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ABSTRACT  
 

Enterprise risk management has moved from an event based view of risk to a holistic, 
systems based approach. Risk systems that involve human interaction are classified and 
behave as complex adaptive systems and evolve over time.  An understanding of the 
evolution of an enterprise’s risk system should reveal the nature of risk relatedness, future 
likely emergence of risks and be able to identify risk characteristics that are systemic to 
that specific enterprise. In order to operationalise such an approach, a methodology has 
been developed that draws on phylogenetic approaches that have been successfully 
developed for biological and language evolution studies.  The technique and process 
provides an insight into the lineage, pace and impact of external conditions on the 
evolution of risks. It also provides a unique and rational classification of risk in an 
enterprise which can be used to optimize risk management resources. An example of a 
fictitious insurance company is used to illustrate the approach.   
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1. INTRODUCTION 
 

The authors introduce a novel approach to risk analysis and management that is 

grounded on three interconnected principles: 

1. Risks behave as complex adaptive systems, not as an aggregation of events, (Allan 

and Davis, 2006). This concept extends beyond the principle ‘the whole is greater 

than the sum of the parts’ to include Angyal’s modification that, ‘aggregation and 

whole formation are processes of an entirely different order’ (Angyal, 1941).   

2. Evolution is a signature of complex adaptive systems (Mitleton-Kelly, 2003) and 

(Morel and Ramanujam, 1999); and hence risks, should by definition, evolve and 

follow evolutionary principles. This also applies to companies and economies 

(Arthur, 1997). 

3. Connectivity is a fundamental property of any system (Newman, 2010), (Mason, 

2005), Barabasi and Albert, (2002)  and (Checkland and Scholes, 1990). 

 

There is a trend,  that in modern society and its organisations, risks  have become more 

complex and interdependent (Beck, 1992, and 2004). This has been borne out by the 

recent systemic crisis in the financial sector, where banks were lending and trading with 

each other and the impacts of their losses relating to their mis-priced mortgage books, 

are felt throughout the broader economy and society as a whole. Indeed, it is suggested 

that connectivity is the third dimension of risk (Allan, Yun and Cantle, 2008) to be added 

to the two-factor risk paradigm of probability and impact. Moreover, Mitleton-Kelly 

(2003) argued that the interconnected nature of the elements in a system enables both 

the system and its parts to evolve.  

 

Using evolutionary theory, and specifically phylogenetic techniques developed to study 

the evolution of biological systems, it will be demonstrated, using a case study, that:  

1. Risks can be understood to have a unique characteristic sequence, very much 

like a DNA to a biological entity. 
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2. The history of the evolutionary path (path-dependency) is an important aspect 

of a risk; this is of course already well known to financial and insurance 

professionals. The point here is to understand what the parent risk is and when 

a risk characteristic combines or separates to form a new lineage. It is possible 

to identify systemic characteristics that are highly influential in the forming of 

risks in a system. 

3. Taking into account the unique evolutionary history of an organisation’s risk 

system it is possible to determine the likely future trajectories or emergence of 

new or evolving risks.  

4. Lastly the paper demonstrates that the evolutionary analysis provides a unique 

and powerful way of classifying risks that is independent of traditional 

organisational boundaries and risk taxonomy structures such as are imposed 

through capital standards. The technique can show the most interdependent 

risks – that is the risks that could have a significant influence on a cascading 

failure of the enterprise. This can aid effectiveness and efficiencies in managing 

risks and allocating risk related resources or capital.  

 

Before embarking on the case study it is necessary to first explain the background to 

phylogenetics and its principles so as to appreciate how the approach has been adapted 

to analysing risks.  
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2. HISTORY AND DESCRIPTION OF PHYLOGENETIC ANALYSIS 
 

In the eighteenth century, Linnaeus pioneered the classification practice by grouping 

organisms in accordance to their similarities and differences (Wheeler, 2005). Linnaeus’ 

work, much like traditional risk management, can be described as systematic, instead of 

evolutionary, as the objective was to place all known organisms into a hierarchical 

structure. Phylogeny on the other hand, being inspired by Darwin’s evolutionary 

approach, (Brown, 2007) not only indicates the similarities and differences between 

species, but also illustrates their evolutionary relationships (Pagel, 1999).  

 

With the advances in computational capabilities and molecular knowledge, the study of 

classification and evolution has entered a new era. Phylogenetic analysis1

 

   utilises 

molecular information, i.e. DNA,  to meet the data requirements, and assigns equal 

weights to characters (Mishler, 2005). By doing so, the approach is less subjective – 

‘rather than making assumptions about which characters are important, phylogenetic 

analysis demands that the evolutionary relevance of individual characters be defined’ 

(Brown, 2007).  

The outputs from phylogenetic analysis are tree-like shapes, often called ‘evolution 

trees’, ‘phylogenetic trees’ or ‘cladograms’ – see figure 1 for a high-level cladogram of 

the tree of life.  A phylogenetic tree is essentially a connected graph that is composed of 

nodes and branches and does not contain any closed structures. The nodes symbolise 

the organisms under investigation, whereas the branches that connect all the nodes 

represent the relationships among different organisms, in terms of their ancestry and 

descent relationships. Epistemologically, a node is an entity that is homogenous and 

comparable to other entities being studied and its informative character states are 

always subject to change as knowledge of characters progresses (Albert, 2005). 

Therefore, the application of the phylogenetic trees, which is composed of nodes and 

branches that link nodes, is not restricted to organisms. Indeed all individual entities 

                                                             

1 The terminology ‘phylogenetic analysis’ and ‘cladistic analysis’ are often interchangeable in 
contemporary usages and this paper does not discriminate between the two. 
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with taxonomic characters, such as species, populations, individuals, genes, or even 

organisations (McCarthy et al., 2000), can be analysed with this method.  

 

Figure 1 – Cladogram example of the tree of life.  We can apply this to the example of risk by 
substituting risk events or losses for the “species”.  We can then explore the relationships in 
order to understand how certain characteristics are evolving over time to generate new 
emergent risks. 

 

All phylogenetic trees  can provide the same basic information, including a historical 

pattern of ancestry, divergence, and descent, all of which can be interpreted from their 

structure (Lecointre and Le Guyader, 2007). Basically, the nodes of a tree can be 

categorised as external or internal, according to their relevant positions. That is, nodes 

at the terminal tips of a tree are called the external nodes (Mishler, 2005), whilst the rest 

are termed the internal nodes and these are the ancestors of the former. In other words, 

external nodes are descendants of connected internal nodes. The links between the 

nodes are called the branches and the lengths of these are proportional either to the 

evolutionary time or the number of mutations occurring along that branch (Li et al., 

2000). Evolution occurs independently along the branches emanating from each internal 

node and the overall structure of nodes and branches represents a given entity set’s 

degree of diversity.  

 



6 | P a g e  

 

 

2.2 DIFFERENT PHYLOGENETIC ALGORITHMS 
Li et al. conducted a survey of how scientists construct phylogenetic trees and concluded 

that there are three major methods and algorithms employed (Li, 2000): 

• distance matrix; 

• maximum likelihood;  

• parsimony. 

In practice, these different tree constructing algorithms need to be applied with care, 

particularly in the context of risk analysis.  For example, the distance matrix algorithm, 

though computationally efficient, can produce inaccurate inferences under certain 

conditions (Pagel, 1999). The maximum likelihood method and other Bayesian methods 

rely more on statistical models to describe the mutation process at a molecular level 

(Kishino et al., 1990). This sort of model is not easy to obtain for risk analysis, and the 

results can be difficult to interpret.  

Methods based on the principle of maximum parsimony have been by far the most 

widely used, because they are probably the most logical and intuitive to apply. The 

principle behind the parsimony approach is that ‘a tree is more preferable if it involves 

fewer evolutionary changes’ (Lin et al., 2007). In other words, the one with the fewest 

evolution changes is termed a parsimonious tree, as the term ‘parsimony’ implies as few 

changes as possible (Sneath and Sokal, 1973).  However, Sober notes that the parsimony 

algorithm does make assumptions about evolution but that those assumptions are 

modest and unproblematic and that the most-parsimonious tree is better supported 

than the others,  (Sober, 2005). After considering the advantages and drawbacks of each 

algorithm and their experience of applying and interpreting the resulting trees in a risk 

context, the authors conclude that the parsimony method is the most suitable for risk 

analysis.  
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3.0 TECHNIQUES FOR VIEWING AND INTERPRETING THE TREES AND DATA  
 

A risk tree is studied from left to right.  As we move to the right, the tree branches to 

indicate points where the risk characteristics are separating in evolutionary terms.  The 

evolution risk trees show the origin on the left hand side with the branches separating at 

bifurcation points caused by a change of common risk characteristics.     

Figure 2 below shows a section of a tree with two legs representing risks A & B   ‘lost 

intellectual property rights’ and ‘claims infringement of intellectual property rights’, 

respectively. The risk characteristics are indicated by the numbers on the branches: 22 – 

‘inadequate legal framework; 7 – ‘crime’ and 25 – ‘human error or incompetence’.  This 

tree shows there was an earlier risk with hazard 22 from which emerged the two new 

risks, A & B, with additional characteristics, 7 and 25 respectively. 

 

 

 

 

 

 

 

 

 

 

 

Figure 2 above shows a section of a tree with two risks. The characteristics are 
indicated by the numbers on the branches: 22 – ‘inadequate legal framework; 7 – 
‘crime’ and 25 – ‘human error/ incompetence’.   

 

There are many patterns formed within the trees which indicate where evolution is 

most likely, thus helping with the monitoring and prioritisation of risk mitigations.  

These common patterns are captured in the Table 1 below: 

Time 

Characteristics 

Risk A - Lost intellectual property rights 

Risk B - Claims infringement of IP rights 

7 

22 

25 
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Characteristic Example evolution tree 

Low Bifurcation: 
Low numbers of bifurcations, 
shown by long straight 
branches, indicate areas of 
limited emergence.  These 
areas are stable and 
independent from other risks.  
They possess few 
characteristics and can be 
more easily tracked. 

High numbers of 
bifurcations shown 
by step like pattern

High numbers of 
bifurcations shown 
by step like pattern

Low numbers of 
bifurcations shown 

by long straight 
branches

Low numbers of 
bifurcations shown 

by long straight 
branches

 
 

High Bifurcation: 
High numbers of bifurcations 
indicate areas of high 
complexity where risks are 
more likely to evolve from.  
This is shown by many 
branches on the evolutionary 
tree.  Character patterns in 
these highly active regions can 
often be identified, creating a 
warning system. 

Lost and Gained 
Characteristics: 
Where Characteristics are lost 
and later regained indicates 
an interesting evolutionary 
path.  This case may be 
because of a change in the 
environment and is worthy of 
further investigation. 
 

16, 17, 1816, 17, 18

16, 17, 1816, 17, 18

16, 17, 1816, 17, 18

Characteristics lost at 
this bifurcation point 
(lose shown by red 

numbers)

Characteristics lost at 
this bifurcation point 
(lose shown by red 

numbers)

Characteristics re-
appear

Characteristics re-
appear
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Patterns: 
Pattern spotting between sets.  
As an example, pairs of 
common characteristics 
appearing in multiple 
locations can be used to 
identify potential locations for 
emerging risks.  The emerging 
risks occur where one of the 
pair of characteristics exist.  It 
is possible that these single 
characteristic locations may 
evolve into the common pair. 
Pair spotting (and other 
character pattern spotting) 
can be used to make 
predictions or scenarios about 
future risks. 

7, 267, 26

7, 267, 26

7, 267, 26

2626

Common pairs 
of risk 

characterisitcs

Common pairs 
of risk 

characterisitcs

Potential 
bifurcation 

point

Potential 
bifurcation 

point

Example data onlyExample data only

 
Key character Change: 
Key characters can indicate a 
change to the stability of the 
system and their presence can 
warn of sudden changes and 
further emerging risks.  

 
Sudden Character 
Emergence: 
The same character in 
multiple risk locations 
indicates something is 
changing fast.  If character ‘14’ 
was ‘government’, for 
example, why is it suddenly 
affecting so many risks and 
what will the consequences of 
this be? 
  

Table 1: Patterns in evolution trees 

Twice the character 9 has 
been shown to result in 
many emerging risks 

The character 9 has 
evolved into these 
risks.  This should be 
of great concern and 
requires particular 
attention as new risks 
are more likely to 
emerge 
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3. CASE STUDY 

3.1 APPLYING PHYLOGENETIC ANALYSIS TO RISKS 
 

A detailed methodology of the phylogenetic analysis and techniques used in this paper is 

given in Allan, et al., (2013) so is not repeated here.  

3.2 BACKGROUND INFORMATION FOR THE CASE STUDY  
In order to demonstrate this technique, we have applied it to operational losses 

associated with derivatives.  We have leveraged the work produced by Coleman (2011) 

who mapped a range of relevant characteristics to a number of major derivative loss 

events.  The loss events are shown in Figure 3 below. 
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Barings Bank
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Daiwa Bank

Groupe Caisse d'Epargne

Sadia
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Askin Capital Management
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AIB Allfirst Financial

Bank of Monreal

China Aviation Oil

UBS

 

Figure 3 - Selection of Large Derivative Trading Losses (2011 USD equivalent figures) 

The characteristics these risk events have been mapped to are: 

1. Involves Fraud 

2. Involving Fraudulent trading 

3. To cover up a problem  

4. Normal trading activity gone wrong 

5. Trading in excess of limits 
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6. Primary activity financial or investing 

7. Failure to segregate functions 

8. Lax management / risk control problem 

9. Long-term accumulated losses  > 3 years  

10. Single Person 

11. Physicals 

12. Futures 

13. Options 

14. Derivatives 

We have taken this mapping data at face value from Coleman (2011), with the exception 
of aggregating some of the finer levels of granularity on the security type.  These 
characteristics are somewhat subjective, and clearly it would be possible to define 
additional characteristics, but they are sufficient for our purposes to demonstrate this 
technique. 

The following Figure 4 shows the cladogram of this mapping. 

Fraud 
clade

Normal trading activity gone wrong & 
primary activity financial / investing

Derivatives clade

1 Involving Fraud

2 Involving Fraudulent Trading

3 To Cover Up a problem 

4 Normal trading activity gone wrong

5 Trading in Excess of limits

6 Primary Activity Financial or Investing

7 Failure to Segregate Functions

8 Lax Mgmt/control Problem

9 Long-term accumulated losses >3 years 

10 Single Person

11 Physicals

12 Futures

13 Options

14 Derivatives
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Figure 4 - Cladogram of Large Derivative Loss Events and Characteristics2

Each branch in the above Cladogram ends in a specific event.  Each branching point is 
defined by a split in the characteristics as identified by the numbers that are common to 
all members of the sub-branches.  The length of the branch represents the number of 
characteristics that “evolved” to define that branch, with more characteristics leading 
the longer branches. 

 

These diagrams are very useful in helping to visually identify patterns of interest.  The 
first thing that is noticeable in this cladogram is the division into three major clades or 
groups: 

• normal activity gone wrong 
• fraudulent activity 
• collection of “simple” events characterised by the use of a range of derivatives 

These can be considered the fundamental risk elements.  Essentially the presence or 
absence of fraud defines the first major break in lineage.  We can then analyse which 
event types are more evolved than others by analysing the branch length as shown in 
Figure 5 below. 

                                                             

2 Cladograms produced using Evolutionary Risk Analysis software available from 
www.systemicconsult.com 
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Fraud 
clade

Normal trading activity gone wrong & 
primary activity financial / investing

Derivatives clade

1 Involving Fraud

2 Involving Fraudulent Trading

3 To Cover Up a problem 

4 Normal trading activity gone wrong

5 Trading in Excess of limits

6 Primary Activity Financial or Investing

7 Failure to Segregate Functions

8 Lax Mgmt/control Problem

9 Long-term accumulated losses >3 years 

10 Single Person

11 Physicals

12 Futures

13 Options

14 Derivatives

 

Figure 5 - Cladogram of Large Derivative Loss Events and Characteristics – Evolutionary 
Events 

The bottom highlighted group, the derivatives clade, shows very little evolutionary 
process.  These events can be considered to be relatively stable and unchanging in 
nature.  These are the crocodiles of the risk world – they have reached their 
evolutionary peak and show little sign of emergent behaviour.   

In contrast to these events, the two most evolved groups in the fraud clade show 
significant evolution through a large number of bifurcations in characteristics.  They can 
be considered to be highly evolved risk events, essentially derivatives of earlier risk 
events that occur back up along the branch path.  These types of events should be 
studied in detail, as they are likely to give us greater insight into the types of events that 
are more likely to be subject to evolutionary forces in the future.  Companies with 
similar characteristics to these events are more likely to be subject to emerging risk. 
Furthermore, we would generally expect to see an increased complexity in the new risks 
that evolve in these highly active areas. 

Figure 6 below now looks at the characteristics that are defining the evolutionary 
process. 
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Fraud 
clade

Normal trading activity gone wrong & 
primary activity financial / investing

Derivatives clade

1 Involving Fraud

2 Involving Fraudulent Trading

3 To Cover Up a problem 

4 Normal trading activity gone wrong

5 Trading in Excess of limits

6 Primary Activity Financial or Investing

7 Failure to Segregate Functions

8 Lax Mgmt/control Problem

9 Long-term accumulated losses >3 years 

10 Single Person

11 Physicals

12 Futures

13 Options

14 Derivatives

 

Figure 6 - Cladogram of Large Derivative Loss Events and Characteristics – Characteristics 

Characters that appear frequently are more likely to appear in the future.  The sequence 
of characters can also be important, as some characteristics tend to occur towards the 
end of branches rather than at the beginning.  For example, characteristic 9 (Long-term 
accumulated losses in excess of 3 years) always occurs at the end of a branch structure, 
indicating that it could readily jump across to another branch to define a new emerging 
risk characteristic. 

We have highlighted bifurcations involving characteristic number 8, Lax Management, 
Control Problem.  This is a very common characteristic as it is evident in almost all 
branches / events.  In many cases, it is also evolving jointly along with a number of other 
characteristics such as: 

• 10: Single person 
• 5: Trading in excess of limits 
• 12: Physicals 
• 7: Failure to segregate functions 

Characters 8 and 5 (Trading in excess of limits) in particular seem to be very closely 
related in evolutionary terms.  Note that this seems somewhat logical in hindsight, but 
we arrived at this conclusion through an objective analysis based purely upon a rich 
classification dataset.  This could be very important information as it provides clues as 
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to what characteristics emerging risk events might have in the future.  From this we can 
then ask more focused questions such as: 

• What would the next West LB (very top) or NatWest Markets (near bottom) 
events look like, if they evolved to contain a 5 characteristic (trading in excess of 
limits) as they already have an 8 characteristic? 

• What would this event possibly look like if it happened at my organisation? 

3.3 IMPLICATIONS 
This emerging operational risk framework has a number of implications. 

The first is that risk can be viewed as an evolutionary process that gives rise to emerging 
risks.  This will be the case whenever the underlying system is a complex adaptive one, 
rather than a static or chaotic one.  Investigating the evolving characteristics of system 
events in the past can provide insight into our understanding of how emerging risks 
might occur in the future. 

The second is that it is important to capture multiple characteristics of risk events, both 
in terms of realised historic events, as well as forward looking events.  Valuable 
information may be lost if risks are forced to be assigned to only single categories or 
characteristics, which may be the case if risk register software constraints exist, if a 
prescriptive risk classification framework is narrowly defined, or if the emerging risk 
identification approach is biased from the outset to focus on single processes or risk 
silos.  The quality and completeness of loss data collection and classification processes 
become critical activities in the emerging risk process. 

The third is that the risk taxonomy can be determined objectively from the data, rather 
than being defined prescriptively in an ex-ante sense.  Risk taxonomies are almost 
always defined on the latter basis, resulting in linear structures, which is appropriate 
whenever system complexity is low.  However humans tend to overly simplify situations 
where there is complexity, losing valuable information in the process.  By defining the 
risk taxonomy objectively through this framework, we are able to map the 
interrelationships and connectivity between different risk branches, to gain insight into 
how risk events are truly related. 

This is closely related to the discussion on the boundary between risk classes.  Whilst it 
is a natural human response to try to carve everything up neatly into independent risk 
silos, with risks such as operational risk, it is not quite as appropriate to do so because of 
the high degree of interaction with other risk types.  The Société Générale rogue trading 
event is a good example here, as there are clearly elements of market risk, operational 
risk and liquidity risk involved in the generation of the final loss amount.  We suggest 
that it is necessary to move beyond the traditional silo view to understand and 
ultimately to manage risks that span multiple silos. 

The final implication is that the above framework provides a structured way of 
addressing emerging risk.  It is another lens through which we can possibly gain insight 
into future emerging risk events that we haven’t yet seen and when we are not sure 
exactly what we should be looking for. 
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5. DISCUSSIONS 
Whilst risk is considered by many to be just a social construct, it can be argued that, like 

money, risk is treated as though it exists, grows, interacts and has value. Risk is 

essentially real and alive; people act and make decisions on it, and it evolves.    

One claimed merit of a phylogenetic analysis is that it provides a unique, unambiguous 

and objective classification solution (McCarthy et al., 2000). Ridley argued that ‘Cladism 

is theoretically the best justified system of classification… and has a deep philosophic 

justification… (Ridley, 1993)’.  

Our phylogenetic approach to risk analysis described here satisfies the objectivity 

criteria in social research, which requires that different rational people would obtain the 

same result under independent investigations (Bryman, 2008).  There is a possibility of 

people obtaining diverging results if they cannot agree on the characters of risks in their 

original inputs for the analysis. Secondly, applying inappropriate algorithms and not 

testing the model’s robustness can lead to the dissimilarities between entities being 

identified within a cladistic classification. However, we believe the approach can 

effectively present data in an unbiased way that is accessible to a wider range of 

potential users, thereby bringing greater transparency to decision-making processes 

(McCarthy et al., 2000).  

The structure of cladograms and the associated sub trees have significant implications 

for both scientific and practical risk management. Once risks are positioned in a 

cladogram, the comparisons of their characters are established so that people can 

identify the common properties and distinguish individual attributes, thereby allowing 

for reasonable hypotheses to be made (Andreatta and Ribeiro, 2002). Phylogenetic 

analysis reveals reliable evolutionary information. Without this form of analysis, 

evolution studies are more or less based on pure predictions (Gould, 1999). With 

phylogenetic risk knowledge, people can understand the order, rate, direction, and 

diversity of risk evolution and hence obtain greater insight into their risk system. 

Additionally, this type of analysis can articulate a robust roadmap of evolution. As 

pointed out by Mitleton-Kelly, the evolution behaviours of a complex adaptive system 

make the system path and history dependent (Mitleton-Kelly, 2003). In other words, 

phylogenetic analysis demonstrates how individual risks have reached their current 

state and indicates potential ways in which risks and the risk system will evolve.  
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Risk management often encounters a new risk with very limited information. In this 

case, people are likely to use heuristic knowledge to make estimations, leading to 

possible biased judgements (Goodwin, 2004). With the help of phylogenetic analysis, 

such a problem can be relieved, to some extent, because cladograms are based on a 

binary description of an organism’s characters and such characters can be utilised to 

gain a comprehension of the new risk. As a consequence, a new risk cladogram can be 

constructed which contains this risk. The properties of the new entry are supposed to be 

similar, although not necessarily identical, to its neighbours and hence this will allow for 

more rational predictions of how this risk behaves.  
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6. CONCLUSION 
In the ever increasing complexity and interrelatedness of the business environment it is 

unhelpful and even misleading, to manage risks as a collection of isolated events. The 

interconnected nature of risks should be addressed holistically in risk management 

analysis, particularly in enterprise risk management (ERM). Management approaches 

should actively try to understand the whole system of risks, not the aggregated sum of 

the risks. The authors of this paper endeavoured to solve this problem by looking at 

evolutionary analysis methods from biology. 

Traditional risk methods invariably require the classification of risks according to a 

single dominant characteristic. This immediate loss of information makes the 

subsequent analysis of risk behaviour problematic, and significantly less useful. By 

retaining the richness of multi-characteristic classification the authors have shown that 

phylogenetic analysis provides a more appropriate scientific basis for understanding 

risk development, consistent with the view of risk as the emergent property of a 

complex adaptive system. 

Risks, like organisms, can be classified in accordance with their evolutionary 

relationships to obtain insight and knowledge regarding the patterns that emerge 

through phylogenetic analysis. A risk DNA can be achieved and as in biology it could 

start to unlock some of the deep interconnected secrets of complex risk behaviour, and 

our perceptions of it. The authors have reviewed relevant bioinformatics literature and 

recommended the parsimony algorithm. A real world case study has been carried out 

with the aim of explaining the process and inviting discussions. The case study 

demonstrates the process of classification and how emerging risks may evolve and 

adapt. There are issues with data quality in the risk arena and computational efficiency 

of large risk matrices, validation and interpretation of complex trees. Further research is 

needed in these areas and close attention to developments from biological sciences may 

provide some partial solutions to these concerns.  

 

 

Reference  

 



19 | P a g e  

 

 

ALBERT, V. (2005) Parsimony and phylogenetics in the genomic age. IN ALBERT, V. (Ed.) 
Parsimony, Phylogeny and Genomics. Oxford, Oxford University Press. 

ALLAN, N., YIN, Y. & CANTLE, N. (2008) Modeling the interconnectivity of risks in ERM. 
Risk Management Symposium. Chicago. 

ANDREATTA, A. & RIBEIRO, C. (2002) Heuristics for the phylogeny problem. Journal of 
Heuristics, 8, 429-447. 

ARTHUR, B. et. al. (1997) The Economy as an Evolving Complex System II, edited with 
Steven Durlauf and David Lane, Addison-Wesley, Reading, MA, Series in the 
Sciences of Complexity 

BARABASI, A.  ALBERT, R. (2002) Statistical Mechanics of Complex Networks,  Rev. Mod. 
Phys 74: 47–94. 

BECK, U. (1992) Risk Society: Towards a New Modernity, New Delhi, Sage. 

BROWN, T. (2007) Genomes 3, New York, Garland Science Publishing. 

BRYMAN, A. (2008) Social Research Methods 3rd ed, Oxford, Oxford University Press. 

CARPER, W. & SNIZEK, W. (1980) The nature and types of organisational taxonomies: an 
overview. Academic Management Review, 5, 66-75. 

CHECKLAND, P. & SCHOLES, J. (1990) Soft Systems Methodology in Action, Chichester, 
John Wiley & Sons. 

COLEMAN, T. (2010) A Practical Guide to Risk Management, The Research Foundation of 
the CFA Institute 

COOMBS, E., DONOGHUE, M. & MCGINLEY, R. (1981) Characters, computers, and 
cladograms: a review of the Berkely Cladistics Workshop. Systematic Botany, 6, 
359-372. 

CORMACK, R. (1971) A review of classification. Proceedings of the Royal Statistical 
Society, 3, 321-367. 

CROUHY, M., GALAI, D. & MARK, R. (2001) Risk Management, New York, McGraw Hill. 

EDWARDS, A. & CAVALLI-SFORZA, L. (1963) The reconstruction of evolution. Annals of 
Human Genetics, 27, 105-106. 

EVERITT, B. (1993) Cluster Analysis, London, Edward Arnold Ltd. 

FELSENSTEIN, J. (2006) PHYLIP. Washington. 

FERNANDEZ, P., MCCARTHY, I. & RAKOTOBE-JOEL, T. (2001) An evolutionary approach 
to benchmarking. Benchmarking, 8, 281-305. 



20 | P a g e  

 

FITCH, W. (1971) Toward defining the course of evolution: minimum change for a 
specific tree topology. Systematic Zoology, 20, 406-416. 

GOLLEY, F. (1993) A History of the Ecosystem Concept in Ecology: More than the Sum of 
the Parts, New Haven, Yale University Press. 

GOODWIN, P. (2003) Decision Analysis for Management Judgment, Chichester, John Wiley 
& Sons. 

GOODWIN, P. (2004) Decision Analysis for Management Judgment., Chichester, Wiley & 
Sons. 

GOULD, S. (1999) Branching through a wormhole. National History, 108, 84-89. 

JABLONKA, E. (2005) Evolution in Four Dimensions : Genetic, Epigenetic, Behavioral, and 
Symbolic Variation in the History of Life, Cambridge, Mass, MIT Press. 

JAIN, A., MURTY, M. & FLYNN, P. (1999) Data clustering: a review. ACM Computing 
Surveys, 31, 265-323. 

KISHINO, H., MIYATA, T. & HASEGAWA, M. (1990) Maximum likelihood inference of 
protein phylogeny and the origin of chloroplasts. Journal of Molecular Evolution, 
31, 151-160. 

KITCHING, I., FOREY, P., HUMPHRIES, C. & WILLIAMS, D. (1998) Cladistics: The Theory 
and Practice of Parsimony Analysis, London, Oxford University Press. 

KLUGE, A. (2005) What is the rationale for 'Ockham's razor' (a.k.a. parsimony) in 
phylogenetic inference? IN ALBERT, V. (Ed.) Parsimony, Phylogeny and Genomics. 
Oxford, Oxford University Press 

 

LAPOINTE, F., KIRSCH, J. & BLEIWEISS, R. (1994) Jackknifing of weighted trees: 
validation of phylogenies reconstructed from distance matrices. Molecular 
Phylogenetics and Evolution, 3, 256-267. 

LECOINTRE, G. & LE GUYADER, H. (2007) The Tree of Life: a Phylogenetic Classification, 
Cambridge, MA: , Belknap. 

LI, S., PEARL, D. & DOSS, H. (2000) Phylogenetic Tree Construction Using Markov Chain 
Monte Carlo. Journal of American Statistical Association, 95, 493-508. 

LI, W. (1997) Molecular Evolution, Sounderland, Sinauer Associates. 

LIN, Y., FANG, S. & THRONE, J. (2007) A tabu search algorithm for maximum parsimony 
phylogeny inference. European Journal of Operational Research, 176, 1908-1917. 

MADDISON, W. & MADDISON, D. (1992) McClade, Sounderland, MA, Sinauer 
Associations. 



21 | P a g e  

 

MASON, G. (2005) Connectivity as a basis for a systems modelling ontology. Systems 
Research and Behavioral Science, 22, 69-80. 

MCCARTHY, I., RIDGWAY, K., LESEURE, M. & FIELLER, N. (2000) Organisational 
diversity, evolution and cladistic classifications. Omega: The International 
Journal of Management Science, 28, 77-95. 

MINELLI, A. (1994) Biological Systematics: The State of the Art London, Chapman & Hall. 

MISHLER, B. (2005) The logic of the data matrix in phylogenetic analysis. IN ALBERT, V. 
(Ed.) Parsimony, Phylogeny and Genomics. Oxford, Oxford University Press. 

MITLETON-KELLY, E. (2003) Ten Principles of Complexity & Enabling Infrastructures, 
Bingley Elsevier. 

NOVAK, J. & CANAS, A. (2001) The Theory Underlying Concept Maps and How to 
Construct Them. University of West Florida. 

MOREL, B. & RAMANUJAM, R. (1999) Through the looking glass of complexity: The 
dynamics of organisations as adaptive and evolving systems, Organisational 
Science, Vol. 10, No 3, (May-Jun., 1999)PAGEL, M. (199) Inferring the historical 
patterns of biological evolution. Nature, 401, 877-884. 

NEWMAN, M. (2010) Networks: An Introduction. Oxford University Press.  

RIDLEY, M. (1993) Evolution, Oxford, Blackwell Scientific Publications. 

ROSS, T. (2004) Fuzzy Logic with Engineering Applications, London, Wiley. 

SAATY, T. (1980) The Analytic Hierarchy Process, New York, McGraw-Hill. 

SNEATH, P. & SOKAL, R. (1973) Numerical Taxonmy: the Principles and Pratices of 
Numerical Classification, New York, Freeman. 

SOBER, E. (2005) Parsimony and its presuppositions. IN ALBERT, V. (Ed.) Parsimony, 
Phylogeny and Genomics. Oxford, Oxford University Press. 

SWOFFORD, D. & OLSEN, G. (1990) Phylogeny reconstruction, Sunderland, Sinauer 
Assoicates. 

TSINOPOULOS, C. & MCCARTHY, I. (2000) Achieving agility using cladistics: an 
evolutionary analysis. Journal of Materials Processing Technology, 107, 338-346. 

WALLACE, L., KEIL, M. & RAI, A. (2004) Understanding software project risk: a cluster 
analysis. Information & Management, 42, 115-125. 

WATROUS, L. & WHEELER, Q. (1981) The out-group comparison method. Systematic 
Zoology, 30, 1-11. 

WHEELER, W. (2005) Alignment, dynamic homology, and optimization, Oxford, Oxford 
University Press. 



22 | P a g e  

 

 


	Abstract
	1. INTRODUCTION
	2. HISTORY AND DESCRIPTION OF PHYLOGENETIC ANALYSIS
	2.2 Different phylogenetic algorithms

	3.0 Techniques for viewing and interpreting the Trees and data
	3.1 Applying phylogenetic analysis to risks
	3.2 Background information for the case study
	3.3 Implications

	5. DISCUSSIONS
	6. CONCLUSION

