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". Introduction

1.1 Terms of Reference
1.1.1 As part of their capital modelling, insurance companies need to

make assumptions regarding the distributions of extreme market events, such
as falls in equity markets or changes in interest rates.

1.1.2 The Benchmarking Stochastic Models working party was set up
with the aim of gaining a better and wider understanding of the various
methodologies that could be used for developing benchmark figures for these
extreme falls, particularly in the context of the FSA’s ICAS regime. This
paper sets out to describe the practical issues that can arise in such an
exercise, the type of data available, what methods can be used and the
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benchmarks that result when a selection of distributions are fitted to a
typical data set for equity returns. In this paper we have limited ourselves to
discussing equity and interest rate risks as it is common for these to be
material for insurance firms and the data available is comparatively rich.

1.1.3 The results set out in Section 6, and the material described in the
rest of this paper, do not constitute formal guidance of any kind. However
we hope the material described will be helpful to actuaries and other
professionals involved in this type of work.

1.2 The Role of Prior Beliefs
1.2.1 Any statistical estimate is a combination of data analysis, prior

beliefs (see Rebonato (2007)) and an estimate of the uncertainty in the
estimate. The prior beliefs are traditionally expressed in the choice of models,
and the data they are fitted to. For example, fitting techniques may reflect
beliefs that interest rates are stationary processes, that equity data can be
pooled so that losses in one economy provides information about possible
falls in another economy, that shifts over one year can be constructed from
twelve independent shifts over each month, or that the tails of a risk
distribution follow asymptotic power laws.

1.2.2 Although in theory statistical estimates can be made without prior
beliefs (a pure ‘frequentist’ approach), in practice there is rarely sufficient
data for the type of market investigations we are concerned with. The relative
importance of prior beliefs varies with the availability of data and the
object of the analysis. In the context of the FSA’s ICAS regime, we are faced
with estimating probability distributions that give meaningful results at the
0.5 percentile for movements in the market, from data series that, at best,
contain only one hundred non-overlapping observations, dating back to
times when the global economy was very different from today. In such
circumstances the role of prior beliefs is significant.

1.2.3 This situation can be contrasted to that prevalent in the banking
sector, where the calculation of 10-day value-at-risk is standard. There are
two hundred and fifty trading days in a year, so even ten years’ history will
yield two hundred and fifty non-overlapping observations. In such a
circumstance analysis can be driven more substantially by the data available
and the role of prior beliefs is more limited.

1.2.4 Different analysts adopt different prior beliefs, and for this reason,
a range of estimates may be obtained even based on a single set of economic
data.

1.2.5 We could, in principle, formulate the effect of prior beliefs using
Bayesian statistics. Inference uses the posterior model, that is, a re-weighting
of the prior distribution of models conditional on the data. Where relevant
data is plentiful, the choice of prior distribution is relatively unimportant.
The estimation of rare percentiles, on the other hand, relies on only a handful
of data points. As a result, the choice of prior distribution is critical, and
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consequently, estimates vary wildly between market participants. Any
estimate is substantially a reflection of prior views, rather than objective
data.

1.3 Arguments For and Against Standardisation
1.3.1 There is much to be encouraged in allowing a diversity of views.

Insights available from one perspective may be invisible when seen from
another point of view. Competition between models allows techniques to
adapt and improve over time. The occurrence of a freak event may discredit
one particular model, in which case it is healthy to have in reserve a
population of alternative models that can still account for emerging data.
Furthermore herding around one particular set of assumptions may leave
companies vulnerable to the same market shock.

1.3.2 However where many firms have to make an estimate of the same
extreme market event (such as the 0.5 percentile equity return over one year1)
there are some clear arguments for standardisation:
ö It facilitates comparison between firms
ö It prevents one firm seeking or gaining a competitive advantage by

adopting weaker assumptions.

1.3.3 Standards need careful articulation. Standardisation is a useful
pragmatic device to assist comparisons and reduce the scope for gaming a
regulatory system, but it is not pure science. Intellectual honesty forbids us
from denying the role of subjective prior views in formulating any standard.
The fact that one particular set of views underlies an emerging standard is no
excuse for impugning the scientific credentials of those with competing prior
views.

1.3.4 In this paper we do not attempt to answer the question of whether
standardisation is necessary or desirable. Either way actuaries (and other
finance professionals) are faced with the problem of calibrating (more or less)
the same extreme market events from (more or less) the same historic data
and the aim of this paper is to present relevant material to assist in that
process.

1.4 Use of Historic Data
1.4.1 In this paper we have taken the approach of fitting parametric

models to the data in order to derive estimates of extreme percentile events.
The choice of data, particularly the historic time period used, can have a
significant impact on the results.

1 We could have expressed this equivalently as the 99.5 percentile worst outcome.
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1.4.2 Other approaches are possible, such as the use of expert opinion,2

market implied volatilities or the use of a real-world calibrated Economic
Scenario Generator. We include the latter as we understand that it is a
commonly adopted approach, although we note that the providers of
Economic Scenario Generators must address the same problems set out in
this paper in deciding upon the asset models to implement and the calibration
parameters to choose. If they prefer, practitioners can, of course, adjust the
results from the empirical approach set out in this paper to take account of
these other sources of information.

1.5 What is New in this Paper?
1.5.1 There is a very significant existing literature on the distribution of

extreme market events. This stems largely from developments in the finance
industry, and in particular the banking sector, where the calculation of 10-
day value-at-risk is a common requirement. In this context, the volume of
observations available supports a data driven approach to analysis

1.5.2 Within the insurance sector the focus is on market movements
over longer time periods, typically one year. There is relatively little analysis
in the literature that considers such long periods, and the ‘stylized facts’
commonly found in considering shorter periods may no longer apply.

1.5.3 This paper focuses on one-year movements. It considers whether
these ‘stylized facts’ do in practice hold for a period of one year, provides an
analysis of data on the distributions of market movements over such a
period and, perhaps most importantly, highlights the wide range of possible
conclusions that can be drawn from the same observations, given the paucity
of data.

1.6 Structure of the Rest of the Paper
1.6.1 Section 2 contains a brief discussion of modelling economic capital,

explaining why, in the rest of the paper, we focus on looking at the 0.5 percentile
outcome in risk factors over a one year horizon.

1.6.2 Section 3 discusses percentile estimates based on conditional versus
unconditional distributions; why it is important to be clear about the
approach taken, and explaining the choices we make for this paper.

1.6.3 Sections 4 to 6 look at the issues surrounding equity modelling.
Section 4 analyses MSCI data to study the mean, standard deviation,
skewness and kurtosis of historic equity returns and how this varies between
countries (showing a worrying lack of consistency). By looking at how these
statistics vary across different time horizons we conclude that analysing more
frequent data does not significantly improve our ability to estimate extreme

2 By ‘expert opinion’ we are referring to the opinion of respected market observers rather than,
say, expert mathematical analysis of historic data.
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percentiles of annual returns. This section also calculates skewness and
kurtosis from the longer Dimson, Marsh and Staunton (DMS) data set, and
then goes on to use bootstrapping techniques to examines the estimation
error involved in these calculations. This demonstrates that for those data
sets which show extreme skew or kurtosis (including the U.K.), the
confidence intervals around the estimates are often very large, questioning
whether they are statistically significant.

1.6.4 Section 5 then looks at the estimation error involved in the
derivation of extreme percentiles, using bootstrapping techniques to calculate
95% confidence intervals. Although bootstrapping in this way is a standard
technique, we are not aware of it being used for this application before. The
results show just how significant sampling error can be, even for a relatively
data rich risk factor like equities.

1.6.5 Section 6 then fits a variety of distributions to the MSCI data to
make estimates of the 0.5 percentile equity return over one year, comparing
the results.

1.6.6 Section 7 looks at interest rates and yield curve modelling. We
investigate correlations between different points on the yield curve and
propose some formulas to capture the important features of historical data.
Yield curve movements are a promising candidate for dimension reduction,
and we investigate a number of techniques for reducing complex models of
yield curve movements down to three factors.
1.6.7 Section 8 provides some concluding remarks and then additional

information is contained in the appendices.

Æ. Modelling Economic Capital

2.1 What is an Economic Capital Measure and What is its Purpose?
2.1.1 Economic capital (or risk-based capital as it is also often called) is

a concept that is widely recognised but not well defined. Hairs et al (2002)
described it as:

Capital requirement determined in a (more or less) scientific way, having regard to the risks
to which the business is exposed.

2.1.2 While economic capital measures may vary in detail, they share
the following core features:
ö They specify a certain level of security. This is often expressed in terms

of a confidence level or the strength of the stress tests.
ö They are risk sensitive. That is to say that the framework captures the

material risks to which the firm is exposed and the capital assessment
increases as the firm takes more risk and decreases as mitigation
measures are put in place.
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ö They are suitable for the management of risk. To meet this purpose, the
model should identify and quantify the materiality of risks which give
rise to the capital. The weights given to different types of risk (for
example, equity risk and interest rate risk) should be proportionate to the
risks they pose to the company.

2.1.3 This means that economic capital is an important tool in
understanding and managing an insurance business. However the growth of
economic capital measures has also been stimulated by developments in
regulation. The FSA’s ICA framework already demands an economic capital
approach in the U.K.; Solvency II will offer the option of using internal
economic capital models for solvency purposes; and even the standard
approach under Solvency II is an example of a simple approach to economic
capital as currently drafted.

2.2 Alternative Measures of Economic Capital
2.2.1 There are many different ways to construct an economic capital

measure including choices of:
ö Time horizon over which the range of risk outcomes are considered: for

instance we can project the balance sheet development over one year, or
project the run-off of the liabilities.

ö Measurement of assets and liabilities: we can project assets and liabilities
on a realistic (market consistent) basis, an accounting basis or a
regulatory basis.

ö Definition of ruin: we can measure solvency continuously, at a fixed
horizon or some other set of times.

ö Risk measure: for instance value-at-risk measures look at the capital
required to meet solvency in x% of outcomes; tail value-at-risk measures
look at capital sufficient to meet the average deficit in the worst y% of
outcomes.

ö Confidence level or ruin probability: that is the choice of x% or y% in the
above examples.

2.2.2 The ICA submitted to the FSA needs to include an assessment
“comparable to a 99.5% confidence level over a one year timeframe’’.3 Other
confidence levels and timeframes may be appropriate ö indeed the FSA
requirements imply that another confidence level should be chosen if that
better reflects the firm’s own risk appetite. However, a 99.5% confidence
level over one year represents the easiest way to demonstrate compliance
with FSA rules. Furthermore, the vast majority of the U.K. industry has
chosen an ICA methodology based on one-year stress and scenario tests; and

3 INSPRU 7.1.42R.
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a one year, 99.5% approach is also aligned with current proposals for
Solvency II.

2.2.3 So for the purposes of this paper we have chosen to restrict
ourselves to the following framework: a one year projection of a market
consistent balance sheet requiring capital sufficient to be solvent in 99.5% of
outcomes.

2.2.4 As a consequence, in looking at the results presented in this paper
we pay particular attention to the 0.5 percentile worst movements in equities
and interest rates over one year. This is not to say that other percentiles are
not important; the calculation of economic capital when there are exposures
to multiple risk factors involves the convolution of several distributions and
the characteristics of the entire distribution will play a role in the level of
economic capital required. Nevertheless, the 0.5 percentile provides a simple
benchmark with which readers are likely to be familiar.

2.2.5 In theory the same techniques could be used to make estimates for
longer timescales and other confidence levels, although in practice it will be
difficult to find data sets large enough to give reliable results. Although the
techniques may be valid, the results in this paper should only be extrapolated
to longer time horizons with great caution.

2.3 The Need for Continuous Monitoring
2.3.1 The ICA is the firm’s own assessment of the amount (and quality)

of capital sufficient to ensure that the firm maintains adequate capital
resources at all times. We believe that this requirement is commonly
interpreted to mean that:
ö the ICA should be calibrated to the potential change in conditions that

may occur from one point to a point one year ahead (discrete points)
rather than the largest change that may occur at any point over one year
(a continuous test).

ö the systems and controls around the ICA should be used to make sure
that the firm has adequate capital against this standard on a continuous
basis. This second point is beyond the scope of this paper.

2.3.2 We have adopted this interpretation in this paper. This means that
when considering extreme market movements over one year we are
concerned with observations one year apart rather than the distribution of
the lowest value during the year. It should be noted that this interpretation
does imply that we need to consider the largest change that can occur from
any point in time, rather than the largest change from, say, December to
December. This motivates our choice of overlapping periods in the analysis
set out in section 6, despite the statistical complexity this brings.

2.4 How Should Capital Requirements Respond to ChangingMarket Conditions?
2.4.1 When adverse market movements take place, available capital is

Modelling Extreme Market Events 7



used up to the extent that there is a reduction in asset values greater than any
reduction in liabilities. Available capital reduces, but what, if any, impact
should there be on capital requirements following such an event? For instance,
in the case of equities, how should a sharp fall in equities over a recent past
period affect our estimate of the 0.5 percentile outcome in the next twelve
months?

2.4.2 One aspect of this question is to consider whether we are making
estimates of the conditional or unconditional distributions of risk factors.
This is discussed further in Section 3.

2.4.3 However, there is also a practical and commercial dimension to
this question (especially where we are talking about the regulatory framework):
is there a willingness to reduce capital requirements after a market stress in
the interests of market stability? For example, to avoid the pro-cyclical effect
of many financial institutions de-risking their balance sheets by selling
significant portions of their equity portfolios.

2.4.4 One example of a rule that attempts to reduce capital requirements
in times of market stress is the equity fall tested as part of the resilence
capital requirement (previously the resilience reserve). The rule adjusts the
equity fall tested to between 25% and 10% depending on the 3 month average
level of the FTSE All-Share and the price-earnings ratio compared with
75% of the inverse of the 15-year gilt yield. Figure 1 shows the FTSE index
daily since June 2001, the resilience equity fall and the stressed index level.
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The rule appeared to cope with the market fluctuations over 2001-2003 but
since 2004 the equity fall has been at the minimum 10% level because of a low
P/E ratio. This illustrates the difficulty of constructing a rule that will cope
with changing market conditions. This aspect of the question is beyond the
scope of this paper.

2.5 Stress and Scenario Testing
2.5.1 In this paper we are concerned with estimating extreme market

events at a particular confidence level or percentile, in order to then use the
results to calculate economic capital requirements for an insurance company.
Often we refer to these extreme events as stress tests.
2.5.2 Increasingly financial institutions are also expected to “think

outside the box’’ in risk management, and to think up extreme scenarios and
test what impact they would have on the company. Here the focus is not on
calculating a capital requirement at a particular confidence level but to better
understand the company’s risk exposure. The scenarios tested may not be
explicitly ranked at any particular probability of occurring, and some of
them might be expected to lead to extreme difficulty or ruin for the company.
This exercise may also be referred to as stress testing, although the phrase
‘scenario testing’ is more common. These stress tests are different in nature
to those we are trying to calibrate in this paper, and are outside its scope.

2.6 The Use of Economic Scenario Generators (ESGs)
2.6.1 Within the economic capital framework we have chosen, ESGs

have two potential uses:
(a) To simulate the change in market conditions over one year.
(b) To construct market consistent balance sheets at the outset, and after

one year allowing for changes in market conditions.

2.6.2 These uses are quite different: in the case of (a) we want an ESG
that captures extreme market movements over one year; in the case of (b) we
want an ESG capable of a market consistent valuation. In this paper we are
solely concerned with benchmarks for (a).

2.6.3 Within this framework the ideal theoretical approach would
involve nested Monte Carlo simulations (at least for products with embedded
options and guarantees): the first level of projection would involve
simulating market conditions after one year; then for each such simulation
there would be projections from that point onwards to value liabilities on a
market consistent basis and construct market consistent balance sheets.

2.6.4 Although it may be possible to adopt this approach in some
instances, the processing times are generally prohibitive at the moment,
forcing a simpler approach to be taken. This can be either:
(a) simulating market conditions after one year using Monte Carlo

simulation, then constructing market consistent balance sheets without
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e.g. by using closed form solutions to value options and guarantees; or
(b) applying a modest number of stress and scenario tests to determine

adverse market movements over one year, then using Monte Carlo
simulation to value options and guarantees and determine market
consistent balance sheets.

2.6.5 In either case we need to measure the net assets of the firm on an
economic basis (that is the economic value of assets less liabilities) as a
function of various risk factors. To determine our capital requirement we
need to make assumptions about the distributions of these risk factors over
one year. Deriving these assumptions for equities and interest rates is the
central theme of this paper.

â. Conditional and Unconditional Estimates

3.1 Introduction
3.1.1 A key question is whether we are trying to model what may

happen over the next year (i.e. conditional on some or all the information we
know about the current market) or an “average’’ year (unconditional on
current market data).

3.1.2 If we do decide to condition on current data we have choices over
what data to include in the conditioning, e.g.
ö Starting price or rate data (e.g. the starting yield curve).
ö Recent price or rate data (e.g. recent volatility).
ö Prices of options and other market instruments (e.g. implied volatilities).

3.1.3 If we condition on a large amount of data then intuitively we may
get a more “relevant’’ stress test. However, we have less data to work with as
there will be fewer points in the historical data with the same conditions. If
we use a “pure frequentist’’ approach to derive such a conditional estimate
then our confidence interval will increase as the volume of data decreases. An
alternative is to fit a model, such as a time series, that allows us to use
more of the available data to derive the conditional estimate. However in this
case the role of prior beliefs is perhaps greater than in the unconditional
case since we are making assumptions about how returns (or yield curve
movements) in certain market conditions are related to returns in other
market conditions.

3.1.4 In the extreme we could condition on all market data up to the
valuation date; in this case we would have no past data with the same
conditions so a statistical approach would be useless. It could be argued that
information on this conditional distribution is contained in implied
volatilities. In theory these reflect the market’s view of future volatility, but
in practice the information on the “real world’’ return distribution may be
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distorted by supply and demand factors in options markets. This approach
is beyond the scope of this paper.

3.2 Conditional vs. Unconditional Distributions ö Interest Rates
3.2.1 Some of the issues can be illustrated by looking at a simple model

for interest rates (ignoring some of the complexities that we would be
concerned with in a more realistic exercise).

3.2.2 Assumed interest rate process
Let us suppose we have a universe where insurers are exposed only to the

short term interest rate, R. Let us suppose also that R follows a Cox-
Ingersoll-Ross process, so that in continuous time, under the real world
probability law, R satisfies the stochastic differential equation:

dRt ¼ aðmÿ RtÞdtþ s
ffiffiffiffi
R
p

dZt:

Possible parameters are: a ¼ 0:05, m ¼ 0:05 and s ¼ 0:044.

3.2.3 Solvency regulation and assumed firm structure
Let us suppose also that we operate in a world where all insurers are long

interest rates, that is, whose net assets are an increasing function of R. All
firms are therefore exposed to a fall in interest rates. This is a convention to
illustrate a principle; we could alternatively have written this example with
reference to insurers who are exposed to a rise.

3.2.4 Solvency regulation takes the form of a single stress test. The
interest rate at time t is Rt, and firms are required to test a fall in interest
rates at time tþ 1, to some lower value L (Rt). We will explore different ways
of choosing the function L .

3.2.5 We assume that a single new insurer is set up each year, and
capitalised in such a way as to meet precisely the regulatory capital
requirement. This means that the insurer established at time t is solvent at
tþ 1 if Rtþ1 � L ðRtÞ but fails if Rtþ1 < L ðRtÞ. At the end of the year, the
insurer is wound up, whether solvent or not, and a new insurer established,
capitalised in order to withstand an interest fall to L ðRtþ1Þ.
3.2.6 The regulatory objective for choosing L is that, measured over a

very long time period, the proportion of insolvencies tends to 0.5% that is
0:005 ¼ 1=200. We will consider four algorithms that fulfil this regulatory
objective.

3.2.7 Four possible algorithms
We consider four possible algorithms for specifying the function L :
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Method Formula for L Definition of constants

1. Conditional
percentile

ProbfRtþ1 < L 1ðRtÞ j Rtg ¼ 0:005 N/A

2. Unconditional rate L 2ðRÞ ¼ c2 c2 ¼ 0.5 percentile of the
stationary distribution
of Rt

3. Unconditional
difference

L 3ðRÞ ¼ Rþ c3 c3 ¼ 0.5 percentile of the
stationary distribution
of Rtþ1 ÿ Rt

4. Unconditional ratio L 4ðRÞ ¼ c4R c4 ¼ 0.5 percentile of the
stationary distribution
of Rtþ1=Rt

3.2.8 Figure 2 illustrates these four possible stress test constructions.
The x-axis shows the starting short rate of interest and the y-axis the 0.5
percentile down-stress interest rate under each of the four possible stress text
constructions.

3.2.9 In this chart you would not expect to see one test definition
stronger than another in all cases ö indeed the curves for L 1 and L 3 do cross
but only at much higher interest rates (exceeding 20%).

3.2.10 We can see that, although in theory all four functions fulfil the
regulatory objective of 0.5% failure over long time periods, the tests based on
unconditional estimates may produce very strange results depending on the
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starting interest rate. L 2 produces a very extreme stress unless the starting
rate is very low. L 3 can produce a stress down to negative rates (despite the
fact that negative rates are impossible under the CIR model). Given these
results L 4 seems a natural alternative to try, and it does indeed produce a
more plausible shape of stresses, but they are still very severe. The underlying
reason for this is that extremely high and low rates occur with much higher
frequency in the unconditional distribution for thismodel (given the parameters
we have used) than one would intuitively expect based on post-war U.K.
experience ö or perhaps any historic period measured in tens of years.

3.2.11 Of course these results are a function of the underlying CIR
model we have chosen. Any estimate of unconditional distributions from
historic data would not be so extreme ö in large part due to the limited
amount of data available. Nevertheless it illustrates the potential dangers of
using a pure unconditional approach, and in this paper we choose to
condition on the opening level of the yield curve. We do not, however,
condition on any other market data.

3.3 Conditional vs. Unconditional Distributions ö Equities
3.3.1 The position for equity return distributions is somewhat different.

There is some temptation to believe that any significant fall in equity values
begins to limit the scope for future falls so that the 0.5 percentile equity
return over a year will tend to decrease following a particularly bad fall.

3.3.2 On the other hand it is common for equity falls to be associated
with short periods where market volatility increases significantly (whether it
is the actual observed volatility that is measured or the market implied
volatility in option prices). This volatility clustering is a well-established
market feature (at least for frequent data such as daily) and is discussed
further in section 4.4. This suggests that it may be necessary to increase our
estimate of the conditional 0.5 percentile equity return following a market fall.

3.3.3 Attempting to model equity returns (or indeed interest rates)
conditional on recent volatility may reduce even further the amount of
relevant historic data and therefore makes estimation error even more serious
a problem (Section 5). Alternatively it may introduce the need to estimate
even more parameters from the data available when fitting distributions.

3.3.4 Taking into account the additional data issues involved in estimating
a conditional distribution for equities, whether conditioning on implied market
volatility or any other measure, as well as the time and resources available
to the working party, we have decided not to investigate fitting models (such
as generalised autoregressive conditional heteroskedasticity (GARCH)
models) that capture any time-varying volatility (heteroscedasticity) in the
data. As a possible further justification for this approach, we note that some
studies have concluded that volatility is not forecastable beyond a time
horizon of a few weeks (see for example Christoffersen Diebold and
Schuermann (1998)). However we have attempted to capture the fat-tailed
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property of returns. These features and their relationship are discussed further
in section 4.

3.3.5 Although there may seem to be some inconsistency here in our
treatment of equities and interest rates we believe that we have taken a
reasonable approach, and one that is common market practice when setting
ICA assumptions.

ª. Equity Modelling ö Analysis of Moments

4.1 Introduction
This section starts by considering some broad features of equity market

returns.
We next describe a data set of equity market returns. We tabulate means,

standard deviations and higher moments for a 1-year holding period.
We then investigate the effect of different horizons, tabulating moments

and observing consistent patterns across markets.
Section 6 below describes ways of fitting distributions to those moments.

4.2 Returns ö Historic Data
4.2.1 Historic equity data usually consists of indices, typically published

daily. Indices are traditionally computed as the price of a share portfolio,
whose constituents are adjusted from time to time. Other indices may be total
return, that is, including an allowance for additional shares purchased by
the reinvestment of dividend income. Compilers of indices also take account
of a number of other transactions such as rights issues and share splits. For
this reason, it is usually more straightforward to analyse indices than to
analyse individual share prices, provided the analyst is confident in the
quality of index compilers’ work.

4.2.2 For an index Pt, we might consider a new series Ptþh=Pt as a series
in t, for some fixed holding period h. It is at least plausible to consider a
distribution of monthly returns, which might be broadly constant over time.
In contrast, the distribution of an index level expands with longer time
horizons.

4.2.3 Statistical analysis may be applied to simple returns, log returns or
annualised returns. Where a holding period h is measured in years, these are
defined as as:

Simple return ¼ Ptþh=Pt ÿ 1

Annualised return ¼ ½Ptþh=Pt�
1=h
ÿ 1

Log return ¼ lnðPtþh=PtÞ:

4.2.4 Simple returns are most relevant for understanding portfolio
constructions and risk-return tradeoffs because they combine linearly across
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portfolios. Simple returns may be difficult to model, however, because the
relevant distributions must be supported on the range ðÿ1;1Þ. The analysis
of logarithmic returns overcomes this problem because log returns lie on the
whole of the real line ðÿ1;1Þ. There is a wide choice of classical
distributions on the real line, potentially applicable to models of log returns.

4.2.5 For solvency purposes, regulation dictates we pay special attention
to returns with h ¼ 1 year. In this case, the annualised return is the same as
the simple return.

4.2.6 The conversion of period-h returns to annual returns is performed
by assuming a constant compound rate of investment growth. The
calculation gives us ways of comparing returns over different periods on a
common basis, and does not require us to believe that all investments grow at
constant compound rates. By extension, we can also consider convolution of
probability distributions. For example, given an assumed distribution for one
month holding periods, we can “annualise’’ the distribution under the
hypothesis that returns over different months are independent and identically
distributed. We can also annualise particular statistical properties, such as
means and variances. Annualisation does not require us to believe monthly
returns are independent (empirically, we will see they are not), but rather
offers a simple way to compare distributions over various periods in common
terms.

4.2.7 Probably the simplest model of equity markets is to assume that
returns are independent and lognormally distributed, i.e. that log-returns
have a normal distribution. However the statistical evidence suggests this is
not an ideal model in several ways.
4.2.8 Figure 3 plots daily price changes for the U.K. equity market since

1935. The frequency of daily absolute returns in excess of 5% is plotted using
bars at the bottom of the chart. It can be seen that, for the U.K. market,
most of the extreme returns are bunched together in the 1970s.

4.3 Asymmetry and Fat Tails
4.3.1 When looking at empirical log-return distributions for equity

markets there are two noticeable differences to the normal distribution.
(a) There is negative skewness, i.e. the distribution is skewed to the left.

There is a tendency for there to be larger downward falls in the equity
market than rises.

(b) There is positive kurtosis, i.e. the tails of the distribution are significantly
fatter than one would expect from a Normal distribution. The probability
of extreme moves in the equity index is higher than would be predicted
from a lognormal model. These large moves are often caused by
(downward) jumps in the equity index at times of significant market
turbulence.

4.3.2 Clearly these properties, particularly fat tails, are highly significant
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for an analysis of extreme events and lead us to consider using other classes
of distributions that can reproduce these features. However the statistical
evidence is mixed. Excess skewness and kurtosis are significant for returns
over relatively short periods, for example we can see in Figure 3 a number of
daily returns that are large multiples of the standard deviation, which would
have a very low probability under a lognormal model. For annual returns the
evidence is more mixed. The analysis in section 4.12 suggests that excess
kurtosis can be observed at longer timescales, but in section 4.15 we show
that the estimation error is significant and indeed that the excess kurtosis
may not be statistically significant in most economies.

4.4 Volatility Clustering
4.4.1 Figure 3 illustrates the presence of periods of relatively low

volatility interspersed with periods of relatively high volatility. This is usually
described as volatility clustering or heteroskedasticity.

4.4.2 Several models have been proposed to capture this time-dependent
feature of volatility. One popular class of such models is GARCH (generalised
autoregressive conditional heteroskedasticity), in which volatility is modelled
as a moving average of past volatility. As noted above, we have not attempted
to capture time-varying features of equity returns in this paper so have not
considered these models further.

4.4.3 Volatility clustering has been suggested as a possible explanation
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for fat-tails in equity returns. Equity returns that follow a log-normal
distribution but with volatility that varies over time may appear to have
excess kurtosis if the unconditional distribution is estimated over a long
period. Kemp (2008) examined this effect in daily returns on selected equity
indices and showed that time-varying volatility may account for most of the
excess kurtosis in the upside tail but not in the downside tail. This suggests
that large negative returns exhibit some “genuine’’ fat-tailedness arising from
unexpected extreme outcomes, at least for high frequency data.

4.5 Mean Reversion
4.5.1 As noted by Exley et al. (2004) (EMS), this term is used to

describe a number of different features. Simplistically the idea is that large
negative returns will tend to be followed by positive returns and vice versa.
EMS find some weak evidence for mean reversion in equity markets over
longer time horizons but note that the effect is highly dependent on the
choice of holding period.

4.5.2 Bouchaud & Potters (2003) find that price returns show strong
autocorrelations over periods less than a few tens of minutes but little
correlation for longer periods. They also find a negative return-volatility
correlation over a time scale of the order of a week.

4.5.3 Combining these observations with the volatility clustering feature
suggests a complex structure of behaviour over different time scales. Large
negative returns will increase realised volatility and, because of the clustering
effect, may increase future volatility in the short term. This suggests a
higher probability of further large falls initially, but possibly higher expected
returns over a longer period depending on the extent to which mean
reversion holds.

4.6 Tail-Correlation
4.6.1 It tends to be the case that the correlation between short term

moves in equity markets and individual stocks is elevated when prices fall
sharply, i.e. in the far downside tail of the equity return distribution. In
extreme market conditions “herding’’ behaviour may take over, so that in a
stock market crash all stocks tend to fall together. This suggests that the
diversification benefit from holding a portfolio of exposures to market
indices and/or individual stocks is much reduced at just the point when it is
needed.

4.6.2 This is an example of possible differences in the behaviour of
equity returns between normal and stressed market conditions. Thus when we
consider the distribution of returns we may expect differences between the
central part of the distribution and the tails. Shiryaev (1999) suggests that the
presence of multiple traders and investors with varying interests and time
horizons implies that it is unlikely that a single “standard’’ distribution will
capture all features of financial indices and that a better approach might be
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to use different standard distributions for different regions of their values.
However for returns over longer time horizons this approach would make the
amount of relevant data too small to perform any meaningful analysis, so it
seems preferable to use data from all parts of the distribution. Kemp (2008)
suggests an approach that involves fitting the observed distribution directly
but giving greater weight to the observations of most interest.

4.7 Stationary Time Series
4.7.1 There is a large body of statistical theory in relation to stationary

time series. Stationarity means that the distribution of observations, or
clusters of observations spaced at fixed intervals, have a common
distribution that does not depend on the time of the first observation.

4.7.2 Stationarity is not a credible property of equity indices. Equity
indices tend to increase in time, and price uncertainty becomes ever greater
with longer term horizons. There is no limiting distribution. To make the
process stationary, and so bring to bear the associated statistical machinery,
we convert the index into returns.

4.7.3 The best known stationary return model is the geometric random
walk where returns over different years are independent and have a common
distribution (so called “iid’’ ö independent and identically distributed). The
class of stationary processes includes iid models, but also many others.
Stationarity can permit dependence between returns. Where such dependencies
exist, a distinction emerges between the unconditional distribution of a
return compared to the conditional distribution given returns in previous
periods, or given information from other sources. For example, we could
investigate effects such as mean reversion or volatility clustering, as described
above. Wilkie (1986, 1995) describes many examples of such models in some
detail.

4.7.4 We have taken the position of assuming that returns follow a
stationary distribution. If we were to reject stationarity of returns, what
might we have instead? We might have seasonality ö it would not be
surprising if returns in January were more volatile than in February, because
February has fewer days. Or we could have an underlying long term trend,
perhaps relating to growing expected human life time or to productive
industrial inventions. However we do not pursue this idea and proceed with
our analysis on the basis that the returns are in fact stationary. We do this
because there are a much richer set of quantitative tools at our disposal for
stationary series.

4.7.5 In what follows, we shall apply the concept of stationary returns
to equity markets. This appears to be a majority view, although by no means
unanimous, among econometric modellers. The assumption of stationarity
is an example of a prior view, which inevitably affects any forecasts we
make.
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4.8 Estimation of Stationary Models
4.8.1 The estimation theory for stationary models draws on ergodic

theory. A stationary model prescribes a common distribution for Xt which
applies for any one value of t. This is a cross-sectional distribution, as it
applies to all possible outcomes at a single point in time. Ergodic theorems
clarify conditions under which the sample distribution of Xt converges to the
underlying distribution as the number of counted time points increases. An
estimate taken in this way, over one sample path but many time points is a
longitudinal distribution.

4.8.2 This suggests that the empirical distribution of values of Xt over a
time interval may approximate the stationary distribution of the underlying
process. In the case where Xt is an iid sequence, this result follows from the
strong law of large numbers applied to indicator functions. The extension of
the iid case to more general stationary processes is helpful because it
broadens the class of models for which we may plausibly measure
longitudinal distributions and treat the result as approximate cross sectional
distributions, provided the observation period is long enough.

4.8.3 The class of stationary processes is a very broad one. Because the
class is so broad it is difficult to quantify the model error because so many
different models could be selected. Possible problems include bias from
taking too short a series, as well as variability from having selected a
particular outcome. In practice, wishful thinking comes into play, with “long
enough’’ conveniently assumed equal to the available data period. Our
analysis uses data from 18 different countries. A comparison between the
results for different countries can give some indication of the estimation
error. The estimation error is understated, firstly because each country is
analysed over the same period and so subject to the same world events, and
secondly because of survivorship bias: we include in our sample only those
countries with a long history, excluding such newcomers as Brazil, Russia,
India and China.

4.8.4 By specifying a specific stationary model (for example, GARCH),
much more can be said about estimation uncertainty, all predicated on the
prior view that GARCH is the underlying model. The problem is that this
fails to capture the uncertainty associated with the possibility that GARCH
is inappropriate.

4.9 Distribution Properties: Mean and Standard Deviation
4.9.1 Our starting point in the analysis is a consideration of the sample

mean and standard deviation of returns for each country.
4.9.2 We calculate these both for simple and logarithmic returns. These

are shown in Figure 4 for all countries considered. For each line segment, the
estimates based on logarithmic returns are at the bottom left and those
based on simple returns are at the top right.

4.9.3 In Figures 4 and 5 we have used data from MSCI indices (See
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Appendix A for more details). We have used 480 annual returns based on
overlapping time periods separated by one month. This approach does lead
to autocorrelation in the returns as each 12 month period will share 11
months of its return with both the subsequent and previous annual returns.
This introduces a theoretical bias into estimates of means and other
moments, but this effect is small relative to the underlying uncertainty in the
estimates.
4.9.4 We can see a close relation between the statistics calculated on

simple or logarithmic returns. The similarity reflects the first order
expansion: logð1þ xÞ � x.

4.9.5 Fitted means and standard deviations do not determine the values
of extreme percentiles. To estimate percentiles, we must fit a distribution.
The choice of a distribution is where the prior views enter the calculation.
One distribution that is well-known, simple to use and probably
inappropriate is the Normal distribution. The 1-in-200 year event, or
0.5 percentile, is calculated as the mean minus 2.57583 standard deviations.

4.9.6 Figure 5 shows the computed 1-in-200 equity market falls by
country. These are obtained either by fitting a log-normal distribution or a
normal distribution to simple returns. We can see that the normal
distribution fitted to simple returns produces larger estimated extreme events;
in some cases much larger. This is unsurprising, and reflects the fact that
the normal distribution has a fatter left tail than the lognormal. If we looked
far enough into the tail, the normal fit to simple returns could produce
infeasible values below the physical constraint of ÿ100%, while this could
never happen fitting distributions to log returns. This does not imply that
lognormal distributions are the right answer, but powerfully illustrates the
importance of prior distributional assumptions on stress test construction.

4.9.7 A fundamental question for consideration is the extent to which
the different parameter estimates for different economies genuinely reflect
different risks, or whether the differences may simply be due to sampling
error. The answer must be a mixture of the two. There are good reasons to
expect the United States market to be less risky than Hong Kong ö as the
world’s largest market, the U.S. has more stocks in the index and benefits
more from diversification than anywhere else. On the other hand, the U.S.
has also had a run of good luck, and we should not discount the possibility
that disastrous returns seen elsewhere may in future replicate in the U.S.

4.10 Distribution Properties: Higher Cumulants
4.10.1 To move beyond Normal distributions, we need to extract more

information about distribution shape. One approach to this is to use
cumulants.

4.10.2 The first five cumulants (or semi-invariants) of a random variable
X are defined as follows:
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k1ðXÞ ¼ m ¼ EðXÞ

k2ðXÞ ¼ s2 ¼ EðXÿ mÞ2

k3ðXÞ ¼ EðXÿ mÞ3

k4ðXÞ ¼ EðXÿ mÞ4 ÿ 3k2
2

k5ðXÞ ¼ EðXÿ mÞ5 ÿ 10k2k3:

The cumulants have the property of being additive for independent random
variables, which we find convenient when annualising distributions. Simpler
moment definitions, for example omitting the ÿ3k2

2 term from the definition
of k4, would not satisfy the additive property. For more information on
cumulants, see Kendall & Stuart (1979).
4.10.3 The first of these are the familiar mean and variance. The series

continues beyond the fifth cumulant, but we do not need higher cumulants
for the purpose of this paper. If X is normal then kjðXÞ ¼ 0 for j � 3.

4.10.4 We define the skewness and kurtosis of a distribution to be the
third and fourth cumulants, scaled by a power of the second cumulant in
order to derive a dimensionless quantity, invariant under translation and
scaling by a positive factor. We denote these by skðXÞ and kuðXÞ respectively.
This definition of kurtosis corresponds to what is sometimes referred to as
excess kurtosis.

skðXÞ ¼
k3ðXÞ

k2ðXÞ
3=2 ¼

EðXÿ mÞ3�
EðXÿ mÞ2

	3=2
kuðXÞ ¼

k4ðXÞ

k2ðXÞ
2 ¼

EðXÿ mÞ4�
EðXÿ mÞ2

	2 ÿ 3:

4.10.5 Given an extract X1; . . . XT from a stationary series, we can
estimate these cumulants from the observed longitudinal distribution. The
first two are:

k̂1 ¼
1
T

XT

i¼1

Xi

k̂2ðXÞ ¼
1
X

XT

i¼1

ðXi ÿ k̂1Þ
2:

4.10.6 For this purpose, we calculate variance based on the empirical
distribution. Our formula differs from the more conventional unbiased
population estimate, where our 1=T is replaced by 1=ðT ÿ 1Þ. The bias
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correction fails for general stationary processes, being appropriate only
when the Xi are iid. For this reason, we persist with the more intuitive 1=T
version. The two versions converge, if T is large enough.

4.11 Skewness and Kurtosis by Country
4.11.1 Skewness is a measure of the asymmetry of a distribution.

Positive skewness means that the left tail is thinner than the right tail.
Positive kurtosis means thicker tails and a sharper peak at the mode,
compared to a normal distribution.

4.11.2 Provided a distribution has a finite fourth moment, we can
consider the shape of that distribution in terms of its skewness and kurtosis.
We can plot these in a chart. These are shown in Figures 6 and 7, for both
simple and logarithmic returns. They have been calculated using the 480
overlapping annual returns from the MSCI data described above.

4.11.3 Here, the pictures are very different according to whether we
analyse simple or log returns. A model that is fat tailed in one space may be
thin tailed in the other. The majority of countries have positively skewed
simple returns but negative skewed log returns.

4.11.4 Once again, we can ask whether differences between different
countries reflect genuine differences in economic risk or whether they may
simply be an artefact of random sampling. The effect of sampling error on
skewness and kurtosis is explored later in this section.
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4.12 How Cumulants Vary by Holding Period
4.12.1 We have measured moments for annual returns. We now consider

returns over other holding periods. One reason for doing this is that using
more frequent observations increases the available number of data points. In
a 40 year period, there are 480 months of monthly data. We might think
there are 468 annual returns, and indeed there are, but they overlap and so a
count of datapoints overstates the quantity of available information.

4.12.2 If we had a reliable model of monthly returns, and a reliable way
to aggregate that model to annual holding periods, then we would have a
recipe for constructing a model of annual returns making full use of 480 non-
overlapping data points.

4.12.3 With the aim of constructing such an aggregation model, we start
by investigating moments for different time horizons. Our data sets are then
as follows:
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Choice to make Selected for this paper

Data sampling frequency Monthly, based in index values from
31/12/1969 to 31/12/2007. This
corresponds to 456 months

Country and reporting
currency

We consider the 18 countries for which data
is available, values reported in local
currency

Return modelled Simple return and log return
Holding period 1 month to 24 months

4.12.4 The distribution of 24-month returns is much more dispersed
than 1-month returns. To make a fair comparison, we seek to compare
parameters on an annualised basis. Therefore, we restate the observed
parameters as equivalent annual parameters. For the purpose of annualisation,
we make the assumption that the returns over non-overlapping intervals
are independent, that is, the random walk assumption. If this assumption
holds, then we should find that annualised parameter estimates take the
same value, except for the effect of sampling error, irrespective of holding
periods. To the extent that annualised parameters do appear to vary with
holding period, this may be due to sampling error or a fault in the
independence assumption underlying our annualisation. A plot of annualised
parameters against holding period therefore provides a useful indication of
the extent to which the independence assumption is borne out in the data
sets.

4.12.5 In general, annualisation requires further distributional
assumptions. A statement of the 0.5 percentile of monthly returns, together
with an assumption of independence, does not allow us to construct the
0.5 percentile of annual returns. To do this calculation requires knowledge of
the full monthly return distribution. However, there is a major simplification
when we instead examine cumulants. It turns out that the aggregation
formulas for cumulants, assuming independent returns, are generic and apply
across all possible distributions. This fact holds whether we look at simple
or logarithmic returns, although the aggregation rules are different in each
case, dealing respectively with products or sums of random variables.

4.12.6 We consider first the mean returns. These are shown in Figures 8
and 9 for both simple and log returns.

4.12.7 By eye, at least, this offers little challenge to our aggregation
method. The high returning countries are Hong Kong followed by Sweden.
The worst performer is Japan, followed by Switzerland based on simple
returns and by Germany based on log returns.

4.12.8 We now move on to an analysis of standard deviations as shown
in Figures 10 and 11. The familiar process for historic volatility estimates
involves taking logs of an index, then examining the standard deviation of
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price changes. To annualise the standard deviation, it is customary to divide
by the square root of the holding period. This is equivalent to the
independence assumption in the case of log returns. For simple returns, the
algorithm is slightly different: the expected (1þ year return)2 over the whole
year is equal to the product of the expected (1þmonth return)2 over each
month, assuming independence. In terms of an equation we can write:

ð1þ RAÞ
2
¼
Y12
i¼1

ð1þ RMi
Þ
2;

where RA is the annual return and RMi
is the return in each month i.

4.12.9 Here, it is less clear that Figures 10 and 11 represent horizontal
lines together with sampling error. While most of these lines look reasonably
flat, some seem to show an upward slope. Italy is the most conspicuous
here, with Austria and Spain some way behind. An upward slope means that
the standard deviation of annual returns is higher than we would expect
from compounding monthly returns independently. This implies positive
correlations between returns over shorter time periods; a rise one month is
likely followed by a rise the next month. This phenomenon is sometimes
called mean aversion. The U.K. is unique in showing the reverse effect, that a
good return is more likely followed by poor returns, that is, mean reversion.
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However, the mean reversion is visible only in the simple returns and not in
the log returns. This suggests a more subtle effect than classical mean
reversion may be at work.

4.12.10 If the annualised volatility is flat, that means that returns are
uncorrelated. The fact of a good return last month gives us no guidance on
the direction of next month’s move. This provides some level of support for
the (weak form of) the efficient markets hypothesis, that current prices
already contain all the information in past returns. Therefore past returns
provide no useful guide to future movements.

4.12.11 We note in passing that market efficiency may not always imply
uncorrelated returns. Many analysts view annual equity returns as being
composed of a one-year interest rate, plus a constant expected risk premium,
plus additional noise. If one noise observation does not predict the next,
then this implies the noise terms are uncorrelated. However, the equity
returns themselves may remain correlated because of the effect of one-year
interest rates. Historic data clearly shows a positive autocorrelation in one-
year rates, which would also imply positive autocorrelation in equity returns,
which implies a positive volatility slope as a function of holding period.
However, the numerical effect is small, and negligible relative to the noise in
our data series.

4.12.12 We now move on to annualised skewness. These are shown,
both for simple and log returns, in Figures 12 and 13.
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4.12.13 These results may be something of a shock. These charts do not
appear to be horizontal lines. With a holding period of one month, the
skewness for each country lies within a narrow band. These bands fan out for
large time periods, with some appearing to increase with holding period,
and others appearing to decrease. The fan is particularly marked in the case
of log returns.

4.12.14 The most obvious explanation of these effects is sampling error.
Sampling error is lower for shorter holding periods where data is more
frequent. So we would expect to see a greater dispersion of results for larger
holding periods, and that is exactly what we see. However, this is unlikely to
be the whole explanation, as this dispersion effect is not evident in the mean
and variance estimates.

4.12.15 The question still arises whether, behind the apparently diverse
behaviour between countries, there lies some underlying pattern. A possible
explanation for the pattern is that a market fall heralds increased volatility in
the next period.

4.12.16 Let RðtÞ denote the log return in a year, and Rðtþ 1Þ the log
return in the subsequent year, adjusted to have zero mean. Then we might
consider the terms in the identity:

EðRðtÞ þ Rðtþ 1ÞÞ3 ¼EðRðtÞ3Þ þ 3EðRðtÞ2Rðtþ 1ÞÞ

þ 3EðRðtÞRðtþ 1Þ2Þ þ EðRðtþ 1Þ3Þ:

4.12.17 Our hypothesis implies that:

EðRðtÞRðtþ 1Þ2Þ < 0:

4.12.18 On the other hand, if, consistent with market efficiency, we
cannot use any power of RðtÞ to predict Rðtþ 1Þ, we must have:

EðRðtÞ2Rðtþ 1ÞÞ ¼ 0:

4.12.19 Putting these together, we should have:

1
2EðRðtÞ þ Rðtþ 1ÞÞ3 � 1

2EðRðtÞ
3
Þ þ 1

2EðRðtþ 1Þ3Þ:

4.12.20 The left hand side of Figure 14 is the annualised skewness from
two-year holding periods, while the right hand side is the average of two
estimates of one-year skewness, the first omitting the last year and the final
term omitting the first year. If you look at the plot of log return annualised
skewness, you might just be able to discern a downward slope, and the
average of all 18 countries is indeed a decreasing function.
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4.12.21 If we look in more detail, we can decompose the slope (of
annualised skewness against holding periods) into two components:
EðRðtÞ2Rðtþ 1ÞÞ and EðRðtÞRðtþ 1Þ2Þ. According to our hypothesis of higher
volatility following a fall, the first of these terms should be around zero,
while the second term should be negative. A scatter plot of these data points
by country should be clustered around the negative Y axis (Figure 14).

4.12.22 Unfortunately, the data does not support our hypothesis.
Indeed, it suggests the reverse, that a large move in either direction tends to
precede a fall. This is hard to rationalise economically. The apparent
downward slope could be mere noise. We note that the U.K. is an outlier in
this plot, the only country where large historic moves have been followed by
a rise in the following year.

4.12.23 Annualised kurtosis shows a clear upward trend as a function of
holding period. This once again contradicts the prior hypothesis of
independent returns (Figure 15).

4.12.24 One explanation for upward sloping annualised kurtosis is
volatility clustering, that is, a tendency for a large move (of either sign) in
one period to be followed by a large move (again of either sign) in the next.
While this effect is well attested for high frequency data (daily, for
example), it does appear to persist with less force at the scale we seek to
measure.
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Figure 14. Dependent Skewness components
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4.13 Estimation Error in Skewness and Kurtosis4

4.13.1 In the following subsections we pause to consider the estimation
error inherent in estimating the skewness and kurtosis from a data series.

4.13.2 In the previous sub-sections the skewness and kurtosis of various
markets were calculated from recent market data ö specifically overlapping
annual data from around 1970. In this section we use a different data set
that is non-overlapping. The data is from Dimson Marsh Staunton from
1/1/1900 to 31/12/2002 and from the MSCI Global Equity Indices from
1/1/2003 to 31/12/2007. The data is used to calculate the skew and
kurtosis of various markets before going on to examine the estimation
error in these calculations. The DMS data comprises annual returns so the
analysis that follows assumes a 1 year time horizon.

4.13.3 In the analysis we have excluded Germany due to the dis-
proportionate effect of the hyperinflation years which leads to very extreme
(positive) skew and kurtosis. A more sophisticated analysis could include
calculations from Germany with the hyperinflation years removed.

4.13.4 In the analysis we calculated statistics based on log returns. We
have also used absolute returns. An alternative could have been to use
returns in excess of cash.
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4 In the text we refer to Kurtosis. For avoidance of doubt we are always referring to Excess
Kurtosis and use the term Kurtosis for brevity.
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4.13.5 We have also both here and in section 5 used some abbreviations
for various country names. The following table can be used as a reference if
any of the labels are not obvious:

Country Country code

United Kingdom UK
USA US
Germany GER
Japan JAP
Netherlands NET
France FRA
Italy ITA
Switzerland SWZ
Australia AUD
Canada CAN
Sweden SWE
Denmark DEN
Spain SPA
Belgium BEL
Ireland IRE
South Africa SAF

4.14 Measuring Skewness and Kurtosis on the DMS Data
4.14.1 In Figure 16 we show the skewness and excess kurtosis of the

absolute log total returns on equity markets for 15 different economies.
4.14.2 It is interesting to see that there are two obvious outliers; U.K.

and Denmark. The high excess kurtosis of the U.K. market is due to the
events of the early 1970s when the market fell and rose dramatically over a
two year period. In 1974 the U.K. Equity Market fell by 48.9% in simple
returns (a fall of 67.0% in log returns). While in the next year, 1975, it rose
by 146% in simple returns (a rise of 90% in log returns).

4.14.3 The Danish market has a moderately high excess kurtosis but is
noticeable for having a high positive skewness. This is mainly due to a
significant rise in the stock market following economic reforms announced in
the early 1980s. This culminated in a 1983 rise of 120% in simple returns (a
rise of 79% in log returns). Meanwhile Denmark appears to have remained
relatively untroubled by large stock market falls over the period 1900-2007.
The worst return came in 1992 when the equity market fell by just 25%
measured in simple returns (or 28% in log returns). This was the most
moderate “worst year’’ fall of any of the 16 economies studied and helps
explain the positive skew in the Danish data.

4.14.4 We can see that the higher moments of these two outlier economies
are mainly determined by 1 or 2 extreme observations. In Figure 17 we have
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excluded the two U.K. extreme returns and the single extreme Danish
return described above. Without these data the skew/kurtosis pairing for the
U.K. and Denmark look very similar to those of other countries.
Noticeably the U.K. returns appear very nearly normally distributed when
the two 1970s observations are removed. We are not advocating the removal
of outliers in doing this analysis as it is just these events that are of most
interest to our analysis. However it is our intention to illustrate how
measures of skew and especially kurtosis can be significantly influenced by a
single event over the course of a 100 year period.

4.15 Measuring Estimation Error on Skewness and Kurtosis on the DMS
Data

4.15.1 We estimate the sampling error for the skewness and kurtosis of
these log returns. To do this we use a formula approach to construct a 95%
confidence interval around the estimates of the skewness and kurtosis;
Scherer (2007).

4.15.2 The results are displayed in Figure 18.

Figure 16
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4.15.3 In Figure 19 we zoom in to give more detail in the centre of the
chart shown at Figure 18.

4.15.4 Interestingly these confidence intervals suggest that there are
several countries with significant skewness or kurtosis in their log returns
over the period 1900-2007. In the following table we display the raw
skewness and kurtosis figures and indicate whether the skewness or kurtosis
is:
ö significantly positive at the 95% level ðþÞ;
ö significantly negative at the 95% level ðÿÞ, and
ö not significant at the 95% level (NO).

Figure 17
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4.15.5 We have included the raw figures for Germany too for
completeness.

Country Country
code

Skew Kurt Significant
Skew

Significant
Kurt

United Kingdom UK 0.0850 5.3372 NO þ

U.S.A. US ÿ0.8528 0.9037 ÿ NO
Germany GER 9.8261 100.1024 NO þ

Japan JAP 0.2338 0.9487 NO þ

Netherlands NET 0.3458 1.8404 NO þ

France FRA 0.2559 ÿ0.1303 NO NO
Italy ITA 0.5247 1.7213 þ þ

Switzerland SWZ ÿ0.1825 0.4116 NO NO
Australia AUD ÿ0.4102 0.4420 NO NO
Canada CAN ÿ0.5785 0.6584 ÿ NO
Sweden SWE ÿ0.1954 0.2479 NO NO
Denmark DEN 1.0161 2.8768 þ þ

Spain SPA 0.2434 0.6838 NO NO
Belgium BEL 0.4497 1.1188 NO þ

Ireland IRE 0.2214 1.7172 þ þ

South Africa SAF 0.3669 0.5500 NO NO

Figure 18
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4.15.6 Only Canada and the U.S.A. showed significant negative
skewness, while Denmark showed significant positive skewness. When
considering excess kurtosis we find that Italy, Denmark, Ireland, Japan,
Belgium, Netherlands and the U.K. showed significantly positive excess
kurtosis. Several countries showed neither significant skew nor kurtosis.
These were Japan, France, Switzerland, Australia, Sweden, Spain and South
Africa.

4.15.7 The formula approach results in a 95% confidence interval width
for skew of 0.92 and a 95% confidence interval width for kurtosis of 1.5
based on 108 overlapping data points in the sample.

4.15.8 Before we conclude this section it is interesting to compare the
skewness and kurtosis observed from the 1970-2008 MSCI data with
overlapping time periods and the 1900-2007 DMS data with non-overlapping
time periods. There are 14 countries for which we had data from both
series.

4.15.9 In Figure 20 we have plotted the MSCI skewness estimate vs. the
DMS skewness estimates. We have also plotted the x ¼ y line so we can see
the degree of variation between the two data series. We can see that there are

Figure 19

Modelling Extreme Market Events 37



a number of countries where the two estimates are close. However there is
also a cluster of Western European countries where the skewness is
noticeably more positive in the DMS sample than the MSCI sample.

4.15.10 In Figure 21 we have plotted the MSCI kurtosis estimate vs. the
DMS kurtosis estimates. We have also plotted the x ¼ y line so we can see
the degree of variation between the two data series.
4.15.11 We can see again that there are a number of countries where the

two estimates are close. However for all but three countries, the DMS
estimates of kurtosis are higher than those for the MSCI data. This is
especially noticeable for Denmark.

4.16 Conclusion
4.16.1 Our analysis in this section has revealed that equity returns are,

for most countries, uncorrelated but not independent, assuming that the
effects we see in the analysis are not due to sampling error.

4.16.2 The idea of constructing annual returns from more frequent data
is appealing, because frequent data gives us more points to investigate.
Unfortunately, to annualise return distributions, we need to make assumptions
about volatility clustering and the correlation of volatility with market

Australia

Belguim

Canada

Denmark

France

Italy

Japan

Netherlands
Spain

SwedenSwitzerland

UK

USA

-1.25

-0.75

-0.25

0.25

0.75

1.25

-1.25 -0.75 -0.25 0.25 0.75 1.25

MSCI : 1970 - 2008 : Overlapping Periods : Skewness

D
M

S
:

1
9
0
0

-
2
0
0
7

:
N

o
n

-
O

v
e
rl

a
p

p
in

g

P
e
ri

o
d

s
:

S
k
e
w

n
e
s
s

Figure 20

38 Modelling Extreme Market Events



levels. The simplest assumption, that these effects are negligible and returns
are independent, is untenable based on the data we have investigated.
Instead, we have to look at returns over annual periods to estimate the best
way to compound distributions ö which unfortunately is what we wanted to
estimate in the first place.
4.16.3 Therefore, estimated annual percentile estimates are not

significantly improved by analysing more frequent data. We can estimate
more accurately the distribution of high frequency returns, but uncertainty
over the aggregation procedure undermines confidence we might have in the
distribution of annual returns derived from overlapping time periods.

4.16.4 We then went on to look at a non-overlapping data set of annual
returns. We measured the skewness and kurtosis on this data and estimated
the sampling error for each of these statistics. We found that the sampling
error was very significant especially for countries that had experienced a
significant positive and/or negative return.

Figure 21
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ä. Equity Modelling ö Æòth Century Data ö Estimation Error

of Extreme Percentiles

5.1 Introduction
5.1.1 Calculation of any statistic should be coupled with some measure

of the estimation error in calculating the statistic. We believe that actuaries
should be aware of the uncertainty inherent in the estimation of the extreme
percentiles of financial asset returns for economic capital calculations. There
are a number of factors that contribute to this uncertainty:
ö The limited volume of historical data.
ö The complex underlying behaviour (probability distribution) of the

underlying asset. For example the well-behaved normal distribution may
not be a reliable description of the behaviour of the asset.

ö The non-constant nature of financial markets.

5.1.2 Financial markets are socio-economic rather than physical systems
whose characteristics might be expected to change over time as the world
changes. This challenges the standard working assumption of statistical
analysis that data is identical and independently distributed (iid) and more
generally that the time series is stationary.

5.2 Data
5.2.1 In this section we have focussed on simple returns as we believe

they are easier to interpret. We have also elected to use absolute returns
rather than excess of cash returns. Our reasons are that actuaries will need to
consider the percentile of absolute returns in their capital calculations. An
analysis based on excess of cash returns would also have value because it
would remove some of the serial correlation we might expect to see from the
cash return component. However the results would require additional
assumptions (about extreme cash returns and their tail correlation with the
extreme excess cash equity returns) to convert the results into an absolute
return stress test. For simplicity we have limited our attention to absolute
returns for this analysis.

5.2.2 The data used for the analysis that follows was the data series
used by Dimson, Marsh and Staunton (DMS) for their research into the long
term behaviour of markets. In their book Triumph of the Optimists there
were some summary statistics given for the data series to end 2000. We
have used the DMS data set of annual U.K. Equity Total Returns from
1/1/1900 to 31/12/2002. The full data set is available on a subscription
from Morningstar. We have supplemented the DMS data with MSCI data
from 1/1/2003 to 31/12/2007. Several of the DMS data series are based on
the MSCI indices in the later years of their survey.

We should point out to the reader that the statistics calculated on the full
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data set contain some discrepancies compared to those cited in the book.
Some sample discrepancies are:

5.2.3 Germany: For their book DMS remove the years 1922 and 1923
due to the hyperinflation in these years.

5.2.4 Switzerland: For their book DMS elect to only calculate statistics
from 1911. No obvious explanation is given for this editing.

5.2.5 We have not carried out an exhaustive comparison of the
difference between the summary statistics given in the book and the original
DMS data set available for purchase online. The data was collected from
Morningstar after the end of 2002 while the book was published on 1 January
2002. Because the book does not provide the actual returns from the data
set and the online data set was more recent, we consider it reasonable to rely
on the data purchased online.

5.3 Percentile Calculation
5.3.1 Before analysing the estimation error we calculate the sample

statistic on which the error will be estimated. The statistic is the 0.5 percentile
return from the U.K. total equity return. We calculate this to be a simple
return of ÿ35.7% (or ÿ46.1%5 as a log return). This statistic was
calculated using the percentile function in Excel applied to the U.K. Equity
Total Return data from 01 January 1900 to 31 December 2007. We note that
the Excel percentile function uses linear interpolation to estimate percentile
values when the percentile requested is between data observations. This
causes some issues which are explored later in this section

5.3.2 We now move on to measuring the estimation error of the
0.5 percentile return statistic. Before we do we introduce the bootstrapping
technique used to calculate the estimation error.

5.4 The Bootstrapping Process
5.4.1 The impact of the limited volume of historical data can be

quantified using standard statistical techniques such as bootstrapping.
Bootstrapping allows us to develop estimates of a lower bound for the
uncertainty in extreme percentile estimates.
5.4.2 There has been a lot of work on the banking sector on back-

testing which should be mentioned. Much of the literature we have seen

5 It may be noted that lnð1ÿ 0:357Þ ¼ ÿ0:442 and not ÿ0:461. The ¢gures in the paper where
calculated by applying the Excel Percentile function to the full U.K. DMS dataset for both log
and simple returns. Because Excel Percentile always uses linear interpolation for interim
percentiles the interpolation for log returns di¡ers from simple returns. We have not explored the
di¡erence in interpolation for log returns and simple returns further in this paper as the main
focus is estimation error and both simple and log returns have only been shown for
completeness.
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focuses on the back-testing of a VaR model to see if the number of VaR
limit breaches is suggesting the model is invalid. For more details on methods
used in the banking sector see the Journal of Risk reference at the end of
this paper. There is also ongoing work in academia to try and quantify
estimation error on extreme percentile returns.6

5.4.3 A paper that takes a very similar approach to the bootstrap
approach taken here is Dowd (2002). The analysis below extends the
bootstrap approach to the long term DMS dataset. It also looks at the
analysis on several different economies and investigates the biases that can be
found in common spreadsheet functions that might be used for this type of
work.

5.4.4 The bootstrap technique is not being proposed as the only way to
measure estimation error of percentiles. However we believe that it is
relatively easy to explain to a less technical audience and relatively easy for a
practitioner to implement.

5.4.5 When we describe bootstrapping we refer to a technique that
constructs an empirical distribution function from a data set and then
generates new data samples from this empirical distribution. Typically we
might generate 10,000 data samples from the empirical distribution and
calculate the statistic of interest in each of the 10,000 samples. We can then
calculate a 95% confidence interval (for example) using the 10,000 samples of
the statistic.7

5.4.6 This bootstrapping technique should not be confused with the
identically named method for constructing a zero coupon yield curve from
coupon bond yields.

5.5 Applying Bootstrapping to U.K. Data
5.5.1 In this sub-section we run the bootstrapping analysis on the DMS

U.K. Equity data series. As described above the bootstrapping method relies

6 One approach is to assume a distribution of the returns, determine the Maximum Likelihood
Estimator (MLE) for the parameter(s) of the return distribution. The distribution of the estimator
itself can be determined, e.g. computationally or via asymptotic theory. The return distribution
and the parameter distribution can then be combined to produce a more volatile return
distribution taking account of uncertainty in the parameter estimation. Finally the extreme
percentile return from that distribution is calculated to arrive at an estimate of the extreme
percentile return taking account of parameter uncertainty. One of the issues with this approach is
that where data is limited ö as is typically the case when estimating a 1 in 200 year equity return
from historical data ö we will struggle to estimate the distribution of the parameters. However,
research currently being undertaken in academia by Russell Gerrard and Andreas Tsanakas at
CASS Business School suggests that for some choices of return distribution the probability of
default taking account of parameter uncertainty depends only on the number of observations
used to estimate the MLE.
7 More details can be found in Ross (1997).
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on constructing an empirical distribution function which we will then
sample from. The empirical distribution function calculated from the DMS
U.K. equity return data 1900-2007 is shown in Figure 22.

5.5.2 We can see the empirical distribution function is smoother in the
main body of the distribution but is more jagged in the tail. This is what we
would expect as there are more data points in centre of the distribution.

5.5.3 We ran the bootstrapping method on this data set to investigate
the uncertainty in the 0.5 percentile return. We decided to calculate the 95%
confidence interval of the estimator ö that is the range in which we could be
95% confident that the true 0.5 percentile equity return would lie.

5.5.4 We have taken two approaches to estimating the 95 percent
confidence interval. In the first approach ö which we will label PF ö we
calculate the 2.5 percentile and the 97.5 percentile from the 10,000 estimates
of the 0.5 percentile return.

5.5.5 After running 10,000 trials of independent bootstrapping samples
we found the central 95% confidence interval of the 0.5 percentile return to
be [ÿ18.7%, ÿ48.8%]. This is a range of 30%. This confidence interval has
been calculated by using the underlying data without making any distributional
prior assumptions.

Figure 22
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5.5.6 In Figure 238 we show the 95% confidence interval for a range of
equity return percentiles from 5% down to 0.01% using the PF approach.

5.5.7 Investigating the distribution of the 0.5 percentile return estimator
we find that it tends to have a particularly skewed distribution as we estimate
the far tail events because the minimum return is floored at ÿ48.8%. We
could try to get around this limitation by relaxing our pure frequentist
approach and assuming that we believe the estimates of the 0.5 percentile
return should have a particular distribution. For simplicity we assume the
estimator has a normal distribution in the analysis that follows.

5.5.8 We now calculate the Mean Squared Error (MSE) of our 0.5
percentile equity return estimates and, assuming a normal distribution for the
MSE, calculate the 95% confidence interval. We will label this the MSE-N
approach.

Figure 23

8 We have set up these ¢gures with the percentile return increasing along the x-axis. This means
that we end up with more extreme percentile stresses nearer to the origin. We mention this in case
it causes any confusion to the reader.

44 Modelling Extreme Market Events



5.5.9 The MSE for the 0.5 percentile return is 10.3% which gives a 95%
confidence interval for the 0.5 percentile return of [ÿ15.5%, ÿ55.8%]. This
range is just over 40% wide; around a third wider than the range we
calculated in 5.5.5 using the PF approach. This should not surprise us as the
MSE-N approach permits equity returns lower than those seen in the data
sample.

5.5.10 Below, in Figure 24, we show the size of the MSE calculated for
a range of percentile equity returns from 0.001% to 5%. The 0.5 percentile
return is marked by a vertical dotted line.

5.5.11 We notice that the 10% MSE that we calculated for the 0.5
percentile occurs at the bottom of the most prominent dip in the curve. For
example both the 0.01 and the 1 percentile points have a MSE close to 12%.
All along the curve there appear to be dips ö which are due to the linear
interpolation in the percentile calculations. We will label this effect the
Percentile Interpolation Effect.
5.5.12 Because we are dealing with a relatively small amount of data

and we are measuring the percentiles in the tail we often need to rely on the
linear interpolation (in the Excel function percentile) to derive the percentile

Figure 24
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value. It is this linear interpolation that causes the Percentile Interpolation
Effect by artificially reducing the MSE between the actual data points.

5.5.13 By taking the local maxima from Figure 24 above and constructing
a smooth curve through them, we can try to recover what the MSE would be
for a percentile function with a more sophisticated interpolation method.
The original MSE line and a polynominal interpolation of maxima are shown
in Figure 25. We used the smallest order polynomial that would give a good
fit to data points.9

5.5.14 We can see there is an uplift to the MSE from using a polynomial
to fit through the maxima ö particularly in the region of the 0.5 percentile
return. Focussing on the region up to 1% return we show in the Figure 26

Figure 25

9 It may be considered unreasonable that the standard error rises as the percentile return
increases away from 0. The choice of interpolation function is arbitrary and was chosen the
easiest (and quickest method) to get a smooth line through most of the points. If we had taken
more time to choose a function which had the desired property of being monotonic we do not
believe that the message of our paper would have been signi¢cantly di¡erent.
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that the maximum uplift from using the best fit polynomial actually occurs
near to the 0.5 percentile return that we are particularly interested in. The
uplift is a factor of 1.23.

5.5.15 Figure 26 suggests the MSE for the 0.5 percentile return should
be around 12.5% ö rather than the 10% calculated in section 5.5.9 above. If
we use an uplifted MSE of 12.5% the 95% confidence interval for the 0.5
percentile equity return would have been [ÿ11.3%, ÿ60.1%] ö a range of
almost 50%.

5.5.16 It is interesting to superimpose the MSE-N confidence interval to
the PF confidence interval shown earlier. This shows the effect of assuming
the percentile estimator is normally distributed.

5.5.17 We can see in Figure 27 that the MSE-N lower bound appears
to smooth out the much rougher lower bound of the PF approach ö
especially as we enter the far tail of the distribution. It also enables us to
attain a lower bound that extends beyond the maximum observed loss seen
in the data. It is not obvious that the 0.5 percentile simple return
estimator of should have a normal distribution ö especially as the
minimum return is possible, ÿ100%, but we feel this is a reasonable first

Figure 26
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approximation given our percentile estimate is over 60% away from the
ÿ100% minimum.10

5.6 Applying Bootstrapping to Global Data
5.6.1 It is also interesting to consider the PF approach to the 95%

confidence interval for the 0.5 percentile equity return, for each of the other
economies in the DMS sample. This is illustrated in Figure 28. We have
overlaid the CEIOPS QIS-4 equity stress test for comparison.

5.6.2 We can see that Germany has the largest uncertainty in the 0.5
percentile equity return due to aÿ80% fall in 1948. AfterGermany theU.K. has
the widest uncertainty for the 0.5 percentile return. The width of the confidence
intervals of Denmark and Spain are particularly narrow being less than 10%.

Figure 27

10 The reader may notice that the MSE lines are relatively smooth until just below the 1 percentile
point. This is due to the very sharp in£exion in the MSE at this value as can be seen in 5.5.13.
combined with the much steeper fall in percentile return at then low percentile return levels.
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5.7 Applying Bootstrapping to Aggregate Global Data
5.7.1 We could make a prior assumption that data from outside the

U.K. could also be used in order to estimate the 0.5 percentile return. For
example we could assume that the DMS data for 16 countries was
independent and therefore that we had 1,648 independent observations of
annual equity return data. Many of the calculation issues we experienced due
to there being only around 108 data points are eased by using all 1,648 data
points from the 16 different economies. This assumption is clearly not true
but allows us to reduce the sampling error and to develop a lower bound for
the estimation error of the 0.5 percentile return taking account of the
returns in other countries.

5.7.2 By re-running the bootstrapping analysis on the full data set for
all 16 economies we find that the estimate of the 0.5 percentile equity simple
return over one year is ÿ38.2%. The 95% confidence interval using the PF
method for this estimate is [ÿ33.1%, ÿ43.9%], a range of just 10%. The
equivalent confidence interval using just the 108 data points fro the U.K.
data set was [ÿ18.7%, ÿ48.8%]; a range of 30%. The assumption that the
data from all 16 economies represents 16 centuries of independent returns
results in a significantly lower confidence interval than we have seen when
using only the U.K. data.

Figure 28
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5.8 Interdependence between Economies
5.8.1 We need to bear in mind that the 16 equity markets will have reacted

to similar economic events over the period under observation. Therefore the
equity returns in different countries cannot be considered truly independent.

5.8.2 To get some sense of the level of independence we can measure the
correlation over the whole distribution of returns for the various countries in
the set. The average of the pair-wise correlation between the returns is
around 35%. This suggests a reasonable level of co-dependence but not so
much that we should not be able to get some useful reduction in the
uncertainty of the statistical estimates by using data from other economies.

5.8.3 However the whole distribution is not our focus in this exercise.
Of more importance is the downside tail correlation between the various
economies which generally tends to be a lot stronger than the correlation
over the whole distribution.

5.8.4 As an example of this elevated tail correlation we can look at the
worst simple return loss in the 20th century for all 16 economies covered by
DMS data. This is shown in Figure 29.

Figure 29
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5.8.5 We see that there is clustering with several countries experiencing
their worst 20C falls in the same year ö notably in the depression of the
early 1930s and the economic crisis of the mid 1970s.

5.8.6 In Figure 29 we have only considered returns over the course of a
single calendar year. Some of the worst bear markets have occurred over
multiple years. In Figure 30 we have considered the two year simple returns
for all 16 countries over the period 1990-2007.

5.8.7 Figure 30 shows more clearly how poor returns occur in several
markets at the same time sometimes with a slight delay. It is this tendency for
poor returns to cluster that leads to elevated tail correlation between equity
returns in poor economic conditions.

5.8.8 It is clear from Figure 30 that the depression of the early 1930s
caused sustained bear markets in many economies; for example all of U.S.A.,
Canada, Spain, Netherlands, Germany, France, Sweden and Belgium
experienced a fall in their equity market of at least 40% over a 2 year period.
Similar clustering occurs in the early 1970s due to the oil crisis and in the
early 2000s as a result of the dot com crash. The final cluster around 1948 is
due to economic crisis in Germany during the aftermath of the 1939-1945
war.

Figure 30
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5.9 Summary
5.9.1 Using the DMS data, we estimated the 0.5 percentile 1 year U.K.

Equity Total Return to be around 37% measured in simple returns.
5.9.2 We have explored various approaches to determining the 95%

confidence interval for a 0.5 percentile equity return. Using historical data
from the U.K. only we could make a case for a confidence interval as wide as
50%. On the other hand making the assumption that data from 16 different
countries could represent consecutive returns in a single economy, we could
make a case for a confidence interval just 10% wide.

5.9.3 Perhaps a prudent approach would be to choose a confidence
interval of between 30%-40%, accepting some narrowing of the confidence
interval in the light of the other economies, but erring on the side of caution
due to strong tail dependence between equity markets and the fact we are
only considering equity market responses to the natural, political and
economic events of a single century.

å. Equity Modelling ö Fitting Distributions

6.1 Empirical Deviations from Normality
6.1.1 Although the normal distribution curve is broadly the right shape

for many financial return data sets, there is some evidence that the real data
diverges from the normal distribution on several points of detail. We have
already discussed the presence of fat tails. A normal distribution fitted to the
mean and standard deviation of a sample tends to underestimate the
number of extreme outcomes. A second property is thin peaks. Historical
return data shows a greater concentration of returns close to the mean,
compared to a normal distribution. These two properties offset a lower than
predicted density of returns at moderate distance from the mean.

6.1.2 We have also examined evidence for asymmetry or skew in
returns. A typical pattern in equity markets, especially in log returns, is a left
tail that is fatter than the right tail. This implies that the median is greater
than the mean, because the median calculation is less sensitive to magnitude
of extreme events in the left tail.

6.2 From Moments to Percentiles
6.2.1 In section 4, we examined equity markets by calculating moments.

To construct stress tests, it is necessary to re-express these fitted moments in
terms of percentiles.

6.2.2 There is no unique way to calculate percentiles given the first four
moments. When skew and kurtosis are both zero, a normal distribution is the
natural choice. In the case of non-zero skew and kurtosis, there has been
some work on limiting expansions. For example, Cornish and Fisher (1937)
consider distributions obtained as the sum of independent random variables.
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They derive an approximation to the pth quantile xp of a random variable
X. The first few terms are:

xp ¼ mþ szþ 1
6 s
ÿ2k3ðz

2
ÿ 1Þ þ 1

24s
ÿ3k4ðz

3
ÿ 3zÞ ÿ 1

36s
ÿ5k2

3ð2z
3
ÿ 5zÞ

þ . . .

6.2.3 In this expression, X has mean m, standard deviation s, third and
fourth cumulants k3 and k4, respectively. The variable z is the pth quantile of
the standard normal distribution.

6.2.4 Focusing on distributions with mean 0 and unit variance, we can
consider how the 0.5 percentile, x0:005 varies with skewness k3 and kurtosis k4.
Under the normal distribution, the 0.5 percentile is z ¼ ÿ2.5758293. In
Figure 31 we have plotted the function in 6.2.2 above. The chart shows the
factor by which the 0.5th percentile of a standard normal distribution should
be multiplied to allow for non-zero skewness and non-zero kurtosis. For
example at the origin, where skewness ¼ kurtosis ¼ 0, we see that the
function has a value of 1. This indicates that the 0.5 percentile would be
represented by the 0.5th percentile of a standard normal distribution. If we
move up from the origin retaining zero skewness but increasing kurtosis the

Figure 31
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multiplicative factor gets larger.11 It is interesting to note the way that as
the negative skewness becomes more pronounced there is an initial fall in the
0.5th percentile. However beyond a certain point making the skewness more
negative actually increases the 0.5th percentile (all other things equal).

6.2.5 It should be noted that there is an identity that constrains the
skewness and the kurtosis; k4 � k2

3 ÿ 2. This means that a small area in both
the bottom right and the bottom left of Figure 31 are infeasible.

6.3 Families of Fat Tailed Distributions
6.3.1 An alternative to asymptotic expansions is explicit calculation

using distributions. We consider two families of symmetric distributions, and
two asymmetric distributions. These all take values anywhere on the real
line.

6.3.2 Our first symmetric family, the Student-T, has polynomial tails,
which means that the density behaves asymptotically like some negative
power of x for large absolute values of x. This distribution currently underlies
the RiskMetrics value-at-risk methodology (see www.riskmetrics.com).
William Gossett first published the Student-T distribution in 1908. The
density is given by the formula

6.3.3

f ðxÞ ¼
G nþ1

2

ÿ �ffiffiffiffiffi
np
p

G n
2

ÿ � 1þ
x2

n

� �ÿ nþ1
2ð Þ

:

6.3.4 Smith (2005) proposes investigation of a four-parameter generalistion
of the Student-T distribution. This is the Pearson Type IV distribution,
defined by the following density:

f ðxÞ ¼
22mÿ2Gðmþ 1

2 inÞGðmÿ
1
2 inÞ

paGð2mÿ 1Þ
k 1þ

xÿ l
a

� �2
" #ÿm

exp ÿn tanÿ1
xÿ l

a

� �� �
:

6.3.5 Eberlein and von Hammerstein (2002) have extensively studied
Barndorff-Nielsen’s (1977) hyperbolic distribution for modelling market
returns. Unlike Student-T, the hyperbolic distribution has exponential tails
and is defined by the density

11 To create this chart we used the function in 6.2.2 with m ¼ 0, s ¼ 1, z ¼ ÿ2:57. The result of
the function in 6.2.2 was then divided by z ¼ ÿ2:57 to get the multiplicative factor illustrated as a
function of skewness, k3, and excess kurtosis, k4.
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f ðx; m; a; b; dÞ ¼
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6.3.6 The special case of a symmetric hyperbolic distribution arises
when b ¼ 0:

f ðx; m; a; dÞ ¼
1

2dK1ðadÞ
exp ÿa

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2
þ ðxÿ mÞ2

q� �
:

6.3.7 Several other families have been proposed in the literature. One
popular family, arising from extreme value theory (see Embrechts, Mikosch
& Kuppelberg, 2008) is the generalised Pareto distribution. These distributions
are usually fitted only to the tail of a data set, which requires the selection of
a cut-off point to define where the tail starts. There is currently little
consensus on how best to choose the cutoff point objectively and
consistently, so we have not followed this route in the current paper.
However, to the extent that generalised Pareto distributions exhibit power
law or exponential tails, we expect the results of these distributions to
approximate our figures for the Pearson IV and hyperbolic distributions,
respectively.

6.3.8 Another widely cited distribution family is the stable family
proposed by Levy (1953) and popularised for stock market modelling by
Mandelbrot (1963). Walter (1989) offers some fitted parameters to various
markets, and Finkelstein (1997) examines this distribution in a U.K. context.
This family contains the normal distribution, but otherwise produces
distributions of infinite variance. Parameter estimation is a significant
technical challenge, as Levy stable distributions are defined by their
characteristic function. Analytical expressions for the density are available
only in special cases which, sadly, do not appear to correspond to financial
data. If we had managed to fit Levy stable distributions, it is likely that the
results would be even more extreme than those we obtain for the power law
tail using the Pearson IV family.

6.4 Fitted Distributions by Method of Moments or Maximum Likelihood
6.4.1 There are two established methods for fitting statistical

distributions to data samples: maximum likelihood and the method of
moments. Maximum likelihod chooses parameters to maximise the product
of the probability density over all the observations. The method of moments
chooses parameters to equate the first few sample moments of the data to
their theoretical values according to the distribution.

6.4.2 There is much theory about the properties of maximum likelihood
parameter estimates. In particular, as the sample size increases, the
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distribution of maximum likelihood estimates tends to a multivariate
normal distribution, whose variance-covariance matrix is related to the
second derivative of the density at the optimum (the first derivative being
zero, of course). This theory allows us to estimate the effect of parameter
error ö provided we believe the data set is ‘‘sufficiently’’ large for the
limiting regime to apply. It also provides a demonstration (the famous
Cramer Rao Lower Bound) that no other method could produce more
accurate (less variable) parameter estimates than maximum likelihood.
Finally, the maximum achieved provides a goodness of fit statistic which
permits comparison of fit between different distribution families.

6.4.3 We have examined annual returns sampled from the U.K. MSCI
index from 31/12/1969 to 31/08/2008. Given the fatness of observed tails
and the influence of a small number of data points on our results, it is
difficult to defend our 38 years of market prices as ‘‘sufficiently large’’ to rely
on asymptotic normality theorems. In addition, the theory requires the data
to be a random sample, which does not apply in our case because of
overlapping time intervals and volatility clustering. The asymptotic result
also relies on the hypothesis that the true underlying distribution lies in the
chosen family; a hypothesis that cannot simultaneously be true for all the
families we investigate! We also constantly struggle with more mundane
matters of convergence ö the likelihood maximisation suffers from multiple
local maxima which pose a challenge for optimisation algorithms. We have
resorted to subjective inspections of fits by eye to convince ourselves that our
fits obtained are global and not only local maxima.

6.4.4 The method of moments is computationally simpler, because the
estimation of moments is a mechanical calculation requiring no optimisation.
Furthermore, the back-solving to find parameters from stated moments is
well understood and produces a unique distribution for the families we
investigate. The Pearson IV is particularly well-behaved in this regard, as the
moments can be derived analytically and the complex Gamma functions
cancel out. To fit hyperbolic distributions is more challenging because of the
appearance of Bessel functions, but robust approximations are available
(Abramowitz and Stegun, 1972). When we fit symmetric distributions by the
method of moments, we focus on the first, second and fourth moments
(because the theoretical skew of a symmetric distribution is zero). The
method of moments has the further advantage of relating fitted percentiles
directly to tabulated moments, facilitating comparison between economies.
This method suffers from a major disadvantage in the case of the Pearson IV
distribution, that some parameter values result in infinite moments, and
these values are inaccessible by method of moments fitting.

6.5 Graphical Analysis of U.K. Data
6.5.1 Figure 32 shows a Q-Q plot for U.K. equity returns. The data are

annual returns, sampled from the U.K. MSCI index, starting 31/12/1969

56 Modelling Extreme Market Events



through to 31/08/2008. We use monthly starting dates, so the calculated
returns overlap to some degree. This is evident at the lower end of the scale,
where a cluster of extreme negative returns are close because these data
points all refer to the same crash event in 1974.
6.5.2 On the horizontal axis is the total return achieved over one year.

These are sorted into ascending order. On the vertical axis are the
corresponding percentiles of the standard Nð0; 1Þ distribution. Of particular
interest are the blue line, x ¼ ÿ40%, which corresponds to a widely used
stress test, and y ¼ ÿ2:58 corresponds to a 1-in-200 event (because the
cumulative normal probability function is 0.005 at y ¼ ÿ2:58). To justify a
40% test, we need to fit a curve to the blue data points that also passes
through the intersection of the blue lines at ðÿ40%;ÿ2:58Þ.

6.5.3 If the original data were drawn from a normal distribution, then
(apart from sampling error) the data should lie on a straight line. The
x-intercept would be the mean, and the slope would be the reciprocal of the
standard deviation. The pale blue line is a fitted normal distribution. The
intercept with y ¼ ÿ2:58 is slightly to the left of ÿ40%, so a fitted normal
distribution would produce a stress test slightly more onerous than 40%.
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6.5.4 A fitted lognormal distribution (for 1 þ return) corresponds to the
green curve, which is essentially a logarithmic function. This produces a
stress test less severe than 40%, but the data fit is poor. Despite the
widespread use of lognormal return distributions in finance, the historical
returns do not support its use for this application.

6.5.5 Figure 32 shows best fit distributions (by maximum likelihood) to
return and log(1+return) data. The distributions are Pearson Type IV (PIV)
and hyperbolic (HYP). Both of these distributions are four-parameter
families, allowing calibration of location, scale, asymmetry and tail fatness.
The PIV has power law tails and the HYP has exponential tails, although our
log transform to the data prevents predicted returns below ÿ100%. We have
also looked at the subsets of these which are symmetrical. We can see that
allowing for the fatter tails produces significantly more onerous stress tests at
the 1-in-200 level, in the PIV case, a fall in excess of 70%.

6.6 Commentary on the U.K. Results
6.6.1 In fitting these data, we must not lose sight of one simple fact.

From the end of November 1973 to the end of November 1974, the U.K.
market (measured on a total return basis) fell by 54%. As far as we are
aware, this is the most severe one-year stock market loss in U.K. recorded
history. Attempts to fit distributions usually result in fitted distribution
functions passing near that point. This means, for example, that if we use 40
years of data, then a 54% fall looks like a 1-in-40 year event. If we use 100
years of data, then a 54% fall looks like a 1-in-100 year event. We do not
have 1000 years of data, but hypothetically, if we did, and 1974 was still the
worst year in that sample, we would estimate 54% as a 1-in-1000 year event.
At the other extreme, if we use fewer than 34 years’ data, then this extreme
event is excluded from the data set ö we could easily convince ourselves, or
even “prove’’ statistically, that a 54% fall is far more extreme than 1-in-200.
This simple arithmetic substantially explains the reasons for different results
of analysis based on different U.K. data sets. The most onerous fitted stress
test arises from the use of a 40 year data period, with either longer or shorter
data periods implying less onerous stress. It so happens that 40 years is the
period for which the MSCI indices are available. Although these indices are
widely used, and recognised for their international consistency (see Wilkie,
1995) they do have this disadvantage of producing large stress tests. The
moral of this story, for would-be data producers seeking widespread citation,
is to avoid a data start date immediately prior to the largest market crash
of the century.

6.6.2 Even after settling on a single data set, the fitted curves for
U.K. produce a wide range of values for the 1-in-200 fall. The most
extreme results are from a Pearson Type IV, applied to simple returns,
which implies a fall of 75% at the 1-in-200 probability level. At the other
extreme is the lognormal distribution, with a fit implying that even a 35%
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fall would be more extreme than 1-in-200. Other distributions produce
intermediate results.

6.6.3 The use of overlapping data intervals frustrates our efforts to test
statistical significance of the fit. However, a visual inspection of the QQ plot
suggests that the lognormal distribution is a particularly poor fit to the
data.

6.6.4 In theory, the maximum likelihood technique also allows us to
estimate confidence intervals for fitted percentiles. Unfortunately, our use of
overlapping intervals once again invalidates the classical formulas for
confidence intervals. If we argued, implausibly, that the overlapping intervals
contain as much information as independent observations, then our 95%
confidence interval for the 0.5 percentile is around 5% wide, varying from
one distribution family to another. If we argue, equally implausibly, that the
overlapping data has no more information than annual data without the
overlap, then the width of the 95% confidence interval is around 15%. Even
with this wider confidence interval, we can see that 95% confidence intervals
from different models fail to overlap. Naively, this seems wrong, as two non-
overlapping sets cannot both contain 95% of outcomes. The explanation is
that each confidence interval is valid only when the chosen distribution
family contains the “true’’ model. This cannot hold simultaneously for all our
models, so not all of the confidence intervals are valid. This suggests we
treat any claimed confidence interval with caution.

6.6.5 If overlapping intervals cause us so much trouble, why do we not
consider only annual intervals, for example December to December? There
are two reasons for preferring overlapping data. Firstly, the use of December
data would overlook some key historic events, in particular the crash of
October 1987 which recovered by the end of the year. So annual returns
starting at points other than year-end, do possess some information, even if
we are unsure exactly how much. Secondly, even if we restrict ourselves to
December data, we still do not have independent samples, because of the
effect of volatility clustering, and so the classical tests still do not strictly
apply.

6.7 International Comparisons
6.7.1 We have encountered difficulties in the construction of sampling

errors. One pragmatic way to evaluate the robustness of apparent patterns is
to test them on international data. A pattern that applies consistently across
many countries is more likely to be robust. We therefore repeated the
analysis on the other 17 countries for which MSCI index data is available.

6.7.2 The wide spread of results from different models is consistently
seen internationally. There is no country for which the models agree on a 1-
in-200 year stress test. In fact, there is no country for which the most extreme
model (usually the Pearson IV) implied a fall of less than double the fall
implied by the mildest model (always lognormal).
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6.7.3 We can, however, often justify rejection of these two extreme
cases. The lognormal is a consistently poor fit, failing to capture observed
tail behaviour in every country. In some countries we can also dismiss the
Pearson IV applied to simple returns, because it implausibly implies a
material probability of a simple return below ÿ100%. This would require
equities to flip over from assets to liabilities, such an outcome being
implausible, on the grounds of limited liability. Where this flip has a fitted
probability in excess of 0.5%, the implied stress test is a fall exceeding 100%,
which is economically nonsensical.

6.7.4 There is no consistent pattern in the goodness of fit between
Pearson IV and hyperbolic distributions. The maximised likelihoods are
usually close, with the apparent better fit varying from one country to
another. This suggests there is insufficient data to determine whether the tails
follow asymptotic power laws or have exponential tails. There is also
insufficient data to reject both of these alternatives in favour of another form
of tail behaviour. As the two families are not nested, that is, neither
contains the other, the use of statistical tests to distinguish them is technically
questionable in any case. We are left in the uncomfortable situation of
being unable to distinguish statistically between competing models that
nevertheless produce dramatically different results. The Pearson IV, with
power law tails, usually produces the more onerous stress test at the 1-in-200
level.

6.7.5 There is also little consistent evidence as to whether taking logs
improves the fit or not. Fitting to log returns removes the problem of fitted
stress tests below ÿ100%. Even where this issue does not arise, the use of log
distributions usually produces less onerous stress tests.

6.7.6 A restriction to symmetric distributions has only a small effect on
the fitting simple returns. The distributions appear approximately symmetric
anyway. Imposition of symmetry causes a modest reduction in maximised
likelihood ö there must always be some reduction because we are forcing the
asymmetry parameter to be zero. In the fit of asymmetric distributions,
there is no consistency to whether the fitted distribution is left or right
skewed. On the other hand, log returns are consistently left-skewed, and the
inclusion of asymmetry parameters has a large effect on the goodness of fit.

6.7.7 While the use of fatter-tailed distributions often results in larger
fitted stress tests, this is not always the case. For some countries, an
allowance for distribution shape implies a less onerous 1-in-200 test than a
simple fit of a normal distribution. This occurs when, for that particular
country, there have been no extreme falls observed in the chosen data period.
The lack of extreme events in the history does not exclude their future
occurrence. However, these differences serve to highlight the importance of
international comparisons in deriving stress tests, as well as the dependence
of fitted results on the peculiarities of a particular chosen data set.

6.7.8 By way of some international comparisons we now present some
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figures showing how the different models perform for different countries.
Figure 33 shows the critical 0.5th percentile return for each distribution in
respect of two contrasting economies; U.K. and Denmark. The models are
ordered in worst to best order for the U.K. It can be seen that this ordering is
quite different from Denmark which has experienced much more benign
equity market falls.

6.7.9 Figure 34 shows the results for all the economies covered using a
single model; the Pearson IV distribution (not taking logs and non-
symmetric). The data are ordered from worst to best 0.5th percentile return.
We note that there is a wide dispersion in the results from around ÿ30% for
Austria to below ÿ70% for Hong Kong and the U.K.

6.7.10 Finally, in Figure 35, we look at the worst 0.5th percentile return
for each country and noted the model that produced this worst return. We
plotted these in worst to best order. We can see that many of the worst
results are caused by the symmetric PIV model.

Figure 33
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Figure 34

Figure 35
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æ. Yield Curve Modelling

7.1 Introduction
7.1.1 Unlike the analysis of equity returns, where returns on individual

stocks are compressed into a single index, the analysis of interest rates tends
to use the whole term structure of the yield curve, adding extra complexity to
the analysis.

7.1.2 A number of methods have been used to make the analysis more
tractable. A crude approach is to consider only parallel shifts in the yield
curve, perhaps based on analysis of yields for a single term. A slightly more
sophisticated approach is to observe that the yield curve can be considered as
a family of random variables to which we can apply principal components
analysis (see Appendix C for a description of this approach). As yields of
similar terms are highly correlated it is not surprising to find that the first
component corresponds roughly to a parallel shift. However there is also a
tendency for short-term yields to have higher volatility than long-term yields,
so the shift is not quite parallel.

7.1.3 A potential drawback of a model with a limited number of factors
is that it does not allow for the full range of possible changes in the shape of
yield curves, since a curve contains an infinite number of points. Infinite
factor models are discussed briefly later in this section. In practice, only a
finite number of points on a yield curve correspond to bonds that are traded
in the market and the rest of the curve is filled in by interpolation. The
implications of this are discussed further in Appendix C.

7.1.4 One noticeable feature of recent U.K. interest rate data is the
significant and sustained falls in general yield levels from around 1997,
coinciding with the point at which the Monetary Policy Committee of the
Bank of England took responsibility for setting base rates. Current yield
levels are therefore low compared with a longer-term historical average.
This can cause a problem when estimating extreme percentiles for falls in
the yield curve, since an extreme fall applied to an initial yield curve that
is well below the long-term average may lead to very low or negative
yields. One common approach to get around this is to consider relative
rather than absolute changes in yields, which typically leads to stresses
expressed as ratios of the starting yield instead of a movement by a fixed
amount.

7.2 Choice of Yield Curve
7.2.1 The yield on a bond is defined as the internal rate of return, at

which the market price of the bond price is equal to the present value of its
cash flows.

7.2.2 Empirically, bond yields depend on many factors. Most important
are the term of the bond, its coupon level and timings, and the extent of any
credit risk. Also of importance are effects due to liquidity and whether bid
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or offer prices are used. There may be a further inconvenience premium due
to adverse tax, regulatory or accounting treatment.
7.2.3 The “yield curve’’ refers to yields as a function of time. This

requires standardisation of the other factors affecting yields. Our analysis
uses yield curves derived from interest swaps based on 3-month or 6-month
LIBOR. In that case, maturities are a whole number of periods from the
valuation dates, and credit risk reflects the banks submitting data to the
LIBOR panel, refreshed throughout the term of the swap. Published swap
yields are equivalent to par yields. Swap data has the advantage of covering a
range of terms, with broadly homogenous contract design, tax and
regulatory treatment over across a range of economies and contract terms.
Unfortunately, historic interest rate swap data are available for major world
currencies only from the mid 1990s, with further limitations on data
availability for long terms or minor currencies.

7.2.4 We define a yield curve in terms of the prices of zero coupon
bonds. We use Pt to denote the price of a zero coupon bond of term t. We
expect P0 ¼ 1, and usually Pt should be a continuous decreasing function of t.
We distinguish a starting curve Pbase

t from a stressed curve Pstress
t after a

possible market move.
7.2.5 A capital assessment requires consideration of all risks to bond

values, whether caused by moves in a reference yield curve, credit events, or
changes in spreads due to liquidity, credit or convenience. In this paper,
however, we focus only on moves related to yield curves.

7.3 Factor Models of the Yield Curve
7.3.1 Stress test constructions for yield curves must start from a study

of probable yield curve moves. The first step is to quantify the volatility of
yield moves as a function of term. This measurement may refer either to
absolute changes in yields, or to proportional changes, the latter being
broadly equivalent to changes in log yields. In this paper, we have analysed
absolute changes in yields. The table below shows the historic volatility of
yield changes, measured for sterling and Euro over the last ten years. For the
Euro figures, we have used Deutsche Mark swaps prior to to the
introduction of the Euro.

Term Anualised standard deviation
of changes in GBP swap yields

Anualised standard deviation
of changes in EUR swap yields

1 0.70% 0.54%
2 0.78% 0.67%
3 0.79% 0.69%
5 0.75% 0.67%

10 0.69% 0.61%
20 0.65% 0.57%
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7.3.2 One way to think about yield moves is in terms of factors. There
are several different representations of the yield curve, and factor models can
be applied in different ways according to the chosen representation. Possible
factor models are shown in the table below.

Representation

Zero coupon
bonds

Pstress
t ¼ Pbase

t � 1þ Z1z1ðtÞ þ Z2z2ðtÞ
� 	

Annualised spot
yields

ðPstress
t Þ

ÿ1=t
¼ 1þ ðPbase

t Þ
ÿ1=t
ÿ 1

� 	
� 1þ Z1z1ðtÞ þ Z2z2ðtÞ
� 	

Continuously
compounded
spot yields

ÿ ln Pstress
t ¼ ÿ ln Pbase

t � 1þ Z1z1ðtÞ þ Z2z2ðtÞ
� 	

Continuously
compounded
forward yields

ÿ
d

dt
ln Pstress

t ¼ ÿ
d

dt
ln Pbase

t � 1þ Z1z1ðtÞ þ Z2z2ðtÞ
� 	

7.3.3 European regulators, in QIS3 and QIS4, focus on the annual spot
yield representation. Many models used for option pricing, including the
famous Heath-Jarrow-Morton framework, use the forward yield
representation. In this paper, we use the zero coupon bond representation,
because it allows exact value at risk calculations in the important special case
when cash flows are fixed.

7.3.4 In a factor model construction, Z1 and Z2 are independent
standard normal variables. The functions z1ðtÞ, z2ðtÞ represent different
possible shocks to the shape of the curve. For example, z1ðtÞ might capture
changes to the level of the yield curve, and z2ðtÞ the slope. These functions
must satisfy some constraints. For example, the ziðtÞ must be smooth
functions in order to produce a suitable degree of smoothness in the stressed
bond prices. In the zero coupon bond representation, we must also have
zið0Þ ¼ 0.
7.3.5 We showed an example of a 2-factor model above. If we know two

points on the stressed yield curve, we can (by linear elimination) determine
the values at all points. Models with three or more factors are constructed
analogously by adding the obvious further terms.

7.4 Infinite Factor Models
7.4.1 Calibration of factor models for risk purposes is often problematic.

Difficulties arise because, empirically, factors seem to come and go over
different periods. One period may be dominated by changes in level, while
over a different period the short end of the curve may fluctuate while the long
end remains more or less fixed. We cannot be confident that moves in past
yield curves are representative of future changes. The calibration problem is
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exacerbated by the large number of parameters to be estimated ö in the
three factor case, we must calibrate three functions of time. There is a danger
that calibration simply wraps the model around historic data.

7.4.2 An alternative approach is to model yield curve changes using a
small number of parameters but a very large number of factors. The small
parameter count has the effect of smoothing out any wrinkles from historic
data sets, potentially reducing sampling error and more robust for projection.
One such approach is the IOU (integrated Ornstein-Uhlenbeck) model.

7.4.3 The integrated Ornstein-Uhlenbeck process takes the form of

Pstress
t ¼ Pbase

t � 1þ
ðt

0
OUsds

� �
;

where OUs is an Ornstein^Uhlenbeck (OU) process. The OU process is the
continuous version of a first order autoregressive Gaussian time series, with
parameters corresponding to ðsSÞ standard deviation at time 0, ðsL Þ the
standard deviation for large t, and ðaÞ the speed of mean reversion. In that
case, the covariance structure is

CovðOUs;OUtÞ ¼ s2
Se
ÿaðsþtÞ þ s2

L e
ÿaðsþtÞðe2aminfs;tg ÿ 1Þ:

7.4.4 This is an infinite factor model because the entire path of a
process is required just to model the changes in yield curves from one period
to the next. The construction means that even if we knew 100 points on the
yield curve, some uncertainty still remains about the remaining points. This
gives the model a richness that is useful for understanding risks. For
example, under finite factor models it is possible to find a set of assets that
appear to replicate liabilities exactly. Under the IOU model this can only be
achieved if all asset and liability cash flows are perfectly matched. Otherwise,
the model always captures some degree of mismatch risk.

7.4.5 Infinite factor models (also called random field or stochastic string
models) are commonly used to describe the evolution of the entire surface of
forward rates parameterized by time and time-to-maturity. The IOU model
captures the uncertainty generated by such models over a fixed time-horizon
only. Evolution of the IOU model in the time direction is of limited relevance
for stress-testing purposes. Additional details and discussion are provided
by Santa-Clara and Sornette (2001) for example.

7.4.6 The IOU model describes zero coupon bond prices. Observed
interest rate volatilities and correlations are in terms of par yields. An
application of Ito’s formula expresses par yield volatilities in terms of the
volatilities of zero coupon bonds, given a starting yield curve which we take
as being flat at 5%. We can fit three parameters, and in this paper we have
chosen these to capture the observed historic volatilities of 2 and 10 year par
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yields, as well as the correlation between them. Possible fitted parameters
are as follows:

Parameter Fitted to GBP swap yields Fitted to EUR swap yields

sS 0.75% 0.65%
sL 0.91% 0.75%
a 18.0% 12.0%

7.4.7 We have fitted to two points on the volatility curve, and to a
correlation between them. Figure 36 compares observed volatilities by term
to the fitted model. The correpsondence is close, and exact for the 2 and 10
year volatilities we have chosen to fit. However, there are systematic
deviations, including an over-fitting of volatilities at the short end of the
curve and under-fitting at the long end. Both of these suggest the model may
be improved, and calibration complicated, by the inclusion of further
parameters.

7.5 Variance Matching
7.5.1 We now consider how to translate a model of yield curve moves

into a series of stress tests for capital calculations. Given that stress tests are
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finite in nature, this necessarily involves condensing historic data, or a fitted
model, into a finite number of factors.

7.5.2 As part of the development of Solvency II, European regulators
have published a series of quantitative impact studies. Their yield curve
stresses are calibrated using a method which we will call variance matching.
They construct a one factor model with the same variance as the full model.

7.5.3 Let us write the general multiplicative model for bond prices in the
form:

Pstress
t ¼ Pbase

t �Ht

VarðHtÞ ¼ s2
t :

7.5.4 We previously took the example of a two-factor model:

Pstress
t ¼ Pbase

t � 1þ Z1z1ðtÞ þ Z2z2ðtÞ
� 	

:

The variance-matched one-factor version is then obtained with a root-sum-
of-squares formula, representing the standard deviation of a sum of
uncorrelated variables.

Pstress
t ¼ Pbase

t � f1þ Z4stg

¼ Pbase
t �

�
1þ Z4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z21ðtÞ þ z22ðtÞ

q �
:

7.5.5 Under the variance matching method, a pair of stress tests (up and
down) is based on historic variability of yields by each term. In the context of
the IOU model, based on normal distributions (for non-normal distributions,
replace 2.58 with the appropriat percentile) the corresponding 1-in-200 year
stresses are:

Pstress
t ¼ Pbase

t � f1� 2:58stg:

7.5.6 This correctly calculates the required capital when there is one
fixed future cash flow. In other cases, the use of up and down stress tests
implicitly assumes that yields of all terms are 100% correlated with each
other. Empirically, we know this is false, but there is no alternative within the
constraints of a pair of opposite stress tests.

7.5.7 The effect of overstated correlations depends on the business cash
flows. Suppose first that a firm has a net long position in cash flows of all
terms, so is exposed to a rise in interest rates of all terms. In that case, the
variance matched stress test overstates the risk, in failing to give credit for
diversification between yields of different terms. A multifactor model (with
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the same volatilities) would give a lower capital requirement. The same
applies if the firm has net short cash flow position at all future dates.

7.5.8 On the other hand, consider a firm who hedges a liability outgo at
time 11 with a 10-year bond. In that case, the firm is exposed to a rise in 10
year yields and a fall in 11 year yields. A correlation assumption of þ100%
excludes this most painful combination, and so understates the risk. A multi-
factor model would give a higher capital requirement than the statutory
stress test. We cannot therefore simply suppose that the chosen single stress
test is cautious.

7.5.9 We note in passing that the stresses may give rise to negative bond
prices, if t is too large. A possible pragmatic fix for these cases is to set the
bond price to zero, or to a small positive value.

7.6 Spot and Forward Matching
7.6.1 We noticed a particular concern with the variance matching method,

when asset and liability cash flows were of similar magnitude but opposite
sign. The variance match method can be improved to cover this situation, by
equating not only the variance of ZCB curve but its slope, as well as the
covariance between level and slope. To capture this, we need, at least, a two-
factor model.

7.6.2 The general two factor model takes the form:

Pstress
t ¼ Pbase

t �Ht

¼ Pbase
t � 1þ Z1z1ðtÞ þ Z2z2ðtÞ

� 	
:

7.6.3 To assist calibration of a spot and forward match, we rearrange
this into polar coordinates.

st ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z21ðtÞ þ z22ðtÞ

q
z1ðtÞ
z2ðtÞ

� �
¼

st cosðctÞ

st sinðctÞ

� �
:

7.6.4 Stress tests are constructed in the usual way, by moving each of Z1

and Z2 to their 0.5 percentile and 99.5 percentile levels. In some situations,
we can interpret this as a classical level and slope decomposition. A stress to
the level of the yield curve changes all bond prices except P0. Our first factor
can capture such a stress ifct lies in the limited rangeÿp=2 < ct < p=2, in which
case cosðctÞ > 0. We might then interpret the second factor as a change in
slope, particularly if ct is an increasing function of t, and there is some
pivotal tpin for which cðtpinÞ ¼ 0. In that case, tpin represents the term which is
unaffected by the second stress test. If Z2 > 0, then bonds shorter than tpin

become more expensive, while longer bonds become cheaper. This corresponds
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to an increase in yield curve slope with the yield fixed at tpin. Conversely
Z2 < 0 corresponds to a decrease in yield curve slope. Whether we can
achieve this interpretation, however, depends on the range of ct. If ct covers
too wide a range (exceeding p from the highest to lowest values) then both
factors will vary sinusoidally with time.
7.6.5 We use the Box^Muller algorithm to express Z1 and Z2 as functions

of an exponentially distributed random variable, R, with mean 1, and a
uniformly distributed random variable y on ðÿp; pÞ.

Z1

Z2

� �
¼

ffiffiffiffiffiffi
2R
p

cosðyÞffiffiffiffiffiffi
2R
p

sinðyÞ

 !
:

7.6.6 We can finally rewrite Ht in a form that is easier to calibrate. The
new form also makes clear that only relative values of ct affect the model’s
behaviour. The addition of a common constant to all values of ct does not
affect the distribution of Ht, although it may affect how we decompose a
given stress into its two components.

Ht ¼ 1þ Z1z1ðtÞ þ Z2z2ðtÞ

¼ 1þ st

ffiffiffiffiffiffi
2R
p

cosðctÞ cosðyÞ þ st

ffiffiffiffiffiffi
2R
p

sinðctÞ sinðyÞ

¼ 1þ st

ffiffiffiffiffiffi
2R
p

cosðct ÿ yÞ:

7.6.7 Suppose now we want to fit this model as a simplified version of a
more complex model. In addition to capturing the variance of H, we wish to
capture the variance of H and its slope. That means we need to capture not
only Var(Ht) and Var(Htÿ1) but also Var(Ht ÿHtÿ1). Equivalently, we need to
capture Correl(Htÿ1;HtÞ.

7.6.8 A simple calculation under the two-factor model shows that
CorrelðHtÿ1;HtÞ ¼ cosðct ÿ ctÿ1Þ. Therefore, we can calibrate the function ct

inductively by:

ct ¼ ctÿ1 þ cosÿ1 CorrelðHtÿ1;HtÞ:

7.6.9 Values of st and ct are shown for the U.K. calibration of the IOU
model in the chart below, together with the implied stress tests to be applied
as multiplicative factors to zero coupon bond prices:
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Time
horizon t

st ct stress 1 ¼ 2:58 � st sinðctÞ stress 2 ¼ 2:58 � st cosðctÞ

0 0.00% 0.00 0.00% 0.00%
1 0.75% 0.00 0.00% 1.93%
2 1.48% 0.28 1.04% 3.68%
3 2.20% 0.49 2.70% 5.00%
4 2.90% 0.68 4.70% 5.82%
5 3.58% 0.84 6.88% 6.15%
6 4.23% 0.99 9.10% 6.01%
7 4.86% 1.12 11.27% 5.46%
8 5.46% 1.24 13.34% 4.55%
9 6.04% 1.36 15.24% 3.33%

10 6.61% 1.46 16.94% 1.84%
11 7.15% 1.56 18.44% 0.13%
12 7.67% 1.66 19.70% ÿ1.76%
13 8.17% 1.75 20.73% ÿ3.79%
14 8.65% 1.84 21.53% ÿ5.92%
15 9.12% 1.92 22.08% ÿ8.13%
16 9.57% 2.00 22.41% ÿ10.39%
17 10.01% 2.08 22.52% ÿ12.66%
18 10.44% 2.16 22.40% ÿ14.94%
19 10.85% 2.23 22.09% ÿ17.20%
20 11.25% 2.30 21.57% ÿ19.42%
21 11.64% 2.37 20.87% ÿ21.58%
22 12.02% 2.44 20.00% ÿ23.69%
23 12.38% 2.51 18.96% ÿ25.72%
24 12.74% 2.57 17.77% ÿ27.66%
25 13.09% 2.63 16.44% ÿ29.51%
26 13.44% 2.69 14.98% ÿ31.26%
27 13.77% 2.75 13.40% ÿ32.91%
28 14.10% 2.81 11.71% ÿ34.44%
29 14.42% 2.87 9.92% ÿ35.85%
30 14.73% 2.93 8.05% ÿ37.15%
31 15.04% 2.98 6.09% ÿ38.32%
32 15.34% 3.04 4.07% ÿ39.37%
33 15.64% 3.09 1.98% ÿ40.29%
34 15.93% 3.15 ÿ0.15% ÿ41.09%
35 16.21% 3.20 ÿ2.33% ÿ41.76%
36 16.49% 3.25 ÿ4.54% ÿ42.31%
37 16.77% 3.30 ÿ6.78% ÿ42.73%
38 17.04% 3.35 ÿ9.04% ÿ43.03%
39 17.31% 3.40 ÿ11.31% ÿ43.20%
40 17.57% 3.45 ÿ13.59% ÿ43.25%
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7.6.10 We can express these as stresses to continuously compounded
spot rates. These are shown in Figure 37.

7.7 Addition of Further Factors
7.7.1 We have taken care to fit an infinite dimensional model, namely

the IOU model. We have then distilled this into a two-factor model for the
purpose of constructing stress tests. In many ways this is unsatisfactory, as
by reducing the model to two factors we have thrown away infinitely many
remaining factors.

7.7.2 The number of factors to be considered depends on the extent of
existing hedging attempts. Where close interest rate hedging is practiced, it is
unlikely that simple factors of the form we have calculated can reveal subtle
mismatches. For this purpose, higher factor models are required. The
variance matching algorithm extends to produce as many factors as are
required.

7.7.3 On the other hand, for firms taking a strong directional position
on interest rate moves, for example with liaiblity duration far exceeding asset
duration, a low factor model may be adequate to capture the main sources
of risk.
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ð. Conclusions

8.1 General Comments
8.1.1 We have chosen to study the 0.5 percentile outcome over one year,

in line with current and emerging regulatory practices, primarily focussing on
equity returns.

8.1.2 At this time horizon and confidence level prior beliefs play a
critical role in determining the outcome of any estimate, since there is not
sufficient (relevant) historic data for a pure frequentist approach. Section 5
shows the large estimation error involved when looking at a hundred years of
equity data ö a much longer series than we have for most asset classes.
Such prior beliefs can be obvious, such as the choice of distribution to fit to
data, or more subtle, such as the exclusion of a data point as an outlier.

8.1.3 Of course it is often possible to construct more data points by
looking at monthly, weekly or even daily data. However the way in which the
distribution of annual returns is constructed from the monthly, weekly or
daily distribution is itself an assumption founded largely on prior beliefs. In
the case of equities, our analysis of skewness and kurtosis in Section 4.13
does not support the hypothesis that monthly equity returns are independent
ö the most obvious approach to annualisation.

8.1.4 Results can also be highly dependent on the choice of data used. The
decision over what data is and is not relevant is itself a form of prior belief.

8.2 Equity Returns
8.2.1 It is a common belief (especially for high frequency data such as

daily) that equity returns show a negative skew (fatter left tail than right) and
leptokurtosis (fat tails). Our own analysis of annual log-returns from two
data sets shows a scatter of positive and negative skews for different
countries. Virtually all countries show positive kurtosis, with the U.K.
having by far the greatest due to the influence of 1974 and 1975. However
when we try to calculate 95% confidence intervals for our estimates, very few
countries show either significant skew or kurtosis (including the U.K.) for
annual returns. This is because high skew and kurtosis is often driven by one
or two data points and so the sampling error involved is very large. If 1974
and 1975 are excluded from the U.K. data set then the skew and kurtosis
become lower than those of most other countries.

8.2.2 The Dimson, Marsh and Staunton data set gives us over 100 years
of data, but even if we include all the data as relevant we are still faced with
large estimation error for the 0.5 percentile event for annual returns ö not
surprising as this represents a 1-in-200 year event. We have estimated a 95%
confidence interval of 30-40% using bootstrapping.12

12 Just to be clear, if the con¢dence interval is 30% and our estimate is a 0.5 percentile return of
ÿ40%, the range is ÿ25% to ÿ55%.
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8.2.3 Taking a parametric approach, we can fit a distribution to our
data (a strong example of a prior belief of course) and use that to estimate
the 0.5 percentile return. A distribution that fitted the data well and showed
some stability in parameters from one country to another and one time
period to another would then be a plausible choice. If the 0.5 percentile event
was similar between distributions that would be even more encouraging.

8.2.4 We have tried a range of distributions fitted to a variety of
countries. Unfortunately the results appear to be unstable by distribution and
country with estimates of the 0.5 percentile return varying from ÿ30% to
ÿ80%. A simple 2-parameter distribution like the log-normal does not
capture the positive kurtosis that most data sets show. However when we fit
more complex 3 or 4-parameter distributions the results are very sensitive to
the data and we get unstable results from one country to another. More
parameters allow us to capture better the distribution shape, but at the risk
of overfitting to the data. Once again a few data points can have a large
influence on the results ö again the U.K. is an outlier in international
comparisons because of the events of 1974-5.

8.3 Interest Rates
8.3.1 With equity returns we can compress the returns on individual

stocks into a single index. In contrast interest rates have a term structure
which adds significant extra complexity.

8.3.2 For practical purposes the richness of the full yield curve analysis
is often compressed into a small number of factors. A common approach is
principal components analysis, and an alternative approach is described in
Section 7. However care is needed to ensure that the number of factors, and
so the richness of yield curves tested, is suited to the asset/liability position in
question. A position where assets and liabilities have been matched against
parallel shifts in yields curves may show little capital requirement under a
one factor model, but a larger requirement under a two factor model that
includes the possibility of a change in slope. More generally once we have
immunised against n factors it is the n+1th and higher factors that we need to
consider.

8.4 Other Asset Classes and Confidence Levels
Having concentrated in this paper on equities (a relatively simple, well

studied and data rich asset class) it is sobering to reflect that in practice
actuaries and other finance professionals have to estimate similar extreme
events for more complex asset classes with much less relevant data. In
addition, for internal purposes many financial institutions calculate capital at
much more extreme percentiles (say the 0.05 percentile instead of the 0.5
percentile). The most we can say at present is that in such cases we should be
clear about the role of prior beliefs in forming these estimates, and clear
about the likely levels of uncertainty (estimation error) that will be involved.
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APPENDIX A

SELECTED SOURCES OF MARKET DATA

A.1 Introduction
A.1.1 There are a large number of commercial and free data sources for

equity and interest rate data. The quantity and quality of data have increased
significantly in recent years and most sources provide a wide range of
indices and statistics. However many indices have a relatively short history
and it is less easy to find long-term data series. Constructing such a series is a
non-trivial task often requiring multiple sources of data.

A.1.2 In this appendix we give some background to one database of
long-term returns, the Dimson, Marsh & Staunton dataset, that we have used
in sections 4 and 5 of this paper. We also give some brief details of a
selection of other commonly-used data sources, although it is important to
note that we have made no effort to give a comprehensive list and we do not
make any recommendations. Finally, although not a data source, we give
some notes on the MSCI indices used in section 4.

A.2 Dimson, Marsh & Staunton
A.2.1 Elroy Dimson, Paul Marsh and Mike Staunton (DMS) of the

London Business School have compiled a global database containing annual
returns on stocks, bonds, bills, inflation and currencies for 17 countries from
1900-2005. DMS comment that, although an earlier start date would be
desirable, the poor quality of older data makes the returns calculated before
1900 unreliable. Before this date there are few stock indices so individual
stock data must be used. The problems they identify include lack of coverage,
omission of dividends, survival bias and a tendency to omit periods of
market stress.

A.2.2 The countries included are: Australia, Belgium, Canada, Denmark,
France, Germany, Ireland, Italy, Japan, The Netherlands, Norway, South
Africa, Spain, Sweden, Switzerland, United Kingdom and United States. The
U.K. equity return series was constructed from the London Business
School’s share price database from 1955 onwards and by collecting share
prices from old issues of the Financial Times from 1899 to 1954. The
database also includes four world indices based on the countries included in
the DMS dataset: a World equity index, a World excluding U.S. index, a
World bond index and a World ex-U.S. bond index.

A.2.3 The DMS dataset was published and analysed in Triumph of the
Optimists: 101 Years of Global Investment Returns. It has been updated
annually and published in the ABN AMRO Global Investment Returns
Yearbook. The dataset is also distributed commercially by Morningstar.
Website: www.morningstar.com

A.2.4 References.
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A.2.5 E. Dimson, P. Marsh, and M. Staunton, Triumph of the
Optimists: 101 Years of Global Investment Returns. New Jersey: Princeton
University Press (2002).

A.2.6 E. Dimson, P. Marsh, and M. Staunton, The Worldwide Equity
Premium: A Smaller Puzzle (2006).

A.3 Bank of England
A.3.1 The Bank of England is a useful source for U.K. yield curve data.

It publishes its own estimates of U.K. government yield data in the statistics
section of its website. Government nominal data is available since 1979
daily and since 1970 monthly, while real and inflation data are available since
1985 daily. The data includes instantaneous implied forward rates and
implied spot curve.

A.3.2 This information is free but the Bank does not take responsibility
for the accuracy of the information.

A.3.3 Website: www.bankofengland.co.uk

A.4 European Central Bank
A.4.1 The ECB Statistical Data Warehouse provides free Government

Bond yield data for the European area as well as the United States and
Japan.

A.4.2 Website: http://sdw.ecb.europa.eu/

A.5 British Bankers’ Association
A.5.1 The BBA publishes historical LIBOR rates for several currencies

starting from January 1986 and repo rates from May 1999.
A.5.2 Website: www.bba.org.uk

A.6 Euribor
A.6.1 Euribor is an ‘‘international non-profit association’’ backed by the

European Banking Federation (EBF) that calculates the Euro Interbank
Offered Rate (Euribor). Historical data from its launch in December 1998
are available from its website.

A.6.2 Website: www.euribor.org

A.7 David Wilkie ö Andrew Cairns Database
A.7.1 David Wilkie and Andrew Cairns have created the Herriot-Watt/

Faculty and Institute of Actuaries Gilt Database. This database is available
for free and is limited to U.K. gilts, covering U.K. gilts indices, gilts prices
and other technical data. Yields and yield indices are available monthly since
November 1998.

A.7.2 There are a number of commercial data providers offering
historical equity and/or fixed income data. A selection of the major
providers is listed below.

78 Modelling Extreme Market Events



A.8 Global Financial Data
A.8.1 Global Financial Data, as the name suggests, is a database

providing financial information for global markets. It contains some long-
term series for both U.K. gilt yields and equity returns. Some examples are
given below.

A.8.2 Government Bond Yields
ö United Kingdom 20-year Government Bond Yield (monthly from 1933

to 1985, daily from 1986).
ö United Kingdom 30-year Government Bond Yield (weekly for 2003 and

2004, daily from 2004).
ö United Kingdom 2 1/2% Consol Yield (Monthly from 1800 to 1980,

weekly from 1880 to 1915, monthly from 1915).

A.8.3 Equity returns
ö FTSE 100 Total Return Index (available daily from June 1994).
ö U.K. FTSE All-Share Return Index (extended by Global Financial

Data and available monthly from 1694 to 1964 and daily from 1964).

A.8.4 Older values of the FTSE All-Share index have been compiled
from sources such as the Banker’s Magazine, the Investor’s Chronicle, the
London and Cambridge Economic Service and the Financial Times-
Actuaries Indices.

A.8.5 Website: www.globalfinancialdata.com

A.9 FTSE
A.9.1 FTSE calculates and publishes the well-known FTSE indices,

including the FTSE U.K. Index Series for equities and the FTSE Actuaries
U.K. Gilts Index Series. The FTSE All-Share has been calculated since July
1962 and the FTSE 100 since January 1984.

A.9.2 Website: www.ftse.com

A.10 Bloomberg
A.10.1 Bloomberg is a large database containing information on the

majority of existing indices as well as its own calculations and indices.
A.10.2 For U.K. interest rates, the data series are generally high

frequency but relatively short. For example, FTSE Actuaries U.K. Gilts
Yield 5/10/15 Years indices are available daily since March 1998. However
‘‘OECD United Kingdom Interest Rates 10 Year Government bond’’ is
available monthly from 1960.

A.10.3 For U.K. equity returns the FTSE 100/250/350 and All Share
indices are available daily from 1985.

A.10.4 Website: www.bloomberg.com
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A.11 Thomson DataStream
A.11.1 DataStream is a database of company, financial and economic

data. The data is updated daily with some series dating back as far as 1970.
A.11.2 Website: www.datastream.com

A.12 Reuters
A.12.1 Thomson Reuters was recently purchased by The Thomson

Corporation.
A.12.2 Reuters does not offer real time data but sells datasets of

historic data. The fixed income data includes 54 global government yield
curves with histories dating back to 1993. The equity data provides a
minimum of 20 years’ pricing for G7 countries.

A.12.3 Website: www.reuters.com

A.13 MSCI Indices
Morgan Stanley Capital International (MSCI) indices are published

starting from 31/12/1969. Series since then are available for 18 countries:
Australia, Austria, Belgium, Canada, Denmark, France, Germany, Hong
Kong, Italy, Japan, Netherlands, Norway, Singapore, Spain, Sweden,
Switzerland, U.K. and U.S.A., although indices are now available for a much
wider range of countries. They are available both in local currency terms
and U.S. Dollars.
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APPENDIX B

THE STRESS TEST PLUS CORRELATIONS METHOD FOR
MODELLING ECONOMIC CAPITAL

B1 The Approach Step by Step
B1.1 A typical procedure used by firms to calculate economic capital for

ICA requirements is the ‘‘stress test plus correlation’’ method. When
estimating extreme market percentiles we need to bear in mind how they will
be used, so it is useful to look at the steps involved in this method.

B.1.2 Step 1. Identify the standard deviation of each of a small number
(<30) of risk drivers, and define stress tests to be �2.58 standard deviations
from the current value. These stress tests are called ‘‘up’’ and ‘‘down’’
stresses, respectively. Each driver is stressed individually, with the other
drivers retaining their current values. These are called ‘‘one way stresses’’, as
opposed to ‘‘combined stresses’’ under which two or more drivers move
simultaneously from their current values.

B.1.3 Step 2. For each risk driver, identify which of {current value, up
stress, down stress} produces the lowest net assets. Define the signed capital
as follows.
ö If current value is the worst then
ö signed capital ¼ 0.
ö If up stress is the worst then
ö signed capital ¼ up stress net assets ÿ current net assets.
ö If down stress is the worst then
ö signed capital ¼ current net assets ÿ down stress.

B.1.4 Step 3. Add up the sum of the squares of the signed capital for
each driver. Then for each pair of drivers, add to this twice the product of the
signed capital amounts, multiplied by an assumed correlation. Finally, take
the square root of the total. This is the aggregate capital.

B.1.5 Step 4. The estimated 0.5 percentile of net assets is the starting
value minus the aggregate capital.

B.2 Possible Assumptions Underlying Stress Tests plus Correlations
B.2.1 This procedure can be justified under the following assumptions

ö Assumption 1. The drivers are small in number.
ö Assumption 2. Each driver has a normal distribution with mean equal

to its current value.
ö Assumption 3. The net assets are a monotone (increasing or decreasing)

function of each driver.
ö Assumption 4. The drivers do not interact ö for example, the profit or

loss arising from a fall in interest rates is unaffected by the level of equity
markets.
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ö Assumption 5. The profits or losses from each driver follow a jointly
elliptically contoured distribution.

B.2.2 Where these assumptions hold, the estimation of stress tests
reduces to the estimation of the standard deviation of each driver.

B.2.3 If the assumptions do not hold, we may turn to more generic
approaches, such as Monte Carlo simulation. Monte Carlo is a generally
applicable method, but is considerably more onerous than stress tests and
correlations, both from a coding perspective and also in terms of computer
run time.

B.3 Approximations and Adjustments
B.3.1 Instead, where the assumptions are approximately true, it may be

possible to apply the stress test and correlation method, but with some
adjustment to reflect ways in which the assumptions are not borne out.
Examples of possible adjustments are as follows. These are numbered in
order to correspond with the assumptions to which they relate.

B.3.2 Adjustment 1. If the number of factors is large in number,
dimension reduction techniques may be applied. For example, rather than
modelling each equity holding and each corporate bond individually, these
may be assumed to follow a particular index. Where yield curves may in
principle change shape in a variety of ways, it may be assumed that yields of
all terms move in parallel. More advanced techniques such as principle
components analysis or variance matching, may be brought to bear.

B.3.3 Adjustment 2. To reflect distributions with fatter tails than
normal, use a stress test larger than 2.58 standard deviations ö for example,
2.8 standard distributions instead.

B.3.4 Adjustment 3. To allow for non monotonicity, take the worst net
assets for any driver value between the up and down stresses. In the case of
monotone functions, this minimum will correspond to either the up or down
stress, but the formulation in terms of worst case also captures the situation
where the most painful situation does not correspond to the most extreme
driver values. This situation usually arises when the original stress tests are
used as input to the construction of a hedging programme.

B.3.5 Adjustment 4. To capture interactions, consider combined events
where more than one stress test occurs simultaneously. These tests need to
allow for diversification, so typically the combined stress multiplies each
factor stress by a shrinkage factor si where the index i runs through the risks
modelled. To ensure this is indeed a shrinkage, we insist jsij � 1, with
positive shrinkage implying up stresses and negative values down stresses.
For example, the medium bang approach considers shrinkage where the si all
take the same absolute value. Another approach defines a shrinkage vector
s as likely if sT rÿ 1s � 1, where r is the correlation matrix. Keen readers
may enjoy demonstrating that this implies jsij � 1. Capital can then be set
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according to the scenario that minimises net assets subject to this constraint.
This approach combines the effects of Adjustment 3 and Adjustment 4.

B.3.6 Adjustment 5. It is sometimes suggested that correlations always
serve to increase risk in extreme events, even if there are offsets in normal
conditions. To reflect this, any negative contributions may be excluded from
the sum in Step 3. A more extreme adjustment is to replace any negative
contributions with a positive contribution of the same magnitude. This is
equivalent to using absolute capital values in place of signed capital values,
as is required for the standard formula under current drafts of Solvency II. In
addition, or instead, firms may choose prudent correlation assumptions in
order to reflect more extreme correlations which may apply in stressed
situations. More sophisticated approaches involve copulas to reflect non-
ellipticity.
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APPENDIX C

COMPONENTS OF YIELD CURVE MOVEMENTS ö
ILLUSTRATIVE WORKED EXAMPLES

Introduction

C.1 Variables Modelled
We consider the movement in the yield curve from now until a point in

one year’s time. We denote this movement by X, a random vector. For the
purposes of this section, it does not matter whether these are spot yields, par
yields or forward yields.

We use a deliberately unsophisticated model, so we can easily interpret
outputs and so readers can readily replicate our results. Suppose X has zero
mean, so the expected yield curve in a year’s time is exactly where it is now.
We suppose X is modelled at certain key maturities, these being maturities:
f1; 2; 3; 5; 10; 20g.

C.2 Components
We seek to express X in the form:

X ¼ BZ:

Here, Z is a vector of independent random variables; for this section we use
normal variables with mean zero and unit variance. The matrix B holds the
components, with each column of B corresponding to one component. The
element Bi j is the value of the j th component evaluated at the i th key
maturity.

From standard matrix theory (see, for example, the book by Anderson
(1957)), the variance-covariance matrix of X is BBT, where a superscript T
denotes a matrix transpose. We therefore want the decomposition to
reproduce the variance-covariance matrix of X. This means that

BBT ¼ V :

We can choose B with fewer columns than the number of elements of X, i.e.
we have fewer components than points on the yield curve. In this case we are
unlikely to match V exactly but instead seek B such that BBT is as close as
possible to V .

C.3 Why Reduce the Number of Components?
When all components are considered, any yield curve decomposition

explains 100% of the variance. If some components are excluded, then principal
components analysis converges best, in terms of average variance explained.
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Why, then might we want to truncate the decomposition, and exclude
some components? The most important reason arises in the context of Value-
at-Risk calculations.

Let us suppose the net assets of a firm are a smooth function of the yield
curve shift X. Then, for small X, the net assets are approximately of the form
a0 þ gTX, where a0 is the starting net assets before the yield shift and g is
the vector gradient. With a variance-covariance matrix V , the variance of net
assets is then gTVg. Assuming multivariate normal distributions and a
specified confidence level a (for example a ¼ 0:995), the value at risk isffiffiffiffiffiffiffiffiffiffi

gTVg
p

Fÿ1ðaÞ.
To evaluate this expression, we need to compute the gradient g. This is

commonly estimated using central finite difference methods. With our model,
based on 6 points of the yield curve, the estimation of g requires 12 net
asset calculations, also known as “stress tests’’.

The calculation of stress tests may be an easy task, for example if all
future cash flows are fixed. But financial firms’ cash flows are typically
variable, depending not only on market conditions but also the actions of
customers and management. In this case, net asset calculation may be an
onerous task. A request to recalculate 12 stress tests could have important
operational implications. The burden gets worse if more than 6 points on the
curve are modelled.

A constraint on the number of components can reduce the effort required
in value-at-risk calculations. As an intermediate step, we need to compute the
variance gTVg.

Now suppose we can approximate V � BBT. Then we can approximate
the variance gTVg � gTBBTg ¼ ðBTgÞ

T
ðBTgÞ. A saving arises because we can

compute BTg with fewer stress tests than to estimate g. The number of stress
tests required is twice the number of components.

This is how to estimate BTg without knowing g. Let us consider the first
column of B, that is, the first component, a vector, b say. Then the first
element of BTg is estimated as

ð2hÞÿ1½net assetsðX ¼ hbÞ ÿ net assetsðX ¼ ÿhbÞ�:

We need one of these calculations for each component, not for each point
on the yield curve.
Other contexts may also show an advantage from needing fewer

components. For example, Monte Carlo work involves simulating the
components of Z and computing the matrix product BZ. Both of these
operations are quicker if the number of components is reduced.

The pricing of some financial products involves optimal stopping
problems. Examples include estimating the best time to pre-pay a fixed-rate
loan or to cash in a fixed-rate deposit. The analysis of such products involves
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movable boundary problems, whose solution is only straightforward for low
dimensional problems. For this reason, consideration of such products is
usually in the context of 1 or 2-component models.

In each of these cases, neglecting higher components introduces errors,
because the correlation structure is modelled inaccurately. The errors may
still be considered a price worth paying in order to benefit from the run time
advantages of a low dimensional interest rate model.

C.4 Solution Rotation
Solutions B to the equations X ¼ BZ and BBT

¼ V are not unique and we
can ask how the different solutions are related.

The answer lies in rotations. We have the model X ¼ BZ. Here, the random
vector Z consists of independent identically distributed Nð0; 1Þ variables.
Contours of equal density are concentric hyper-spheres around the origin.

Rotations can be written as matrix multiplication, by some matrix O. A
matrix O corresponds to a rotation if and only if Oÿ 1 ¼ OT. If Z is a vector
of independent identically distributed Nð0; 1Þ variables, then so is OZ. Thus,
a model X ¼ BZ produces the same distribution for X as a model BOZ. This
means that if B is one decomposition, then BO is another.

C.5 Variance-Covariance Matrices
At each key rate, we assume the standard deviation of X is 1%. The

correlation matrix between yields at different maturities is assumed to take
the following simple form:

The standard deviations are all 1%. Therefore, measured in percentage
terms, the covariance matrix is the same as the correlation matrix, which is
convenient for our example. We denote this matrix by V .

The appropriate assumptions to use for a particular yield curve, a
particular financial entity and a particular point in time are all subject to
debate. Our assumptions for the worked example are not derived from any
particular data set, but they are broadly representative of moves in yields for
developed economies in recent times. By choosing simple assumptions we
aim to make it easy for anyone else to verify our numbers.

Correlations t ¼ 1 t ¼ 2 t ¼ 3 t ¼ 5 t ¼ 10 t ¼ 20

t ¼ 1 1 0.9 0.8 0.7 0.6 0.5
t ¼ 2 0.9 1 0.9 0.8 0.7 0.6
t ¼ 3 0.8 0.9 1 0.9 0.8 0.7
t ¼ 5 0.7 0.8 0.9 1 0.9 0.8
t ¼ 10 0.6 0.7 0.8 0.9 1 0.9
t ¼ 20 0.5 0.6 0.7 0.8 0.9 1
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C.6 Principal Components
One of the best known methods of choosing components is principal

component analysis, or PCA (Anderson (1957)), devised so that the early
components (Z1 and Z2 for example) explain as much as possible of the
variability in the rates, minimising the role of later components Z3 to Z6.
This equates to maximising the sum of the squares of elements in the first
two columns. It can be shown that this is equivalent to choosing the
components as the eigenvectors of V sorted in descending order of
eigenvalue.

The table shows principal components of what we will later call “Model 6’’.

The columns of the matrix represent the principal components. As an
example, if we use just one component then we would reduce the vector Z to
ðZ1; 0; 0; 0; 0; 0Þ

T and our estimate BZ of X would be the one factor model
ð0:83; 0:91; 0:95; 0:95; 0:91; 0:83ÞT � Z1.

Each component is independent of (or at least uncorrelated with) the
other components. Traditionally, the components are interpreted so that the
first represents the level of the curve, the second component the slope and the
third component the curvature.

C.7 Cholesky Decomposition
A Cholesky decomposition is another text-book solution to finding a

matrix B such that BBT
¼ V . The decomposition works provided that V is

symmetric and positive semi-definite. These are precisely the conditions that
V is a valid variance-covariance matrix.

The Cholesky method produces a matrix B which is lower triangular, that
is, so that all elements above and to the right of the main diagonal are zero.
It also ensures that the diagonal elements of B are non-negative. Within these
constraints, B is uniquely specified.

The table shows a Cholesky decomposition for our correlation matrix:

Principal components: Model 6
Z1 Z2 Z3 Z4 Z5 Z6

t ¼ 1 0.833278 ÿ0.481806 0.222651 0.129099 0.077942 0.034592
t ¼ 2 0.909996 ÿ0.352706 0.014383 ÿ0.129099 ÿ0.147311 ÿ0.094507
t ¼ 3 0.949163 ÿ0.129099 ÿ0.209257 ÿ0.129099 0.072806 0.129099
t ¼ 5 0.949163 0.129099 ÿ0.209257 0.129099 0.072806 ÿ0.129099
t ¼ 10 0.909996 0.352706 0.014383 0.129099 ÿ0.147311 0.094507
t ¼ 20 0.833278 0.481806 0.222651 ÿ0.129099 0.077942 ÿ0.034592
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We can see that the first component captures the first column of the
correlation matrix. The second component starts at zero for t ¼ 1. This is
because the first component already explains the yield shift at t ¼ 1. And so
the pattern continues. Figure 38 shows the components.

Although these components do reproduce the desired correlation matrix,
they do not appear natural or intuitive. For example, if we recomputed the
Cholesky calculation with the time points in reverse order, starting from
t ¼ 20, the components look different ö in fact, given the symmetry of the
correlation matrix, reversing the time axis has the effect of a vertical
reflection of the whole chart.
This lack of intuition is not a problem for some applications. For

example, Cholesky decomposition is the preferred algorithm in Monte Carlo
work, on account of its simplicity. On the other hand, for communicating
capital requirements, more intuitive decompositions are helpful.

Cholesky Components
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Cholesky decomposition
Z1 Z2 Z3 Z4 Z5 Z6

t ¼ 1 1.0 0 0 0 0 0
t ¼ 2 0.9 0.435890 0 0 0 0
t ¼ 3 0.8 0.412948 0.435286 0 0 0
t ¼ 5 0.7 0.390007 0.411103 0.434613 0 0
t ¼ 10 0.6 0.367065 0.386921 0.409048 0.433861 0
t ¼ 20 0.5 0.344124 0.362738 0.383482 0.406745 0.433013
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In our example, we can convert a Cholesky decomposition to polynomial
components using the following rotation matrix:

C.8 Polynomial Components
Until now, our analysis has treated the yields at t ¼ f1; 2; 3; 5; 10; 20g as

six distinct random variables. We have not used the associated time values in
our models.

However, it is seen empirically that yield curves are often smooth
functions of time t. This suggests we look to smooth sample functions to
build up components. One possible choice is the family of polynomials in t. A
disadvantage of polynomials is their tendency to infinity for large t, while
yield curves in practice tend to flatten out. A solution to this problem is use
polynomials, not in t itself, but in At for some 0 < A < 1. In our examples,
we have selected A ¼ 0:8.
The table shows the coefficients of the polynomial decomposition:

The upper diagonal form gives a hint that these coefficients are also
obtained from a form of Cholesky decomposition.

The coefficients of Zn in the nth column is a polynomial of order nÿ 1 in
At. Evaluating this gives the corresponding components:

Rotation to convert Cholesky decomposition to polynomial components
Original Z1 Original Z2 Original Z3 Original Z4 Original Z5 Original Z6

New Z1 0.866025 ÿ0.482214 0.017380 0.065366 ÿ0.113533 ÿ0.002384
New Z2 0.198680 0.338353 ÿ0.688167 ÿ0.501604 ÿ0.312521 ÿ0.152294
New Z3 0.209427 0.266734 ÿ0.338611 0.200056 0.513594 0.683033
New Z4 0.221404 0.440493 ÿ0.104847 0.606656 0.163600 ÿ0.592584
New Z5 0.234834 0.568667 0.480340 0.047983 ÿ0.529753 0.328335
New Z6 0.250000 0.253819 0.412004 ÿ0.577723 0.564144 ÿ0.226510

Polynomial coefficients
Z1 Z2 Z3 Z4 Z5 Z6

1 0.8660 0.4963 0.0091 ÿ0.1128 0.1816 ÿ0.0776
At 0 ÿ1.2232 ÿ2.3339 4.2749 ÿ6.3338 7.9003
A2t 0 0 2.9302 ÿ13.7102 37.9863 ÿ87.5140
A3t 0 0 0 10.8064 ÿ74.8113 328.9030
A4t 0 0 0 0 45.8107 ÿ493.1470
A5t 0 0 0 0 0 254.3899

Polynomial components
Z1 Z2 Z3 Z4 Z5 Z6

t ¼ 1 0.866025 ÿ0.482214 0.017380 0.065366 ÿ0.113533 ÿ0.002384
t ¼ 2 0.866025 ÿ0.286508 ÿ0.284323 ÿ0.159815 ÿ0.238404 ÿ0.068529
t ¼ 3 0.866025 ÿ0.129943 ÿ0.417666 ÿ0.067763 0.003679 0.232518
t ¼ 5 0.866025 0.095510 ÿ0.440996 0.196032 0.080885 ÿ0.037812
t ¼ 10 0.866025 0.364980 ÿ0.207677 0.201473 ÿ0.147034 0.107004
t ¼ 20 0.866025 0.482214 ÿ0.017380 ÿ0.065366 0.113533 0.002384
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One advantage of using polynomials is that they interpolate naturally for
other values of t. Figure 39 shows the polynomial components for a range of
t values. We see that successive components become smaller but also more
wiggly ö a well-known feature of higher order polynomials.

The behaviour for t < 1 is a possible cause for concern. It reflects the
tendency of polynomials to wiggle. Our choice of A ¼ 0:8 produces only
minor wiggle problems with our chosen correlation structure. An informal
test of examining charts by eye, suggests that most other choices of A
produce more pronounced wiggles, which is how we chose A ¼ 0:8 in this
example.

C.9 Proportions Explained
Let us consider the variance of the rate at a particular term as components

are added.
The first component necessarily understates the variance. For the yield

curve as a whole, the contribution of the first component can be measured as
the sum of the squares of the first column, which is the sum of the squares
of the first noise term Z1. The inclusion of each new component increases the
variance, until all the components are incorporated and the sum of the
squares of the entire matrix is 1. We can investigate the proportion of
variance explained by each component, split according to the time point, that
is, by rows of the original matrix. Figure 40 shows the results for
polynomial components. In order to make the higher components more
visible, the vertical axis starts at 60%.
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We also show the corresponding figure for Cholesky decomposition
(Figure 41).

Here we see that the first component explains all of the variance for the 1
year rate. However, converge is much slower for longer term rates, and
indeed, is so bad for t � 5 as to fall below our vertical scale.
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We can show the same chart for principal components (Figure 42).
We can consider how to choose the components to maximise the variance

that the early components explain. There is clearly a trade-off here. Cholesky
decomposition does a good job at t ¼ 1 but a terrible job at t ¼ 20.
Polynomials and principal components are more consistently convergent
across a range of terms.

Taking the average across the six terms considered, we can measure the
speed of convergence as more components are added. Figure 43 shows the
results (note that in order to make the differences more visible, the vertical
axis starts at 60% explanation and not 0%).

We can see that the Cholesky approach converges slowest of all. The
polynomial decomposition is much better, but not quite as fast as principal
components analysis.

In fact, principal components are defined in order to maximise the speed
of convergence, averaged across the key terms, that is to maximise the height
of each green bar in Figure 43. Therefore, the principal components
represent the best possible convergence outcome, which cannot be beaten.
This is encouraging, because it gives us a basis for claiming that some
decompositions are “better’’ than others, and in particular that principal
components analysis is “best possible’’. Furthermore, this analysis has
assumed nothing about the underlying financial business. This raises the hope
of component analysis that can be performed once and is then valid for
multiple applications.

Figure 44 shows the principal components resulting from the analysis.
We can see that the first three components capture aspects of level, slope

and curvature, with higher components being wigglier. This is similar to the
situation for polynomial components.

C.10 Alternative Choices of Weights
We have analysed principal components based on speed of convergence at

key time points t ¼ f1; 2; 3; 5; 10; 20g.
We could consider alternative weights. For example, a “Model 20’’ that

gives equal weight to all time points between t ¼ 1 and t ¼ 20 inclusive. Or a
“Model 50’’ based on a 50-year yield curve. The respective weights are
shown in Figure 45.

As we shall see, it is an unhelpful feature of principal components
analysis that the choice of weights is a major determinant of the calculated
components. The need to choose weights does not arise for our other
methods of component construction:polynomials and variance matching.
When using principal components analysis, we might (for example) construct
a system of weights to reflect the relative size of cash flows at different
terms. The ideal choice of weights might therefore vary from one business to
another. On the other hand, it may be better to use a common compromise
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Variance Explained: Principal Components
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set of weights for all businesses in order to simplify aggregation calculations
across multiple lines of business.

If we are to use intermediate time points between those originally
modelled, we must also specify a model for yields at those points. In this note
we consider two alternatives. The linear model “L’’ uses linear interpolation,
with flat extrapolation beyond the 20 year point. The smooth model “S’’ fits
a polynomial of order 5 to the six observed points.

The possible combinations of weights and interpolations give us five
models, which we will denote as Model 6, 20L, 20S, 50L and 50S.

Our original model had yield standard deviations of 1% at all terms.
However, these standard deviations do not necessarily apply at other,
interpolated terms. Figure 46 compares standard deviations for both smooth
and linear interpolation. Note the vertical axis ö the standard deviations
are close to 1, in fact, as near to 1 as makes little practical difference.
Linear interpolation always gives a standard deviation of 1% or less, with

the reduction due to diversification in the interpolation between points.

C.11 Principal Component Comparisons
We now compare principal components under our five models: 6, 20L,

20S, 50L and 50S (Figure 47).
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In each case, the first principal component can reasonably be interpreted
as a measure of “level’’. We see differences according to where the weights
lie. The first component is largest where the weights are largest. Thus, model
6 produces a maximum at t ¼ 3, while model 50 has its maximum at t ¼ 25.
The choice of interpolation method (L or S) has little effect.

The second component captures the slope, or twist, of a yield curve move.
One important question in value at risk calculation is the choice of pivot,
that is, the term of interest rates which is unchanged by the twist stress test.
This corresponds to the Y intercept of the second principal component.

Figure 48 shows that the pivot is not an inherent property of past yield
curve moves. On the contrary, it depends on the weights chosen for principal
components analysis. If the weights extend a long way into the future, then
the pivot occurs at a large t value. The choice of weights is not a purely
technical decision with limited impact. On the contrary, a consideration of
the second principal component reveals the importance of the choice of
weights. Given the potential difference in calculated value at risk, a rigorous
motivation for the choice of weights is important, in place of the heuristic
reasoning we are able here to provide. The choice of smoothing method,
however, remains unimportant.

We now jump to the last principal component (Figure 49).
It is unlikely that this component is much used in practice. However, the

comparison with previous figures is interesting. We see a modest effect of the
choice of weights, with the 20 and 50 year models looking very similar.
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Second Principal Component Z2
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What the last component picks up is the smoothing algorithm. The wiggles
from the “S’’ models come through clearly, in contrast to the simpler shape
under linear interpolation.

C.12 Implicit Data Enhancement
Ideally, interest rate data is observed from actual trades or bid/offer

quotes in a deep liquid market. In many markets, however, trades may be
infrequent or bid-offer spreads wide, especially for long dated cash flows.

Given these difficulties, we might expect consequences for yield curve
data quality and availability. Online sources, however, provide apparently
complete information extending far back in time. They can do this because
of substantial investment in data cleaning. Cleaning methods include
interpolation and extrapolation to infer missing data points or to adjust out-
of-date price information. The data collection may be a many stage process:
individual banks apply their own cleaning algorithms to data made even
cleaner by commercial data vendors’ systems.

Clean data does not easily reveal which data points are real market
information and which are filled in by algorithm. However, principal
component analysis may reveal this information. And you could test this in a
real market by trying to transact at prices posted on the system.
For an example of the power of PCA, suppose a user downloads yield

curve data out to 50 years maturity. Theoretically, this data set may require
50 components for a full explanation of the correlation structure. Maybe,
analysis of the data shows 6 significant components, with the higher
components accounting for a negligible proportion of total variability.

One possible explanation is that there really are only 6 components in the
economy. Another explanation is that we are dealing with a 50L or 50S
model, with 6 real data points and 44 points constructed by interpolation.
The shape of the 6th component reveals more about the type of interpolation
used. In other words, the higher components tell us about the process of
data collection and cleaning, rather then about risk in the financial markets.

C.13 Value-at-Risk for Hedging
Economic capital is an important application of yield curve models.

Economic capital is often regarded as having a cost, and so firms try to trade
to minimise stated capital requirements.
One important tool for this is hedging. For example, if a firm has a long

exposure to an 11 year interest rate, they may trade in the interest rate
markets to acquire a corresponding short exposure to the same interest rate.
The net effect is immunisation ö the firm is protected against moves in
either direction, at least against small moves.

Hedging is often less exact than this. A firm may decide to hedge the 11-
year exposure with a 10-year trade, for example because the 10-year
instrument is more liquid than an exact match. This hedge should still be
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effective ö because the 10 year rate and 11 year rate are strongly
correlated, but not quite as good as hedging the same rate as the original
exposure.

In this case, PCA converge more slowly than we hope. PCA finds
components that well explain movements in the yield curve, but that is not
the same as explaining movements in my portfolio. PCA may ensure that the
variances of 1 and 2 year rates are well explained. But to assess hedge
effectiveness you also need to know the correlation between them. PCA
solves a particular, objective function, but that objective function takes no
account of how fast correlations converge. Technically, we could include
covariances in the weights for evaluating convergence, but the optimisation
would then trade off covariances against variances elsewhere.

For example, let us suppose an investor has an exposure of »1 per 1%
move in 1 year rates, which they have partially hedged with an equal and
opposite exposure to the two year rate. From our assumed correlation
matrix, we can calculate the variance of profit to be 1þ 1ÿ 2 � 0:9 ¼ 0:2. We
can investigate how quickly the different decompositions converge to the
true value. The principal components calculation refers to Model 6 (see
Figure 50).

As we would expect, the Cholesky method scores well, as it builds up the
volatility by iteration starting at the short end of the curve. With cash flows
only at t ¼ 1 and t ¼ 2 in our example, the Cholesky method has captured all
the variance in the first two terms.
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The principal components method performs surprisingly badly. Section
3.1 suggests that the first three principal components explain more than
95% of the yield curve variability. However, in our example, only 33% is
explained by the first three components. Arguably, this is an unfair
comparison; had we known that the cash flows stopped at time 2, we would
have applied more weight to the early years when calculating principal
components, and so obtain faster convergence for those flows.

In this particular example, the Cholesky method gives good convergence,
while Principal Components has the slowest convergence. This will not
always be the case. We could construct examples illustrating any of the six
possible orderings. Instead, our example is intended to illustrate the potential
gap (in either direction) between an advertised “percentage explained’’ for
the yield curve as a whole, compared to the actual explanatory power for a
particular set of cash flows. By construction, PCA maximises the advertised
percentage explained, and therefore carries the greatest potential to
disappoint.

In general, the problem of slow convergence is particularly acute if yield
decomposition into components is used for constructing a hedge in the first
place. For example, given a particular definition of level, slope and
curvature, it is easy to find a hedge portfolio that immunises all three. Tested
against that decomposition, it appears that risk is eliminated. What has
really happened is that risk is concentrated in the fourth and higher
components, which have been discarded on order to speed up the value-at-
risk calculation. There are two solutions to this problem. One is to use more
components for analysing risk than are used for building the hedge in the
first place. The second solution is to use a full model, including all
components rather than truncating.

C.14 A One-Factor Model
Suppose we are constrained to use only a single component. Then interest

rates moves at different terms must be 100% correlated.
A simple solution is to set the interest rate standard deviation to 1% at all

the modelled terms. We then have a solution that explains 100% of the
variance for each key rate, although clearly the correlations are overstated.
We call this “variance matching’’. This is essentially the test which CEIOPS
have calibrated for solvency II, based on the volatility of yields at various
terms.

A theoretically more sophisticated solution is to use the first component
from PCA. Figure 51 shows a comparison.

The PCA is supposed to maximise the variance explained by each
component. In our example, the first component explains 80.8% of the yield
curve variance.

Yet, the variance match explains 100% of the variances. The correlations
are equally wrong in both one-component models. So it is difficult to
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describe any sense in which the theoretical superior PCA is better in
practice. Indeed, we might wonder how we ever convinced ourselves that
80.8% is the best possible, given that variance matching explains 100% of the
variance.

The answer to these points is subtle. The advantage of PCA is that the
first component is one of a series. By adding more and more terms, we can
get closer to the true yield curve distribution. This is useful if we can
somehow test convergence, optionally adding higher terms only when
necessary.

In contrast, the variance match might produce a good first guess, but we
cannot refine that guess by adding more components. If we add further
components, we might get the correlations more accurate, but those extra
turns will also increase the variances, making them too large.

If we know at the outset that we might want to explore further stress
tests, then the PCA makes sense. The first component is one step on a
longer path. On the other hand, if more than one stress is excluded, for
example by computation costs, then the variance match could be a better
approach.
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C.15 Three Factor Variance Match
We have discussed a variance match for a single factor model. We now

consider extending this idea to three factors.
We assume the importance of capturing the variance of yields at each

term. With three factors, we are able to impose additional constraints.
Knowing that hedging often involves offsetting risks at adjacent terms, we
can ask that our three factors correctly replicate the correlations between
adjacent terms. This is equivalent to reproducing the variance of the yield
curve slope between terms.
These are still too few constraints to determine a three factor model. We

can insist also on capturing the correlations between rates that are next-but-
one to each other. Equivalently, we reproduce the variance of the second
differences in yield slope. These differences are relevant to “barbell’’ hedging
strategies that (for example) seek to hedge a 2 year exposure with an
average of 1 and 3 year exposures.

We have articulated some constraints that are relevant to common
business strategies. Now all we need is to solve the equations. The solution is:

We can use these three components to reconstruct the following implied
correlation matrix:

We can see that the shaded elements: the main diagonal and two above and
below it, are replicated exactly, as required. However, the variance matching
components overstate the elements on the bottom left and top right of the
matrix. In particular, the variance matching components force the rates at
t ¼ 1 and t ¼ 10 to be equal. It also forces equality between rates at t ¼ 2 and
t ¼ 20. This is an undesirable side-effect of using only three components
when six are required.

Variance matching components
Z1 Z2 Z3

t ¼ 1 0.974679 ÿ0.223607 0.000000
t ¼ 2 0.974679 0.223607 0.000000
t ¼ 3 0.872082 0.223607 ÿ0.435286
t ¼ 5 0.872082 ÿ0.223607 ÿ0.435286
t ¼ 10 0.974679 ÿ0.223607 0.000000
t ¼ 20 0.974679 0.223607 0.000000

Correlation matrix implied by Variance Matching Components
t ¼ 1 t ¼ 2 t ¼ 3 t ¼ 5 t ¼ 10 t ¼ 20

t ¼ 1 1 0.9 0.8 0.9 1 0.9
t ¼ 2 0.9 1 0.9 0.8 0.9 1
t ¼ 3 0.8 0.9 1 0.9 0.8 0.9
t ¼ 5 0.9 0.8 0.9 1 0.9 0.8
t ¼ 10 1 0.9 0.8 0.9 1 0.9
t ¼ 20 0.9 1 0.9 0.8 0.9 1
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C.16 Three Factor Models: Alternative Weightings
We have constructed a three factor variance-match solution for a 6-point

model. We now consider how that solution extends to models with more
points on the yield curve.

The variance match for model 6 also works for model 20L and 50L. The
reason is that the variance match fits the variance of the value and the first
and second differences. The second differences of a linearly interpolated
curve, are zero, except at the data points. This means that solving for the
three components commutes with interpolation. It does not matter whether
we interpolate first, then construct components, or if we solve first for the
components and then interpolate.

The situation is different for the models 20S and 50S. The non-linear
interpolation means that fitting the variance of second differences is not
trivial. Nevertheless, it can be done. Furthermore, the solution for model
20S is simply the decomposition for 50S, restricted to the first 20 years
(Figure 52).

As with the original decomposition, these solutions are unique only up to
rotation of the underlying normal variables. In this example, we chose a
rotation so that the second component vanishes at t ¼ 4, while the third
vanishes at t ¼ 2 and t ¼ 10. These properties are then shared with the Model
6 components.

The variance matching solution has many advantages, including
replication of yield variances, and also the variances of first and second
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differences, as well as avoiding the need to specify time weights. There are
also a few disadvantages. One disadvantage is the inability to build on this
solution by adding more factors ö if we want to add a fourth factor we have
to go back to the beginning and build all four from scratch. In that sense,
the PCA approach is better, as fourth factor can be added without disrupting
the previous three. The second disadvantage of the variance match
approach is the tendency to wiggle. This is necessary in order to capture the
variability of yield curve slopes, but at the same time negates the intuitive
appeal of a second factor relating to “slope’’ and a third to “curvature’’.
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