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Enterprise Risk Management and Capital Budgeting under Dependent Risks: 

An Integrated Framework 

Abstract 

Risk management and capital budgeting are two critical components of the corporate 

decision process that often need to be considered jointly at the corporate level because of 

their natural interaction through the dependent risk exposures and other synergetic 

relationships within an intricate corporate structure in a dynamic business environment. 

This paper develops an integrated framework that aligns these two important corporate 

strategies across business divisions in a multi-period setting to optimize the streamlined 

enterprise strategic goal. The proposed integrated framework can serve as a practical 

guideline for corporate executives to optimally coordinate capital budgeting and risk 

management at the enterprise level.  

 

Key words: Capital Budgeting, Enterprise Risk Management (ERM), Corporate Risk 

Management, Risk Dependency, Decisions under Uncertainty  
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1. Introduction 

Risk management and capital budgeting are two critical components of the 

dynamic corporate decision process. In practice, they often need to be considered jointly 

as they are naturally connected by the dependent risk exposures and a variety of other 

synergetic relationships within an intricate corporate structure. As companies grow larger 

and more diverse, the interactive complexity of the organization increases and no 

component of the organization (such as a business division) can be easily isolated. As the 

recent financial crisis taught us again, complex and tightly coupled systems are highly 

susceptible to catastrophic breakdowns. Without an efficiently integrated decision 

process, corporations could be misled to suboptimal investment and risk management 

decisions, resulting in a permanent loss of the firm value.  

In much of the current literature, the subjects of capital budgeting and risk 

management have been studied in separate fashions, hence a simplified setup neglecting 

the joint impact of these two business components. In the studies of the project ranking 

and selection criteria, Graham and Harvey (2001) and Graham et al. (2010) find that the 

net present value (NPV) is indeed one of the most popular selection criteria among 

corporate executives in both public and private firms in the U.S. Additionally, the capital 

budgeting literature in the recent decades focuses largely on agency problems that arise in 

the capital budgeting process rather than the decision process itself (e.g. Harris and Raviv 

1996, Bernardo et al. 2004, Marino and Matsusaka 2005, Ozbas and Scharfstein 2010). 

We argue that the classic capital budgeting framework with an NPV-like ranking 

criterion to allocate capital to projects, either by a central planner or through delegation to 

division managers, might be an over-simplified environment for corporations to make 

optimal investment decisions and for researchers to study related problems (such as the 



 4

agency costs). For many companies, risk dependency entails nontrivial interplay of 

corporate decisions across business divisions and time periods, and the resulted synergies 

cannot be easily separated out and attributed to every project and included in an NPV 

type of analysis.  

Meanwhile, traditional corporate risk management literature addresses risks in 

silos too, ignoring their possible dependency and hence the collective contribution to the 

overall corporate performance. Such negligence could result in significant deviations 

from the optimal strategies from the enterprise-wide perspective, possibly lead to 

catastrophic outcomes (in the case of high positive dependency) and/or over-hedging 

(when “natural hedging” opportunities are ignored). Rather than being 

compartmentalized decisions, risk management should be contemplated at the enterprise 

level where other corporate functions (such as capital budgeting, financing, and 

performance assessment) usually take place. This concern gives rise to the development 

of enterprise risk management (ERM) (cf., COSO 2004; Ai et al. 2010), for which the 

most important goal and challenge is to fully encompass risk management into the overall 

corporate decision making.  

Following the spirit of the pioneering work by Froot et al. (1993) and Froot and 

Stein (1998) where corporate risk management is necessitated by capital market frictions 

and where capital budgeting and risk management functions become connected, we 

propose in this paper an integrated framework that allows the corporations to design 

optimal investment and risk management strategies jointly and endogenously under 

dependent risks in a multi-period setting. Under our proposed approach, projects are first 

evaluated for its capital requirement, cash flow potentials, and risk exposures within the 

respective business divisions before they are integrated into a single optimization 
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problem for the value–maximizing corporation. We model the risk dependency with 

copula and construct the optimization problem via the intuitive and visual interface of 

decision tree. We illustrate the proposed framework through a hypothetic financial 

services company. This framework can be easily adapted and internalized by corporate 

executives to obtain optimal solutions in an integrated decision making process. 

This paper builds upon and contributes to several strands of literature. First, we 

contribute to the capital budgeting literature by studying optimal capital budgeting in a 

multi-divisional firm with dependent risk exposures. In order to fully capture these 

characteristics, we take a perspective different from most of the current literature to 

model the internal capital allocation process in the portfolio sense. We directly model the 

integration of risks and decisions to the firm level and incorporate specific risk 

management strategies in this course, rather than relying solely upon the use of an overall 

risk adjusted hurdle rate required in an NPV analysis (cf., Poterba and Summers 1995, 

Jagannathan and Meier 2002). Consequently, we are able to capture the dynamics in an 

optimal coordination between investment and risk management strategies, providing 

additional managerial insights not available under the traditional framework.  

One other main stream of the capital budgeting literature in the recent decades 

studies the agency problems arising from an information gap between the central decision 

maker and the division managers. For example, Harris and Raviv (1996) find that the 

misaligned incentives of divisional managers with private information can lead to 

underinvestment or overinvestment problems. Similar studies include the choice of a 

centralized capital budgeting process vs. a delegated one determined upon agency costs 

(Marino and Matsusaka 2005); the optimal managerial compensation contract when 

divisional managers have valuable private information about other divisions and can 
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exert efforts to enhance the value of other divisions (Bernardo et al. 2004); an agency-

theory based explanation of the relative inefficiency of investment allocations in an 

unrelated segment of a conglomerate relative to a stand-alone firm using Q-sensitivity of 

investment (Ozbas and Scharfstein 2010); and more recently, a top-down approach of 

capital budgeting where the top executive signals the firm’s prospects to stakeholders 

through the capital allocation decisions which can result in observed investment 

distortions (Almazan et al. 2011). Although our study does not directly focus on the 

agency problem, it does shed light on the benefits of fully accounting for interplays 

among divisions and hereinto reducing the information gap. Our proposed capital 

budgeting framework could also provide an improved environment to study these related 

problems in the future.  

Second, we contribute to the corporate risk management (e.g., Froot et al. 1993, 

Froot and Stein 1998) and ERM literature (cf., Ai et al. 2010, COSO 2004) by 

operationalizing the concepts of ERM in incorporating risk management into corporate 

decision making. The seminal work of Froot et al. (1993) and Froot and Stein (1998) 

propose to study the problems of corporate risk management, capital budgeting, and 

corporate financing policies in conjunction. Froot et al. (1993) point out that optimal 

hedging policies depend on the nature of firms’ investment and financing opportunities, 

and thus risk management should be used to “coordinate” these corporate policies. Froot 

and Stein (1998) further propose a framework for a financial institution where the three 

corporate functions are contemplated jointly to maximize shareholders’ value. Our 

framework is in the same spirit and we specifically focus on characterizing the across-
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the-board risk dependency and other synergies that necessitate the linkages between 

different corporate functions.1  

Finally, we also make technical contributions to the decision analysis literature by 

further developing the decision tools provided in Gustafsson and Salo (2005) and Wang 

and Dyer (2011) to handle the more managerially relevant problem of capital budgeting 

and enterprise risk management. Necessary technical details will be discussed in the next 

section when we present our model.  

The rest of the paper is organized as follows. Section 2 presents our integrated 

framework of ERM and capital budgeting and describes in detail the construction of the 

framework for a generalized multi-divisional corporation with a multi-period planning 

horizon. Section 3 illustrates the framework with an example of a hypothetical financial 

services company in both banking and insurance businesses. Section 4 discusses some 

model insights and extensions of the framework. Section 5 concludes the paper.  

2. The Integrated Capital Budgeting and Risk Management Framework 

Our integrated capital budgeting and risk management model considers a multi-

divisional corporation with a multi-year planning horizon. The framework is formulated 

by solving an optimization problem of the corporate decision maker, where she allocates 

capital to projects in different divisions in light of dependent risks within and across 

divisions and in this process, determines corporate risk management strategies. We 

assume that the utility maximization of the corporate decision maker, as obtained by 

solving the optimization problem, also achieves the corporation’s strategic goals in 

shareholders’ value maximization.  

                                                 
1 Our current framework does not consider corporate financing policies except to acknowledge the same premises that 
the previous research has based on: costly external and internal financing along with other imperfections in the 
financial market make risk management relevant.  
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In constructing this optimization problem, we use the decision tree approach as an 

auxiliary step. Decision trees are commonly used in risk and decision analysis to identify 

the optimal dynamic strategy in the presence of uncertainties (Howard 1988, Clemen and 

Reilly 2000). With the advantage of a visual interface and natural backward dynamics, a 

decision tree represents all the possible paths that the decision maker might follow over 

time, including all possible decision alternatives and outcomes of risky events. While 

decision tree has become one of the fundamental tools for decision making under 

uncertainty in the operations research literature and in practice, its application to 

problems in finance and corporate risk management is limited, partly due to the 

computational difficulty and exponentially growing tree size involved in such 

complicated situations with multiple sources of dependent uncertainties and a series of 

sequential decisions. We overcome some of these difficulties by extending the most 

recent available techniques. 

In our model, the dependent corporate risks throughout the planning horizon are 

captured with a probability tree structure, i.e., the “state of nature” tree, reflecting both 

the individual risk characteristics and inter-relations of these risks within and across 

divisions and time periods, measured with a copula approach. The division-level 

investment decisions, specific risk management strategies, and the resulting cash flows of 

the corporate project portfolio are characterized with the help of this tree structure along 

with information on perceived investment opportunities, available capital resources, and 

other considerations. The corporate decision maker’s risk preference is modeled using an 

appropriate utility function and her optimization problem represented by the tree structure 

is solved to obtain the optimal decisions. 
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Building upon current techniques in the literature, we address several challenges 

to accomplish this task. First, we make use of the decision tree approach to characterize a 

holistic capital budgeting and risk management process as an optimization problem, 

accounting for dependencies across business divisions and time periods. Second, we 

adapt the statistical technique in Wang and Dyer (2011) to model a copula-based 

dependence structure among the risks and to increase the analytical tractability in a 

decision tree context. Finally, we overcome the computational challenges associated with 

the high dimensionality in our multi-layer setting and make a technical contribution to the 

decision analysis literature by extending a dimension reduction technique first proposed 

by Gustafsson and Salo (2005) to solve a more realistic and managerially relevant 

problem. While maintaining the reduced dimensionality, unlike in Gustafsson and Salo 

(2005), our model does not have to force different projects to share the same risks and 

accommodates a more flexible dependency and payoff structure. We next describe the 

general capital budgeting and risk management framework in detail.  

2.1 The Objective Function 

The corporate decision maker seeks to maximize the expected utility she derives 

from the corporation’s future capital positions, i.e. max E[u(X)], where u is the von 

Neumann-Morgenstern utility function. We assume that the utility function can be 

approximated as a classic mean-risk model widely used in portfolio selection (cf., 

Markowitz 1952).  

The expected capital position generated by project cash flows for the corporation 

at each state of nature at the end of the planning horizon T is 

்ܸܧ                                      ൌ ∑ ሻݏሺ݌ ௦ܸ௦∈ௌ೅                                       (2.1) 
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where ௦ܸ is the capital position at state of nature s, p(s) is the associated probability, and 

்ܵ is the set of all possible states at T.  

While a broad range of risk measures is available in the literature and can be used 

in this general framework, we focus on the lower semi-absolute deviation measure 

(LSAD) (e.g., Eppen et al. 1989 and Fishburn 1977) to emphasize the downside risk that 

concerns investors more (Ang et al. 2006; Gustafsson and Salo 2005). Additionally, the 

LSAD risk measure has desirable theoretic properties such as its consistency with the 

first and second order of stochastic dominance (Fishburn 1977).   

More specifically, the LSAD risk measure is given by  

்ܦܣܵܮ	                                 ൌ ∑ |ሻݏሺ݌ ௦ܸ െ ்ܸܧ |௦∈ௌ೅ .                          (2.2) 

The objective function can now be written in the mean-risk form as 

்ܸܧሾݔܽ݉                                    െ   ሿ,         (2.3)்ܦܣܵܮ

where ்ܸܧ  is defined by Equation (2.1) and ்ܦܣܵܮ is defined by Equation (2.2). 

2.2 Corporate States of Nature 

The expected future project cash flows are contingent on the corporate states of 

nature driven by multiple sources of risks across different business divisions. While it is 

crucial to properly model dependency among these risk exposures, these dependencies 

are often neglected in order to simplify the analysis (cf., Abbas, 2006, Bickel and Smith 

2006), causing significant errors in decision making (cf., Smith, Ryan and Evans 1992).   

We use copula to model the dependence structure of these uncertainties. Copulas 

transform the set of univariate marginal risk distributions into their multivariate joint 

distribution accommodating different types of dependence relationships by the choice of 

the specific copula function. A rich literature in finance and risk analysis uses copula 
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models for dependency (e.g., Embrechts et al. 1999, Cherubini et al. 2004, and Biller 

2009).  

 We adopt the dependent decision tree approach proposed by Wang and Dyer 

(2011) to formulate an optimization model for integrated capital budgeting and risk 

management. Using only information of marginal distributions and correlations, this 

copula-based approach allows multiple dependent uncertainties with arbitrary marginal 

distributions to be represented in a decision tree with a sequence of conditional 

probability distributions. Under this approach, each risk realization is represented with a 

trinomial discrete approximation using the extended Pearson-Tukey method (“EP-T,” cf., 

Keefer and Bodily 1983). Following the EP-T approximation logic, the probabilities 

assigned to each of the three discrete points take a constant set of pre-determined value 

while the point realizations vary with the conditioning distributions describing the 

underlying risk scenarios. The primary advantage of the dependent decision tree approach 

over alternative approaches (e.g., Clemen and Reilly 1999) is that this approach provides 

more modeling flexibility by supporting the popular copula families, such as elliptical 

copulas and Archimedean copulas, and is more efficient computationally. A brief 

description of the normal-copulas based dependent decision tree approach is presented in 

the Appendix and the interested readers are referred to Wang and Dyer (2011) and 

Clemen and Reilly (1999) for detailed discussions of these approaches.  We next briefly 

illustrate this process in Figure 1.  
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Figure 1 An Example of a State of Nature Tree 
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In Figure 1, the state of nature tree starts with a single base state S0 in period 0, 

leading to a group of three states in period 1, S1, S2, S3, corresponding to the three possible 

outcomes of S0 (i.e., “up,” “middle,” and “down,” per the trinomial approximation). 

Similarly in the future periods, a group of three subsequent states follows each possible 

outcome of the preceding state of uncertainties. The unconditional probability that is 

assigned to each state is computed recursively from the conditional probabilities of the 

preceding states. 

In our framework, a state of nature tree is first constructed for each 

division/project and later combined into a single corporate state of nature tree. An 
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example of a such constructed corporate state of nature tree will be presented in the next 

section.  

2.3 Cash Flow Characterization of the Corporate Project Portfolio 

The corporate decision maker makes dynamic choices of the portfolio of projects 

contingent on the realized uncertainties and her previous decisions. These uncertainties 

and decisions will determine the future cash flows of the projects at each state of nature 

in each period.  

We model the corporate decision making process in light of the dependent risk 

structure described in the corporate state of nature tree. Given the investment 

opportunities and the risk exposures, each division d’s decision making is modeled by 

inserting its decisions Xd,s into the given state of nature tree incorporating all possible 

states s∈ ܵ . We then combine the multiple division-level decision trees to derive 

corporate level optimal strategies. Figure 2 illustrates the process of characterizing future 

cash flows ܨܥ௦ from the corporate project portfolio, for each state ݏ ∈ ்ܵ of all possible 

states of nature at the end of horizon T. 

One computational challenge of such a model is the quickly accumulating 

dimensionality associated with the multi-division, multi-dependent-risk, multi-period 

environment that we are working in. To reduce dimensionality, we adapt and further 

develop the approach in Gustafsson and Salo (2005). We map the decisions directly onto 

the corporate state of nature tree and characterize cash flows of the project portfolio with 

a set of logical consistency constraints and capital resource constraints. Therefore, the 

size of the decision tree stays the same as the state of nature tree rather than growing in 

an exponential manner with the added decision variables.  
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Figure 2 Characterizing State-Dependent Corporate Project Portfolio Cash Flows 
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2.4. The Constraints 

Building on the cash flow characterization in the corporate tree structure, we write 

out the optimization of the decision process, with the objective function (2.3) and subject 

to three types of constraints: (1) logical consistency constraints, (2) capital resource 

constraints, and (3) risk constraints (cf., Gustafsson and Salo 2005). 

2.4.1 Logical consistency constraints  

The decisions of the project portfolio have to be consistent throughout the entire 

planning horizon. For instance, a project can either be selected or not be selected; and if 

the project is not started at the preceding period, the project cannot be continued at a later 

period. If a decision needs to be made for a given state s, the decision maker can take one 

and only one of the pair of actions (ܺௗ,௦,௒, 	ܺௗ,௦,ேሻ  only if the decision made in the 

preceding state is affirmative (i.e., ܺௗ,௦,௒ ൌ 1). Otherwise, the decision maker does not 

get to make a decision at state s, so neither of the two actions at s can be selected. These 

logical requirements imply the following consistency constraints: 

ܺௗ,௦,௒ ൅ ܺௗ,௦,ே ൌ ܺௗ,௣௥௘ሺ௦ሻ,௒ 

where pre(s) is the preceding state.  

The consistency constraints are useful in facilitating the characterization of cash 

flows in the capital resource constraints described below. In addition, they are essential in 

accomplishing the dimensionality reduction. As only an affirmative decision to make an 

investment will lead to uncertain capital position, we can eliminate all (unnecessary) 

decision nodes associated with a negative decision to conserve dimensionality. 

Technically this is achieved by utilizing the two sets of binary indicator variables for the 

affirmative and negative decisions respectively. 
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2.4.2 Capital resource constraints 

Capital resource constraints are employed to ensure that capital is available and 

sufficient for future investments and risk management. To capture the capital positions, 

Vs, for the corporate project portfolio at each state s, each division’s affirmative 

investment decision itself, ܺௗ,௦,௒, is combined with the cash flow (e.g., investment cost, 

risky returns, and losses) it entails in the cash flow tree characterization, leading to the 

capital resource constraints: 

෍ܨܥሺܺௗ,௦,௒, ݏ ൌ 0ሻ
ௗ

െ ଴ܸ ൅ ଴ܫ ൌ 0 

෍ܨܥሺܺௗ,௦,௒, ݏ ∈ ሼܵ\0ሽሻ
ௗ

െ ௦ܸ ൌ 0 

where ܨܥ൫ܺௗ,௦,௒,  is the cash flow triggered by decision ܺௗ,௦,௒, ௦ܸ is the capital position	൯ݏ

at state s and ܫ଴is the initial capital budget.  

As such, the capital resource flows depend on the project returns subject to 

pertinent risk factor(s) reflected by the corresponding states of nature, the required 

investments, and the investment decisions subsequently made. The capital flows and the 

final capital positions of the corporation are consequently uncertain. 

2.4.3 Risk constraints  

Let ∆ ௦ܸ
ା and ∆ ௦ܸ

ି be nonnegative deviation variables that measure how much the 

capital position in state s differs from a target value. ∆ ௦ܸ
ା (∆ ௦ܸ

ିሻ denotes when Vs exceeds 

(falls short of) the expected final capital position at time T, ்ܸܧ . Since we are using 

LSAD as the risk measure for the downside risk, we have additional logical requirements 

represented in these risk constraints for all ݏ ∈ ܵ:  

௦ܸ െ ்ܸܧ െ ∆ ௦ܸ
ା ൅ ∆ ௦ܸ

ି =0 

and the expected LSAD at the end of horizon T can be obtained as  
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்ܦܣܵܮ ൌ ∑ ∆ሻݏሺ݌ ௦ܸ
ି

௦∈ௌ೅ . 

2.5 Risk Management Strategies   

In addition to accounting for dependency among projects and allowing for “nature 

hedges” among risks and divisions, the framework allows explicit risk management 

implementation. We consider hedging and other commonly used risk management 

strategies (e.g., (re)insurance and risk control). If a proportion ߙௗ,௦ of the risk is hedged 

by division d at cost ܿௗ,௦ in state s, the baseline capital resource constraints are modified 

as follows to incorporate the hedging component: 

෍ܨܥሺܺௗ,௦,௒, ,ௗ,௦ߙ ݏ ൌ 0ሻ െ ܺௗ,଴,௒ ∗ ௗ,଴ߙ ∗ ܿௗ,଴
ௗ

െ ଴ܸ ൅ ଴ܫ ൌ 0 

෍ܨܥሺܺௗ,௦,௒, ,ௗ,௦ߙ ݏ ∈ ሼܵ\0ሽሻ െ ܺௗ,௦,௒ ∗ ௗ,௦ߙ ∗ ܿௗ,௦
ௗ

െ ௦ܸ ൌ 0 

and the future project cash flows are adjusted as   

,ሺܺௗ,௦,௒ܨܥ ,ௗ,௦ߙ ሻݏ ൌ ,ைሺܺௗ,௦,௒ܨܥ ሻݏ ൅ ሺ1 െ ,ூሺܺௗ,௦,௒ܨܥௗ,௦ሻߙ ሻݏ ൅ ,ூሺܺௗ,௦,௒ܨܥሺܧௗ,௦ߙ  ሻሻݏ

so that the future cash flows after implementing a hedging strategy equal to a hedged 

proportion of cash inflows from the hedged position and an un-hedged proportion of cash 

inflows still subject to the original state-dependent risk outcomes. This modeling 

approach is consistent with the existing literature on hedging policy. 

Here we allow a different division cost ܿௗ,௦ for each risk and allow each division 

to choose the appropriate risk management method and their own ߙௗ,௦. For example, a 

derivative contract might be used to manage the market and credit risk while reinsurance 

is purchased to mitigate the actuarial pricing risk for a financial services company having 

both banking and insurance businesses. We measure the a priori risk exposure by the 

expected value of the future risky outcomes (i.e., a proxy for market price of a hedging 

contract, or as is calculated in an insurance/risk control context).  
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3. A Case Illustration for a Financial Services Conglomerate  

Many financial services companies have now expanded and consolidated their 

businesses to achieve economies of scope and scale and to maintain competitiveness. A 

financial conglomerate, such as AIG, provides a variety of financial services ranging 

from commercial banking, retail banking, to insurance. These different lines of 

businesses entail inter-related risk exposures implicating an integrated corporate capital 

budgeting and risk management process. 

We now present an example of such a hypothetical financial services company to 

illustrate our integrated framework. Without loss of generality, we will showcase the 

formulation and features of our model using a simplified, representative, and tractable 

setup. Generalizations and extensions concerning alternative scenarios can be naturally 

derived and some of these possibilities will be further discussed in the next section.  

For this example, we consider a two-period planning horizon and two main 

business divisions, the loan division issuing loans to individuals and corporations, and the 

insurance division writing personal and commercial lines of insurance. For simplicity, 

each division has one potential project to invest in. In its planning process, the company 

needs to decide whether initial investments (e.g. marketing expenses and agent 

commissions, etc.) are made for one or both divisions in period 1, and further, if an initial 

investment is made, after observing the realizations of risks in period 1, whether 

continuing investments (e.g. expenses incurred in loan collections and claims adjusting, 

etc.) should be made in period 2.  

To optimally allocate capital, each division has to consider a set of dependent risk 

exposures. In period 1 both divisions share the market risk, largely driven by the 

economy, which impacts both divisions’ revenues from the amount of loans issued and 
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the insurance premium written. In period 2 each division is faced with a division-specific 

risk exposure: credit risk for the loan division and actuarial pricing risk for the insurance 

division. The corporate decision maker allocates the initial corporate capital budget ܫ଴ in 

neither, one, or both divisions/projects, by maximizing her expected utility from the 

corporation’s final capital positions at the end of the planning horizon. We follow the 

modeling process described in Section 2 to build the optimization problem for this 

company. 

3.1. Corporate States of Nature 

In the two-period corporate “state of nature” tree, we denote the commonly shared 

market risk driven uncertain corporate revenues as ܴ஺ and represent it with chance/risk 

node A, and denote the two division-specific risks as ܴ஻ , the credit risk, for the loan 

division, ܴ஼, the actuarial pricing risk, for the insurance division, and represent them as 

chance node B and C, respectively.  

The three risk exposures are inter-connected across business divisions and time 

periods. Market risk ܴ஺	in terms of revenue is negatively correlated with credit risk as 

loan defaults tend to increase when the macroeconomic conditions deteriorate. Market 

risk is also negatively correlated with actuarial pricing risk as fraudulent activities tend to 

increase during periods of economic downturn (cf., Insurance Information Institute 

2011). In addition, credit risk and actuarial pricing risk are positively correlated via 

shared customers. Actuarial science/insurance literature has long documented evidences 

of the strong predictive power of an individual’s credit score in insurance losses. Brockett 

and Golden (2007) offered a psychological and biological based explanation for the 

linkage between financial behaviors and insurance claims, which in turn suggests 



 20

potential positive dependency between the financial service company’s credit risk and 

actuarial pricing risk from a shared clientele base.  

In this example, we specify the project cash flow payoff structure for each 

business division at the end of the planning horizon as “revenues minus losses,” where 

revenues are generated from loan and insurance policies issuances, and losses are 

incurred from loan defaults and insurance underwriting results. Accordingly, we use the 

payoff functions f (A, B) = f1 (A) – B for the loan division (division 1) and f (A, C) = f2 (A) 

– C  for the insurance division (division 2), where A, B, C are the uncertain outcomes of 

risks A, B, C and functions f1 and f2 describe how the market risk impacts the two 

divisions’ revenues respectively. For simplicity, we assume f1 (A) = f2 (A) = A for our 

illustration, i.e. the loan division and the insurance division generate the same revenue 

given the market conditions. Note that the specification of the payoff functions can be 

modified into a more generic or an alternative specific form for the problem context 

within the rationale of our formulation.  

As described in Section 2, we follow the copulas-based dependent decision tree 

approach (Wang and Dyer 2011) to formulate the corporate state of nature tree. Because 

of the flexibility and analytical tractability of multivariate Normal copulas, we follow the 

literature to use the Normal copulas for our example setting. The following assumptions 

are made on the marginal distributions and the correlation structure of the three risks 

consistent with the finance and insurance literature (e.g., Rosenberg and Schuermann 

2006). We first describe the risks using the scaled Beta distribution which provides 

modeling flexibility in capturing distributions with a broad set of shapes. The illustrative 

parameters are specified in Table 1 and the risks are graphed in Figure 3. From Figure 3 

we can see that the market risk driven revenues and actuarial pricing risks are bell shaped 
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distributions and the credit risk follows a right skewed loss distribution, consistent with 

the typical assumptions in the literature.  

Table 1 Distributional Assumption for Marginal Distributions of Risks (in $million) 

  Parameters Range 

Risk Distribution Alpha  Beta  
Lower 
bound 

Upper 
bound 

A (Market risk: revenues) Scaled Beta 9 15 80 120 

B (Credit risk: loan losses) Scaled Beta 2 4 50 100 
C (Actuarial pricing risk: 

underwriting losses) 
Scaled Beta 20 20 50 110 

Figure 3 Graphic Illustration of Marginal Distributions of Risks 

 

We further assume the correlation structure among the three risks as shown in 

Table 2.2 We follow Rosenberg and Schuermann (2006) to use a benchmark correlation 

of 0.5 between market risk and credit risk. As it is widely documented fraudulent 

activities tend to increase during the economic downturn and financial crisis (Insurance 

Information Institute 2011), we assume a relative high correlation of 0.7 between these 

two risk exposures. Note that as market risk negatively impacts revenues, risk A in our 

                                                 
2 In this hypothetical example, we assume the correlation structure of the underlying copula directly. Wang and Dyer 
(2001) discussed how to derive this correlation structure of the underlying copula from the available historical data.  
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setting is actually negatively correlated with the other two risks (hence -0.5 and -0.7 in 

Table 2). Lastly, we assume a moderate percentage of shared clientele base between the 

loan and insurance divisions within the same financial services company, leading to a 

moderate positive correlation of 0.5.  

Table 2 Correlation Structure among Risks 

Correlation A B C 

A 1 -0.5 -0.7 

B -0.5 1 0.5 

C -0.7 0.5 1 

Based on these assumptions and following the rationale described in Section 2, 

we create the overall corporate state of nature tree as shown in Figure 4. This is later used 

to frame and guide the decision making process.  

Figure 4 Two-Period Corporate State of Nature Tree 
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3.2. Cash Flows of the Corporate Project Portfolio 

To construct cash flows, we first discuss investment opportunities and other 

assumptions. Assume at the beginning of the planning horizon (t=0), the company has an 

initial budget $30 million to allocate to any potential projects in either or both divisions. 

At t=1, the company decides if to continue invest in the project(s) that were previously 

invested in. Table 3 presents the required investments for division/project (i) (i =1, 2) at 

t=0 and t=1 and other assumptions for this example.  

Table 3 Investment Requirements and Other Assumptions 

For Investment ($ millions) Notation 

Division 1 (t=0) 7 Inv1,0 

Division 1 (t=1) 6 Inv1,1 

Division 2 (t=0) 7 Inv2,0 

Division 2 (t=1) 6 Inv2,1 

   

Initial Resources (I0) ($ millions) 30  

Risk Free Interest Rate (rf) 6%  

Given the investment opportunities and the risk factors it faces, each division’s 

decision making process can be depicted as a decision tree. Figure 5 shows the decision 

making process of division 1. Division 2 has a decision tree similarly constructed 

reflecting its own investment opportunities and risk factors. 
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Figure 5 Division 1 Decision Tree 

 

Next we combine the two division-level decision trees to a single corporate level 

decision tree describing cash flows and derive corporate level optimal strategies, with the 

help of a set of constraints. In our illustrative set-up with two divisions, three risks, and 

two time periods, the size of the corporate level decision tree should amount to 

24*33=423 decision nodes. By following the Gustafsson and Salo (2005) to reduce 

dimensionality, the size of our corporate decision tree is significantly reduced to 33=27 

decision nodes, i.e., the size of the decision tree stays the same as the state of nature tree 

rather than growing in an exponential manner with the added decision variables. This will 

greatly improve computational efficiency and thus managerial relevance. 

3.3. Constraints 

3.3.1 Logical consistency constraints 

We now describe the logical constraints to ensure consistency in decisions. As 

explained in Section 2, we use a binary indicator X1,0,Y =1 (or 0) to indicate whether an 

affirmative decision is made for division 1 to start its project (or not) at t=0 and another 
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binary indicator X1,0,N =1 (or 0) to indicate whether a negative decision is made. A 

constraint X1,0,Y + X1,0,N =1 is added to make sure that one and only one of the two 

variables takes the value 1 to be logically consistent. Similarly, a set of two indicator 

decision variables X2,0,Y and X2,0,N are created to describe division 2 decisions whether to 

make an initial investment on project 2 at t=0. Again, X2,0,Y + X2,0,N =1. 

Table 4 shows all such binary decision variables and the associated consistency 

constraints. Note that we have three such decision variables for each division in period 2 

for the corresponding states (denoted X1,1,Y for division 1 in the “up” state, and in the 

same manner others) in the state of nature tree, as under the Wang and Dyer (2011) 

approach a trinomial discrete approximation is used to construct the probability trees 

leading to three possible corresponding states for each risk. Obviously, the additional 

consistency requirement here is that a period 2 investment on one project is possible only 

if this project is invested in at t=0.  

Table 4 Consistency Constraints  

X1,0,Y+X1,0,N=1 

X2,0,Y+X2,0,N =1 

X1,1,Y+X1,1,N=X1,0,Y 

X1,2,Y+X1,2,N=X1,0,Y 

X1,3,Y+X1,3,N=X1,0,Y 

X2,1,Y+X2,1,N=X2,0,Y 

X2,2,Y+X2,2,N=X2,0,Y 

X2,3,Y+X2,3,N=X2,0,Y 

3.3.2 Capital resource constraints  

We now discuss the set of capital resource constraints to reflect the capital flows 

at each decision node and to map out the entire decision process. Given that an 

investment of $7 million is needed for this project (as in Table 3), the capital flow 

contributed by division 1/project 1 at the initial node of the corporate state of nature tree 
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is -7($million)*X1,0,Y. Similarly, a capital flow of -7($million)*X2,0,Y is attributed to 

division 2 decision at t=0. Therefore, the total capital flow for the entire corporation at 

the initial node (t=0) of the corporate state of nature tree is -7($million)*X1,0,Y-

7($million)*X2,0,Y. This completes our mapping at the initial stage of the decisions to 

combine the two separate division-level decision trees into the single corporate state of 

nature tree. We continue this process in the same manner to map out the rest of the tree 

structure.  

As a result, one such resource constraint is used to describe the resource position 

at each node of the corporate state of nature tree. At the initial node, the resource position 

is denoted by the resource surplus V0 and the resource constraint is formulated as  

- Inv1,0*X1,0,Y – Inv2,0 (1)* X2,0,Y + I0 - V0 = 0, i.e., period 1 investment made by one or both 

divisions (Inv1,0 and Inv2,0) should equal to the difference between the total amount of 

initial resource available (I0) and the amount of resource left at t=0 (V0). The resource 

surplus is deposited at the risk free rate. Recall also that there is a payoff for each division 

given by A-B and A-C, respectively, if a project is invested in both periods. Ultimately, 

three such resource constraints are used corresponding to the three nodes at t=1 (three 

discrete approximation points for risk RA) and twenty seven such resource constraints are 

used at t=2 corresponding to the twenty seven nodes (three points for RA *three points for 

RB *three points for RC ) in the tree. The specific resource constraints are presented in 

Table 5.  

Table 5 Resource Constraints Used in the Case Example 

- Inv1,0*X1,0,Y – Inv2,0 (1)* X2,0,Y + I0 - V0 = 0 

- Inv1,1* X1,k,Y - Inv2,1 * X2,k,Y +(1+rf)*V0-V(k)=0 

(A(k)-B(i,j))* X1,k,Y +(A(k)-C(i,j))* X2,k,Y +(1+ rf)*V(k)-V(i,j)=0 
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All resource surplus variables V>=0, i.e., the company cannot run out of cash because of the budget constraint 

k=1, 2, 3 for the decision nodes at the end of period 1, i=1,...,9 and j=1,…,3 for decision nodes at the end of 
period 2 

     Note that the payoff of each investment is uncertain as it is impacted by how the 

risks play out during the course of the two periods. By capturing the dependence among 

these risks, we allow the company to address risk considerations by exploiting any 

“natural hedge” opportunities and staying alert to any “catastrophic” risk exposures. For 

example, we capture in our model the company’s much increased risk exposure coming 

from both divisions/projects in a bad economy as we incorporate the positive dependence 

between the credit risk and the actuarial pricing risk, which will help the company make 

overall optimal investment decisions.  

3.3.3 Risk constraints  

For the illustrative example, we model the corporate decision maker’s risk 

preference by using the certainty equivalent (CE), where CE = expected final capital 

resource position (்ܸܧ ) – Risk. Risk here is measured by applying a risk aversion 

coefficient, assumed to be 0.5 in this example, to the expected lower semi-absolute 

deviation (LSAD) from the expected final resource position, i.e., ்ܸܧ  - 0.5*E(∆ ௦ܸ
ି). A 

set of risk constraints are also entailed in the form of ܸሺ݅, ݆ሻ െ ்ܸܧ െ ∆ ௦ܸ
ା ൅ ∆ ௦ܸ

ି =0 by 

definitions of the risk measures ∆ ௦ܸ
ା and ∆ ௦ܸ

ି, where ∆ ௦ܸ
ା ൒ 0 and ∆ ௦ܸ

ି ൒ 0 and only 

one of them in each state (i, j) can be positive, i = 1,..., 9 and j = 1,…, 3.  

3.4. Risk Management Strategies   

 Now we incorporate specific risk management strategies in the decision 

framework as a further step of risk management. For this illustration, we assume that the 

RM cost C takes the functional form C (α) = c*exposure*α, where c is the division cost 

of RM of a specific risk exposure and α is the hedge ratio. Essentially for risk RA in 



 28

period 1, the cost of managing the market risk CA (α) is taken out of the total resource 

available for period 1 if risk management is used. Consequently at the end of the planning 

horizon, the payoffs from the project investments are not of the original functional form f 

= A - B (or C), as now risk management activities have changed the impact of the risks on 

the project cash flows. We then construct the new cash flows reflecting the hedged payoff 

and the unhedged payoff taking into account the risk management strategies as we 

described in Section 2. For ease of illustration, we only consider linear hedging or pro 

rata reinsurance policy, as incorporation of nonlinear risk management strategy will 

likely add to the computational difficulty of our formulation but does not necessarily 

improve the merits of our modeling approach in a fundamental way. 

In this example, we design the division RM cost c such that it varies depending on 

the characteristics of these risks (i.e., more “skewed” RB has a higher c than RA and RC as 

shown in Figure 3) and show them in Table 6 below.  

Table 6 Division Risk Management Cost for Each Risk 

Cost of RA: cA 0.006 

Cost of RB: cB 0.01 

Cost of RC: cC 0.005 

 We now present the final capital resource constraints in Table 7 taking into 

account risk management.  

Table 7 Capital Resource Constraints with Risk Management Strategies 

- Inv1,0*X1,0,Y – Inv2,0*X2,0,Y - X1,0,Y *cA*α1,0- X2,0,Y *cA*α2,0+ I0-V0=0 

- Inv1,1* X1,k,Y - Inv2,1* X2,k,Y - X1,k,Y *cB*α1,k-X1,k,Y *cC* α2,k +(1+rf)*V0-V(k)=0 

(A(k1)-B(i,j))* X1,k,Y +(A(k2)-C(i,j))* X2,k,Y +(1+rf)*V(k)-V(i,j)=0 

Where A(k1)= (1- α1,0)*A+ α1,0*E(A) 

A(k2) = (1- α2,0)*A+ α2,0*E(A) 

B(i,j) = (1- α1,k)*B+ α1,k *E(B) 

C(i,j) = (1- α2,k)*C+α2,k*E(C) 
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All resources surplus variables V>=0, i.e., the company cannot run out of cash because of the budget constraint 
k=1, 2, 3 for the decision nodes at the end of period 1, i=1,...,9 and j=1,…,3 for decision nodes at the end of 
period 2 

3.5 Discussion of Results 

Finally, the corporate decision maker’s expected utility according to her risk 

preferences is maximized over the set of state dependent final corporate resource 

positions, subject to the set of logical consistency constraints, capital resources 

constraints, and risk constraints as described above. 

 Solving the corporate decision maker’s optimization problem, we obtain 

streamlined decisions for capital investment and risk management. Table 8 details these 

optimal decisions taken by each division in each period.  

Table 8 Optimal Decisions  

X1,0,Y 1 α1,0 0 
X1,0,N 0 α2,0 0 
X1,1,Y 1 α1,1 0 
X1,1,N 0 α1,2 0.6301 
X1,2,Y 1 α1,3 1 
X1,2,N 0 α2,1 0 
X1,3,Y 1 α2,2 0.5759 
X1,3,N 0 α2,3 1 
X2,0,Y 1   

X2,0,N 0   

X2,1,Y 1   

X2,1,N 0   

X2,2,Y 1   

X2,2,N 0   

X2,3,Y 1   

X2,3,N 0   

 The results are rather intuitive under the specifications of our example. The 

optimal decisions show that the company will invest in both the loan and the insurance 

businesses in both periods. The loan division (division 1) manages a very small 

percentage of its risk exposure in period 1 while the insurance division manages a rather 



 30

large portion. In period 2 both divisions choose to manage their risk exposures to a 

significant extent in the bad states by incurring the necessary cost of risk management. 

These investment and risk management decisions have already taken into account the 

dependence across divisions, risks, and time periods. The optimal value of the certainty 

equivalent is $47.93 million, which is much higher than investing the resources in risk-

free assets: 30*(1+6%)2 = $33.71 million.   

 Note that the optimal decisions obtained above are aligned with the corporate 

decision maker’s strategic objective and risk preferences, have streamlined the 

investment decisions and the risk management considerations, and have fully accounted 

for the risk dependencies. Should one of these features be overlooked, the decision 

making process would not have resulted in the desired optimal capital budgeting and risk 

management strategies for the corporation. We will illustrate this and offer more 

discussions in the next section.  

3.6 Sensitivity Analysis 

As there might be errors in the correlation assessments, we examine the 

robustness of the optimal decisions to the correlation estimates. A set of one-way 

sensitivity analysis is conducted with different correlation matrices as inputs into the 

copula model, calculating means and standard deviations of the resulting risk profiles.  

Clemen & Reilly (1999) and Clemen et al. (2000) discuss subjective correlation 

assessment methods including estimating the probability of concordance and conditional 

fractile estimates, and reported ±0.2 as the average Mean Absolute Deviation for 

correlation assessment. Following the literature, we examine the effect of each individual 

correlation assessment by perturbing them one at a time in the ±0.2 range. The interested 
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readers are referred to Clemen & Reilly (1999) and Clemen et al. (2000) for detailed 

discussions of practical correlation assessment methods.  

When the correlation between market and credit risk, Corr (A, B) = -0.5, is 

perturbed from -0.7 to -0.3, the optimal decisions stay the same. The optimal certainty 

equivalent is decreasing and both hedging ratio α1,2 and α2,2 are increasing due to the less 

natural hedging benefit. 

Table 9 Sensitivity Analysis for Correlation between Risk A and B 

Corr (A, B) -0.7 -0.6 -0.5 -0.4 -0.3 

α1,0 0 0 0 0 0 

α2,0 0 0 0 0 0 

α1,1 0 0 0 0 0 

α1,2 0 0 0.630 0.869 0.904 

α1,3 1 1 1 1 1 

α2,1 0 0 0 0 0 

α2,2 0 0 0.576 0.561 0.585 

α2,3 1 1 1 1 1 

Optimal CE 48.500 48.164 47.926 47.736 47.559 

 Similary, when Corr (A, C) is perturbed from -0.9 to -0.5, the optimal decisions 

stay the same. The optimal certainty equivalent is decreasing and both hedging ratio α1,2 

and α2,2 are increasing due to the less natural hedging benefit. 

Table 10 Sensitivity Analysis for Correlation between Risk A and C 

Corr (A, C) -0.9 -0.8 -0.7 -0.6 -0.5 

α1,0 0 0 0 0 0 

α2,0 0 0 0 0 0 

α1,1 0 0 0 0 0 

α1,2 0.512 0.460 0.630 0.657 0.684 

α1,3 1 1 1 1 1 

α2,1 0 0 0 0 0 

α2,2 0 0 0.576 0.633 0.672 

α2,3 1 1 1 1 1 

Optimal CE 48.237 48.063 47.926 47.814 47.707 
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When Corr (B, C) is perturbed from 0.3 to 0.7, the optimal decisions stay the same. 

The optimal certainty equivalent is decreasing due to the higher positive correlation 

among two divisions. The change of hedging ratio is more complicated since it is 

determined by the profound influence of the correlations. Hedging ratio α1,2 is increasing 

due to the higher positive correlation among two divisions. Hedging ratio α2,2 first 

increases and then decreases due to the trade-off between the need to hedge and the 

relatively high negative correlation between A and C.  

Table 11 Sensitivity Analysis for Correlation between Risk B and C 

Corr (B, C) 0.3 0.4 0.5 0.6 0.7 

α1,0 0 0 0 0 0 

α2,0 0 0 0 0 0 

α1,1 0 0 0 0 0 

α1,2 0.281 0.355 0.630 0.666 0.713 

α1,3 1 1 1 1 1 

α2,1 0 0 0 0 0 

α2,2 0 0 0.576 0.544 0.485 

α2,3 1 1 1 1 1 

Optimal CE 47.990 47.945 47.926 47.911 47.896 

The sensitivity analysis results suggested that the optimal decisions are robust to 

assessment errors.  

4. Discussions and Extensions 

4.1 Discussions of Dependence and Risk Management Assumptions 

We now discuss the importance of dependency modeling and risk management by 

examining three cases: (1) the hedging strategy is not taken into account, (2) the 

dependency is not taken into account, and (3) neither the dependency nor the hedging 

strategy is taken into account. We investigate the impact of these ignorance in modeling 

on the optimal capital budgeting decisions and the optimal values of the corporation.  

4.1.1 Ignoring the risk dependency  
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We first discuss the importance of dependency modeling by investigating the case 

where the dependency is not taken into account, i.e., assuming now the three risks faced 

by the two divisions, RA, RB, and RC, are mutually independent. All other specifications 

remain the same as before. Solving the new optimization problem, we obtain the new 

optimal investment and risk management decisions and present them in Table 12. Now 

only the loan division gets the investments in both periods and it ends up not managing 

the market risk exposure but controlling heavily the credit risk exposure even in the good 

state in period 2. The optimal value for the certainty equivalent is consequently reduced 

to $46.60 million. The difference in expected final resource position for the two cases is 

significant ($47.90 million vs. $46.60 million). 

Table 12 Optimal Decisions under Independent Risks 

X1,0,Y 1 α1,0 0 

X1,0,N 0 α2,0 0 

X1,1,Y 1 α1,1 0.5808 

X1,1,N 0 α1,2 0.9804 

X1,2,Y 1 α1,3 0.5383 

X1,2,N 0 α2,1 0 

X1,3,Y 1 α2,2 0 

X1,3,N 0 α2,3 0 

X2,0,Y 0 

X2,0,N 1 

X2,1,Y 0 

X2,1,N 0 

X2,2,Y 0 

X2,2,N 0 

X2,3,Y 0 

X2,3,N 0 

 This example highlights the importance of acknowledging and properly modeling 

the inter-relations among risks across different business divisions in the corporate 

decision making process. Suboptimal or even catastrophic consequences can occur if 
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capital budgeting decisions are made without fully accounting for the dependent risk 

exposures.  

4.1.2 No hedging considered 

Now we consider the no hedging case. All other specifications remain the same as 

before except now a hedging strategy is no longer part of the decision process. Solving 

the new optimization problem, we obtain the new optimal investment decisions and 

present them in Table 13. The optimal capital budgeting decision is different for X2,3,N. 

The optimal value for the certainty equivalent is reduced to $45.87 million, a difference 

of $47.90-$45.87=$2.03 million from the original model. This illustrates that 

appropriately chosen hedging strategies, even at a cost, can add value to the firm.  

Table 13 Optimal Decisions when No Hedging is Considered 

X1,0,Y 1 α1,0 0 
X1,0,N 0 α2,0 0 
X1,1,Y 1 α1,1 0 
X1,1,N 0 α1,2 0 
X1,2,Y 1 α1,3 0 
X1,2,N 0 α2,1 0 
X1,3,Y 1 α2,2 0 
X1,3,N 0 α2,3 0 
X2,0,Y 1     
X2,0,N 0     
X2,1,Y 1     
X2,1,N 0     
X2,2,Y 1     
X2,2,N 0     
X2,3,Y 0     
X2,3,N 1     

4.1.3 No hedging or risk dependency considered 
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 Lastly, if we ignore the risk dependency and forego any risk management strategy, 

the optimal value for the certainty equivalent is reduced to $46.13 million with a set of 

suboptimal capital budgeting decisions as reported in Table 14. 

Table 14 Optimal Decisions under No Hedging Assumption 

X1,0,Y 1 α1,0 0 
X1,0,N 0 α2,0 0 
X1,1,Y 1 α1,1 0 
X1,1,N 0 α1,2 0 
X1,2,Y 1 α1,3 0 
X1,2,N 0 α2,1 0 
X1,3,Y 1 α2,2 0 
X1,3,N 0 α2,3 0 
X2,0,Y 1    
X2,0,N 0    
X2,1,Y 1    
X2,1,N 0    
X2,2,Y 1    
X2,2,N 0    
X2,3,Y 1    
X2,3,N 0    

 Figure 6 summarize the comparison of these incomplete models with the original 

complete model. It shows that the optimal value would be reduced significantly if we 

ignore the risk dependence, and foregoing hedging strategies would further reduce the 

optimal value with or without the modeling of dependence. Clearly, ignoring the risk 

dependency will underestimate the risk and the optimal hedging strategies can 

significantly reduce the risk taking of the corporation.  
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Figure 6 Comparison of Optimal Values and Risk Measure LSAD for the Four Cases 

 

Many assumptions imposed in the formulation of our decision modeling approach 

presented with the simplified illustrative example can be extended to more general cases. 

These modifications should not change the rationale and applicability of our modeling 

approach. They may lead to minor revisions of the problem specification and may require 

more involved solution techniques which are largely available in the operations research 

literature. We next explore some of the more important extensions.  

4.2 Extensions 

In this paper, we have focused on presenting the conceptual set-up of the 

integrated capital budgeting and risk management framework. Under the same conceptual 

framework, a few interesting extensions are in place.  

First, we used an overall utility function to model the corporate decision maker’s 

risk preferences. Any valid forms of utility functions can be used in our model. More 

importantly, the decision maker’s risk appetite can alternatively be articulated and 
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directly built into the decision model, as suggested in the ERM literature (cf., Ai et al. 

2010).  In this way, she is allowed to have different appetites and prioritizations for 

different risk types, divisions, projects, and time periods. The risk appetite modeling 

could also reflect her preference for anticipated information problems associated with 

potential investment opportunities.  

Second, we focused on linear risk management methods and assume all risk 

management activities are planned as the planning process progresses. Alternatively, we 

could explore and incorporate non-linear risk management strategies (such as options) 

which might be more effective for certain types of risks. It will also be relatively easy to 

allow all risk management decisions to be planned at the beginning of the planning 

horizon by modifying associated constraints.  

Third, we use the copula approach to model dependency among risks. The copula 

model can accommodate a large class of dependence structure (e.g., for fat tails). 

Alternatively, we could consider other dependency measures, such as linear correlations, 

rank correlations, and other advanced models. Depending on the specific choice of the 

dependence measure, our model structure needs to be adjusted.  

Other extensions include choosing a different form of the payoff function and 

incorporating corporate financing decision into the current integrated framework. These 

extensions are topics of our ongoing research.  

5. Conclusion  

In this paper, we propose an integrated capital budgeting and risk management 

framework under dependent risks in a multi-division, multi-project, multi-period 

environment. We formulate the model as an optimization problem of the corporate 
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decision maker and construct the model via a decision-tree method. We illustrate our 

framework using a financial services company example. 

Rather than maintaining two separate functions for risk management and capital 

budgeting as traditionally done in a company, we allow the risk management 

considerations to be aligned with the capital allocation decisions. As the business 

divisions are intrinsically connected by the risk exposures that are dependent on each 

other, the integrated framework will promote efficiency in both types of corporate 

decisions. In accomplishing these goals, we propose a prototype modeling framework 

while overcoming several modeling and computational challenges, such as the increased 

dimensionality and dependence modeling.  

 As one of the first papers to prescribe such an integrated corporate decision 

framework in the presence of dependent risks for inter-related business divisions, a 

challenging problem especially for financial conglomerates, our paper makes 

contributions to the capital budgeting literature, the enterprise risk management (ERM) 

literature, and the decision analysis literature. Our paper also has significant managerial 

relevance for capital allocation and risk management in practice. Decision makers can 

adapt our model efficiently for their own specific setting. Future research includes 

extensions on better modeling risk appetites and prioritization, incorporating corporate 

financing policies in the framework, as well as studying other relevant capital budgeting 

issues (such as the agency problems) under our proposed framework.   
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Appendix 

In the illustrative example presented in the paper, we use the normal copulas-

based dependent decision tree for its simplicity and that its properties are appropriate for 

our dependency modeling problem. The proposed framework also provides efficient 

accommodations for t - copulas and Archimedean copulas-based decision trees to capture 

tail dependence when extreme events occur. A brief introduction to the dependent 

decision tree approach is presented below. 

A multivariate normal copula ܥே is given by  

,ଵݑேሺܥ … , ௡ሻݑ ൌ ΦஊሺΦିଵሺݑଵሻ, … ,Φିଵሺݑ௡ሻሻ.	 It is derived from a multivariate normal 

cumulative distribution function Φஊౖ  with mean zero and correlation matrix ߑ	 by 

transforming the marginals by the inverse of the standard normal distribution function Φ.  

To build the multivariate normal copula-based decision tree for ሺ ଵܺ, …ܺ௡ሻ, we 

first construct a discrete approximation for the unconditional uniform variable ݑଵ, then 

recursively compute the dependent uniform variables u୩	ሺk ൌ 2,… , nሻ,	conditioning on 

each of the point realizations of the previous discrete approximations for ሺuଵ, …u୩ିଵሻ. 

u୬ୀΦሺA୬ଵΦ
ିଵሺαଵሻ ൅ ⋯൅	A୬ሺ୬ିଵሻΦ

ିଵሺα
୬ିଵ

ሻ ൅ A୬ሺ୬ሻΦ
ିଵሺα୬ሻሻ   (A1) 

where A୧୨ is the element of the Cholesky factorization that decomposes the covariance 

matrix Σ as Σ ൌ AA୘  to give the lower triangular matrix A ൌ ሺA୧୨ሻ୧,୨ୀଵ
୬  and α୧  is the 

percentile of the conditional distribution X୧|Xଵ ,…, 	X୧ିଵ  according to the extended 

Pearson Tukey method (Keefer and Bodily, 1983). The discrete approximations of ௜ܺ are 

obtained by applying the inverse of the target marginal distribution function for each 

realization of ݑ௜ , ௜ܺ ൌ ௜ܨ
ିଵሺݑ௜ሻ . Taking the point-to-point inverse marginal 
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transformation, each realization of ሺ ଵܺ, …ܺ௡ሻ  is discretely approximated using the 

extended Pearson-Tukey method.  

 We now illustrate this approach in the context of our example in Section 3. To 

create the probability tree for the standardized uniform variables, we first generate the 

extended Pearson-Tukey discretization for ݑ஺. It is a three point discrete approximation 

for the standard normal distribution with probabilities 0.185, 0.630, and 0.185 assigned to 

the percentiles 0.05, 0.5 and 0.95. The three branches of the uncertainty A are therefore 

88.87, 94.86 and 101.62, the inverse of the Beta distribution of uncertainty A for 5th, 50th 

and 95th percentile respectively.  

The subsequent discrete chance nodes are contingent on the outcomes of the 

precedent nodes. We apply the Cholesky factorization to decompose ߑ௓ into the lower 

triangular Cholesky matrix shown in Table A1 to assist the calculation of the dependent 

uniform variables. 

Table A1 Decomposed Lower Triangular Cholesky Matrix 

Cholesky 

1 0 0 

-0.5 0.866 0 

-0.7 0.173 0.693 

There are two dependent uniform variables to calculate:  

(1) The dependent uniform ݑ஻ given the outcomes of ݑ஺. Using formula (A1) for the 

bivariate case, we can calculate	ݑ஺ as follows: 

஺ݑ ൌ Φሺെ0.5Φିଵሺߙଵሻ ൅ 0.866Φିଵሺߙଶሻ) 
 

(2) The dependent uniform ݑ஼  given the outcomes of ݑ஺  and ݑ஻ . Using  formula	
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(A1) ,	ݑ஼	is calculated as follows: 

஼ݑ  ൌ Φሺെ0.7Φିଵሺߙଵሻ ൅ 0.173Φିଵሺߙଶሻ ൅ 0.693Φିଵሺߙଷሻ) 

For instance, if the outcome of  ݑ஺  is 0.5, then the conditional chance node for 

஺ݑ|஻ݑ ൌ 0.5 is calculated for the 5th, 50th, and 95th percentiles, and the three contingent 

outcomes are determined to be 0.077, 0.5, and 0.923 respectively and the three branches 

of the uncertainty B given A=94.86 are therefore 54.85, 65.69 and 80.67, the inverse of 

the Beta distribution of uncertainty B for 5th, 50th and 95th percentile respectively.  

Similarly, we create the contingent tree for each successive node until we generate the 

complete multivariate standard decision tree.  

We refer the interested readers to Wang and Dyer (2011) for detailed discussion 

of the dependent decision tree approach. For an introduction to the theory of copulas and 

the discussions of different copulas, see Nelsen (1999).  

 

 

 

 


