 81.61 85.02 83.97 
Standard 
deviation 

12.71 230.58 296.12 

VaR99.5 131.22 160.49 153.4 

VaR99.5 

- Mean 
49.61 75.47 69.7 

5 

Mean 408.06 425.92 416.39 

Standard 
deviation 

28.37 603.75 418.63 

VaR99.5 509.94 766.87 690.45 

 VaR99.5 

- Mean 
101.88 340.95 274.07 

 

Table5: Results for total gross claim losses ],1[ mttS   

The significant increase of the standard deviation mainly results from extreme large claims 

simulations, caused by Pareto parameters in the infinite mean region. The difference between value-

at-risk (VaR) 99.5% and mean gross claim losses in Table 5 (VaR99.5- Mean) can be interpreted as 

the amount necessary to cover adverse deviations of claims from the expectation value and is an 

alternative approach for measuring premium risk. We observe that in the one-year case it increases 

by 52% (Bayes) and 40% (parametric bootstrap); for the five-year case, it increases by 235% 

(Bayes) and 169% (parametric bootstrap). 

We measure the diversification effect by taking the difference between 5∙(VaR99.5-Mean)m=1 and 

(VaR99.5-Mean)m=5. The diversification effect decreases significantly from 59% (without parameter 

risk) to 10% (Bayes) and 21% (parametric bootstrap), indicating that there is a high degree of 

dependency between the accident years via common modeling of parameter risk. We thus 

demonstrate that including parameter risk can substantially increase gross claim size and reduce 

diversification benefits in multi-year modeling. 

4.4 Results—Reinsurance Results 
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Reinsurance is an essential means for non-life insurers to lower their capital charge by transferring 

premium risk. To illustrate how reinsurance decisions are affected by parameter risk, we analyze a 

stop-loss reinsurance contract with a €200 million limit (L) and a retention of €90 million for total 

claim losses (E) per accident year. Reinsurance recoveries per single future accident year i = 

t+1,…,t+m can be calculated pathwise in a simulation environment as follows: 

));0;min(max(: LESR itit   . 

We define cumulated recoveries for all future accident years as 


 
m

i
itmtt RR

1
],1[ : . 

 

Figure7: Percentile plot of reinsurance recoveries 

Number of future 
accident years m 

 Without parameter risk Bayes Parametric bootstrap

1 
 

Mean 1.93 3.35 2.44 
Standard 
deviation 

6.65 12.52 11.30 

VaR99.5 41.22 70.49 63.44 

5 Mean 10.95 19.30 14.52 
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Standard 
deviation 

18.51 36.14 32.40 

VaR99.5 105.79 222.26 211.27 
 

Table 6: Results for reinsurance recoveries ],1[ mttR   

If we compare the percentile plots of reinsurance recoveries with and without parameter risk, it is 

clear that the reinsurance company, too, is subject to parameter risk (Figure 7 and Table 6). This 

may have an important impact on the structure of reinsurance programs (especially regarding 

parameters such as retention and limits) and the pricing of reinsurance contracts. Figure 7 illustrates 

this effect compared to net losses. 

We conclude that pricing reinsurance contracts via a value-at-risk approach or based on a standard 

deviation principle will lead to substantially different results when parameter risk is taken into 

consideation. This degree of difference will depend on the size of the underlying observed data sets. 

Sufficiently large data sets (data on more than 50 claims) often eliminate the need to consider 

parameter risk, but such large data sets are very rarely available. 

5. Conclusion 

In this paper, we present a multi-year model framework for embedding parameter risk in non-life 

premium risk in enterprise risk management. We illustrate different modeling approaches for 

parameter risk itself, namely, the asymptotic normality approach, bootstrap methods, and Bayesian 

methods, identifying the advantages and disadvantages of each, with special focus on their 

practicality. 

A simulation study was conducted using the Bayesian method and parametric bootstrapping in a 

multi-year enterprise risk management framework. The results clearly show that parameter risk in 

premium risk may have a substantial effect on the company’s risk situation, and is a risk that needs 

to be sufficiently taken into consideration. The study also demonstrates remarkable differences 

between including and excluding parameter risk. Ignoring parameter risk can lead to a substantial 
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underestimation of risk capital requirements, depending on the size of the underlying (observed) 

data sets. 

This finding that ignoring parameter risk may severly underestimate capital requirements is even 

more crucial when it comes to multi-year model projections, as the diversification effect between 

the individual accident years including parameter risk is significantly lower than when excluding 

parameter risk. Finally, considering risk transfer with the help of a stop-loss reinsurance contract 

shows that it is reinsurance companies that bear most of the parameter risk, a finding that should be 

of high interest to those designing and pricing reinsurance contracts. Indeed, we believe that 

although our findings will be of interest to academics, they will be of greatest value to real-world 

insurance and reinsurance businesses. Therefore, we recommend including the modeling 

approaches presented here in insurers’ internal risk models. 

With regard to further development and research opportunities, modifications to the basic data are 

often needed in the non-life sector (as-if transformation, as with settlement, in the long-tail 

divisions, detrending, etc.) before these values can be used for parameterization. These adjustments 

are intended to ensure that the elements from the original data set represent values estimated. In 

practice, this leads to other sources of error that affect parameter estimates, but that cannot be 

included in the model using the approaches presented. Further analysis may provide clarity as to the 

scale of error involved. 

References 

Borowicz, J. M., Norman, J. P., 2006a, The Effects of Parameter Uncertainty in the Extreme Event 
Frequency-Severity Model, http://www.ica2006.com/Papiers/3020/3020.pdf.. 

Borowicz, J. M., Norman, J. P., 2006b, The Effects of Parameter Uncertainty in Dependency 
Structures, www.ica2006.com/Papiers/3093/3093.pdf.  

Cairns, A. J., 2000, A Discussion of Parameter and Model Uncertainty in Insurance, Insurance: 
Mathematics and Economics, 27, S313–S330. 

CEIOPS, 2008, Own Risk and Solvency Assessment (ORSA), Issues Paper, 
http://www.gcactuaries.org/documents/ceiops_issues_paper_orsa.pdf. 

Diers, D, 2007, Interne Unternehmensmodelle in der Schaden- und Unfallversicherung—
Entwicklung eines stochastischen internen Modells für die wert- und risikoorientierte 
Unternehmenssteuerung und für die Anwendung im Rahmen von Solvency II, ifa-Verlag Ulm. 



24 
 

Diers, D., 2011, Management Strategies in Multi-Year Enterprise Risk Management, Geneva 
Papers on Risk and Insurance—Issues and Practice, 36, 107–125. 

Diers, D., 2012, A Multi-Year Risk Capital Concept for Internal Models and Enterprise Risk 
Management, Journal of Risk Finance, 13(5), 424–437. 

Efron, B., Tibshirani, R. J., 1993, An Introduction to the Bootstrap, Chapman & Hall, New York. 
Elderfield, M., 2009, Solvency II: Setting the Pace for Regulatory Change, Geneva Papers on Risk 

and Insurance—Issues and Practice, 34, 35–41. 
Eling, M., Toplek, D., 2009, Modeling and Management of Nonlinear Dependencies: Copulas in 

Dynamic Financial Analysis, Journal of Risk and Insurance, 76(3), 651–681. 
Fink, D., 1995, A Compendium of Conjugate Priors, in Progress Report: Extension and 

Enhancement of Methods for Setting Data Quality Objectives. 
Gilks, W. R., Best, N. G., Tan, K. K. C., 1994, Adaptive Rejection Metropolis Sampling Within 

Gibbs Sampling, Applied Statistics, 44, 455–472. 
Gilks, W. R., Richardson, S., Spiegelhalter, D. J., 1995, Markov Chain Monte Carlo in Practice, 

Chapman & Hall, London. 
Kaufmann, R., Gadmer, A., Klett, R., 2001, Introduction to Dynamic Financial Analysis, ASTIN 

Bulletin, 31(1), 213–249. 
Kiefer, J. C., 1987, Introduction to Statistical Inference, Springer Verlag, New York, first edition. 
Mata, A., 2000, Parameter Uncertainty for Extreme Value Distributions, GIRO Convention Papers. 
Millar, R. B., 2011, Maximum Likelihood Estimation, John Wiley & Sons, first edition. 
Witting, H., 1985, Mathematische Statistik I, Teubner (Stuttgart). 
 




