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Abstract

In this contribution we implement a simulation model based on an Internal Risk
Model approach, aimed to assess the default risk for Property & Casualty insurers
over a short-term time horizon. The proposed framework includes a stochastic model
for the financial market and dynamic portfolio strategies. Further, we analyse some
risk-based capital requirements by means of risk measures such as VaR and the ruin
probability, focusing in particular on the impact of different portfolio strategies,
time horizons and levels of confidence. The paper aims to contribute to the current
debate concerning the development of a general framework for solvency assessment,
including the new EU capital requirements to be defined in the Solvency II phase.

Keywords: CIR process,geometric Brownian motion, non life insurance solvency
requirements, Risk-based capital.

1 The insurance framework

Let Ũt be the stochastic risk reserve at the end of year t and let us assume that is given
by

Ũt =
(
1 + j̃t

)
Ũt−1 +

(
πt − X̃t − Et

)
+ j̃tLt−1 − TXt − Dt, (1)

where πt is the volume of the gross premiums, X̃t is the amount of the stochastic aggregate
claims, and Et denotes general and acquisition expenses of the year. These expenses are
calculated as a (constant) percentage c of the gross premiums, i.e. Et = cπt, where c is the
expenses loading coefficient. Moreover, in equation (1) we denote with j̃t the stochastic
annual rate of return on the company’s financial investments; the financial model for the
definition of j̃t is presented in the next section. Further, although we do not consider
the claim reserving run-off, the stochastic risk reserve includes the return generated from
investing the amount of the loss reserve as at the end of the previous year, Lt−1. Finally,
also taxes, TXt, and dividends, Dt (the latter are paid to stockholders at the end of each
year) are considered in the model. It is worth noticing that for many general insurance
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lines (e.g. third-party liability) the run-off risk concerning the development of the initial
estimate of the claim reserve is not negligible at all and in practice it is an additive source
of risk.

More in details, the loss reserve in each year is assumed to be a constant percentage
δ of the gross premiums, π, i.e.

Lt = δπt. (2)

However, the loss reserve at the end of year t depends also on the amount of claims deferred
from the previous year, C̃d

t , and paid in year t, and the amount of claims occurred in the
current year which are settled during year t, C̃c

t . Hence

Lt = Lt−1 − C̃d
t +

(
X̃t − C̃c

t

)
. (3)

Since the nominal gross premium volume increases every year by the claim inflation rate,
i, and the real growth rate, g, which we assume constant over the given time horizon,
although they might differ for different lines of business, then

πt = (1 + i) (1 + g) πt−1. (4)

We observe that in this framework, the nominal gross premium is not affected by the level
of the premia in the market. Equations (2)-(4) imply that the total amount of the claims
paid in year t is

C̃c
t + C̃d

t =
(
Lt−1 + X̃t

)
− Lt (5)

= X̃t − δπt

[
1 − 1

(1 + i) (1 + g)

]
.

Consequently, the annual net cashflows (ignoring taxes and dividends) originated by the
insurance business are

F̃t = πt − cπt −
(
C̃c

t + C̃d
t

)
= πt

[
(1 − c) + δ

(
1 − 1

(1 + i) (1 + g)

)]
− X̃t. (6)

Finally, we observe that the loss reserve in our framework is deterministic: equations (3)
and (5) in fact imply that

Lt = Lt−1 + δπt

[
1 − 1

(1 + i) (1 + g)

]
.

The amount of the gross premiums is given by the risk premium E

(
X̃t

)
, the safety

loading which is calculated as a (constant) quota ϕ of the risk premium, and the expense
loading, i.e.:

πt = E

(
X̃t

)
+ ϕE

(
X̃t

)
+ cπt.
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Although the risk loading coefficient ϕ is kept constant over the whole time horizon, its
value is calculated on the basis of the standard deviation premium principle for the overall
insurance portfolio structure, in order to take account of both the explicit and implicit
risk loading of the insurance business, i.e. the safety loading and the interests on claim
reserves. Hence, the risk loading coefficient ϕ satisfies the following relationship:

(1 − tx)
[
ϕE

(
X̃1

)
+ L0E

(
j̃1

)]
= b

√
Var

(
X̃1

)
+ L2

0Var
(
j̃1

)
, (7)

where tx denotes the (constant) rate of taxation. In practice, the insurer may ask for a
total loading amount (net of taxation) equal to b for each unit of standard deviation of the
total risk of the overall insurer business. Note that we ignore the risk originated by the
investment of the inital risk capital U0. The benchmark value of b = 35% is considered
here for the computation of the total risk amount.

Regarding the amount of the aggregate claims, we follow the collective approach and
use a compound process:

X̃t =
k̃t∑

i=1

Z̃i,t,

where k̃t is the random variable representing the number of claims occurred in year t, and
Z̃i,t is the random size of the i-th claim occurred in year t. Following Savelli (2003) and
Rytgaard and Savelli (2004), we model the number of claims k̃t using a simple Poisson
process with stochastic parameters ntq̃, where q̃ is a random structure variable capturing
the impact of short-term fluctuations on k̃t, and nt = n0 (1 + g)t. We ignore, instead,
the effects of trends and long-term cycles. Consequently, the only restriction for the
probability distribution of q̃ is that its expected value has to be equal to 1. In particular,
we assume that q̃ is Gamma distributed with parameters (h, h). Thus, the moments of
the structure variable are given by:

E (q̃) = 1; σ (q̃) =
1√
h

; skew (q̃) =
2√
h

= 2σ (q̃) .

It follows that the number of claims is Negative Binomial distributed.
Finally, we assume that the claim sizes Z̃i,t are i.i.d. lognormal random variables; as

the distribution has to be scaled by the inflation rate in each year, the moments from the
origin are equal to:

E

(
Z̃j

i,t

)
= (1 + i)jt

E

(
Z̃j

i,0

)
= (1 + i)jt ajZ,0.

Further, Z̃i,t and k̃t are mutually independent in each year t. The expected claim size
has been simply denoted by mt. The distribution of the process X̃t for the parameter set
used in this paper (and discussed in Table 2) is illustrated in Figure 1.

2 The model for the financial market

Consider a frictionless market with continuous trading, no taxes, no transaction costs, no
restrictions on borrowing or short sales and perfectly divisible securities. Assume that,
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Figure 1: Simulated distribution of X̃ at time t = 1 (100,000 simulations). For this experiment
E(X̃) = 132.3 (ml); σ(X̃) = 19.80 (ml), whilst the variability coefficient is 15% (the parameters
are given in Table 2).
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Figure 2: Sample of 100 possible trajectories of the stock index on monthly basis. Parameters:
µ = 0.1, σ = 0.2; S0 = 100.
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Figure 3: Sample of 100 possible trajectories of the short rate correlated to the corresponding
trajectories of the stock shown in Figure 2. Parameters: κ = 0.1, θ = 0.04; v = 0.047; ρ = −0.2;
r0 = 0.045.

under the real probability measure P, the equity price process is described by the following
stochastic differential equation:

dSt = µStdt + σStdWt,

where (Wt : t ≥ 0) is a standard one-dimensional P-Brownian motion, µ ∈ R is the ex-
pected rate of growth (or return) on the equity, and σ ∈ R

+ is the stock volatility. A
number of possible trajectories of the stock index are shown in Figure 2.

Further, we model the term structure of interest rates using a CIR process, so that it
satisfies the following stochastic differential equation:

drt = κ (θ − rt) dt + v
√

rtdZt, (8)

where θ is the long-run mean interest rate level, κ is the speed of mean-reversion and
v ∈ R

+ is the volatility parameter. Moreover, (Zt : t ≥ 0) is a standard one-dimensional
P-Brownian motion correlated with W , so that

dWtdZt = ρdt,

for any ρ �= 0. Hence
Zt = ρWt +

√
1 − ρ2Xt,

where (Xt : t ≥ 0) is a P-Brownian motion independent of Wt. The resulting evolution of
the short rate is shown in Figure 3. Under these assumptions, the price at time t of a
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Figure 4: Sample of 100 possible trajectories on monthly basis of a 1 year zero-coupon bond and
a 10 years zero-coupon bond. Parameters: κ = 0.1, θ = 0.04; v = 0.047; ρ = −0.2; λ = −0.005;
r1 = 0.0447; r10 = 0.0449. r1 and r10 are the yield to maturity at time t = 0 for maturity in 1
year and 10 years respectively.

zero coupon bond with redemption date τ > t is (see Cox, Ingersoll and Ross, 1985, and
Hull and White, 1990):

P (t, τ) = A (t, τ) e−B(t,τ)rt , (9)

with

B (t, τ) =
2
(
eγ(τ−t) − 1

)
(γ + κ + η) (eγ(τ−t) − 1) + 2γ

,

γ =

√
(κ + η)2 + 2v2,

A (t, τ) =

[
2γe

(γ+κ+η)(τ−t)
2

(γ + κ + η) (eγ(τ−t) − 1) + 2γ

] 2κθ
v2

.

η represents the “market risk” parameter; following Hull and White (1990), it can be
shown that the corresponding market price of interest rate risk (i.e. the Girsanov expo-
nent) is λ (t; r) = η

√
rt/v. In Figure 4, we show the dynamic of a 1 year zero coupon

bond and a 10 year zero coupon bond corresponding to the trajectories of the short rate
presented in Figure 3.

In this framework, the zero yield is given by

R (t, τ) =
B (t, τ) rt − ln A (t, τ)

τ − t
.
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3 The asset portfolio

Given an initial capital, c0 = L0 + U0, the insurance company invests the available funds
in a portfolio, A, composed by α% equity and (1 − α) % bonds of different maturities.
The asset allocation is then kept constant over time.

As said in the previous section, the equity dynamics is driven by a geometric Brownian
motion; let us assume that the stochastic differential equation of the bond price is

P (t, τ) = a(τ) (t, r) P (t, τ) dt + b(τ) (t, r) P (t, τ) dZt,

where a(τ) (t, r) = rt+λ (t; r) is the expected rate of return on the bond maturing at time τ .
From equation (9), it follows that the diffusion coefficient is b(τ) (t, r) = −B (t, τ) v

√
rt. As

mentioned above, we assume that (1 − α) % of the available funds is used to purchase gilts
of different maturity. More in details, we make the assumption that the insurance company
invests β(i)% of the funds in zero-coupon bonds with time to maturity i = 1, 2, 3, 5, 10
years. The allocation is again kept constant over time. Let Bt be the value at time t of
the investment in this bond portfolio; Itô’s lemma implies that

dBt = (1 − α) At

∑
i∈N

β(i)
(
a(t+i) (t, r) dt + b(t+i) (t, r) dZt

)
= (1 − α) Ata

(t+i) (t, r) dt + (1 − α) AtΣ (t) dZt,

where N = {1, 2, 3, 5, 10} and

Σ (t, r) =
∑
i∈N

β(i)b(t+i) (t, r) .

Consequently, the stochastic differential equation of the asset portfolio A price process is

dAt =
(
αµ + (1 − α) a(t+i) (t, r)

)
Atdt + (ασ + (1 − α) ρΣ (t, r)) AtdWt (10)

+ (1 − α)
√

1 − ρ2Σ (t, r) AtdXt.

Equation (10) describes the evolution over time of the asset portfolio net of the cash-
flows generated by the insurance business as discussed in section 1. In order to take these
additional financial resources into account, we define Pt to be the current price of the
bond part of the portfolio, then the value of the portfolio A at time t > 0 is

At = α [At−1 + Ft−1]
St

St−1

+ (1 − α) [At−1 + Ft−1]
Pt

Pt−1

(11)

A0 = c0,

where F is the net cashflow generated by the insurance business and defined in section 1,
equation (6). Since the value at year t > 0 of the investment in the bond portfolio, Bt, is
given by

Bt = (1 − α) [At−1 + Ft−1]
∑
i∈N

β(i) P (t, t − 1 + i)

P (t − 1, t − 1 + i)

B0 = (1 − α) A0, N = {1, 2, 3, 5, 10} ;

7



the corresponding unit market price is

Pt =
BtPt−1

(1 − α) [At−1 + Ft−1]
.

This implies that equation (11) can be simplified to1

At = α [At−1 + Ft−1]
St

St−1

+ Bt; (12)

therefore, the annual rate of the return on the asset is

j̃t =
At − (At−1 + Ft−1)

(At−1 + Ft−1)
.

4 The numerical experiment

In this section, we use the framework set up in sections 1-3 to analyze the solvency
profile of general insurers with different financial portfolios. The Monte Carlo procedure
is based on 100,000 simulations; the dynamic of the stock and the short interest rate are
produced with monthly steps. The annual rate of return on the insurer’s portfolio are
then considered.

More in details, we consider four general insurers with different types of asset alloca-
tion; the base example is a general insurer that invests 15% of its financial resources in
equity (Standard Insurer); we then consider insurers with a higher equity component in
their investment portfolio, specifically, we set α = 30% (Insurer A); α = 50% (Insurer B);
and α = 100% (Insurer C). The benchmark set of parameters of the financial market is
given in Table 1, whilst the parameters of the general insurers considered are presented
in Table 2.

The relevant index of profitability that we consider is the so-called capital ratio

ũt =
Ũt

πt

;

for solvency purposes, instead, we use the minimum risk-based capital ratio

rbc1−ε (0, t) =
UReq

1−ε (0, t)

π0

, (13)

which expresses the minimum amount of capital (per unit of initial premium paid) required
by regulators and legislators to ensure that the company is solvent in year t with a certain
interval probability 1− ε, which we choose to be 99.0% and 99.9%. Note that we express
the risk-based capital as a percentage of the total initial premiums in order to make
sensible comparisons between different insurers. In equation (13), UReq (0, t) represents
the minimum amount of capital required at time t = 0 to ensure that the maximum

1Further details on the derivation of equations (11) and (12), are offered in the Appendix.
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Portfolio inputs

T = 3 years; β(1) = 40%; β(2) = 25%; β(3) = 15%; β(10) = 10%; β(15) = 10%
Parameters for the equity dynamic
µ = 10%; σ = 20%; S0 = 100
Parameters for the CIR model
κ = 10%; θ = 4.00%; v = 4.70%; ρ = −0.2; λ = −0.005; r0 = 4.5%
Initial yield curve

r1 = 4.47%; r2 = 4.38%; r3 = 4.39%; r5 = 4.43%; r10 = 4.49%

Table 1: Benchmark set of parameters for the stock index, the dynamic of the short rate of
interest and the bond portfolio. The initial yield curve corresponds to the UK market as at
31/12/2004 (source: Bank of England). For the market price of interest rate risk, λ, we con-
sider the approximation provided by Stanton (1997). The remaining parameters are calibrated
accordingly.

Insurer
Parameters Standard A B C

Time horizon (years) T = 3
Initial solvency ratio u0= 0
Initial expected number of claims n0= 20000
Variance structure variable q Var (q̃) = 0.02
Initial expected claim size m0= 6000

Variability coefficient
σ(Z̃)
E(Z̃)

= 7

Loss - Reserves ratio δ = 120%
Expenses loading coefficient c = 25%
b coefficient b = 35%
Safety loading coefficient ϕ -1.42% -2.08% -2.59% -2.92%
Real growth rate g = 5%
Claim inflation rate i = 5%
Taxation rate tx = 0
Dividend rate dv = 0
Asset allocation
Equity component α 15% 30% 50% 100%
Bond component 1 − α 85% 70% 50% 0%
Expected rate of return E

(
j̃
)

4.89% 5.79% 6.99% 10.00%
Volatility of the rate of return σ

(
j̃
)

3.85% 6.49% 10.28% 20.00%

Table 2: Parameters of the general insurers. The (theoretical) expected rate of return on the
asset portfolio and its volatility are calculated using the governing stochastic differential equation
of the price process A.
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Figure 5: Mean and quantiles of simulated Ũ/π (confidence level: 0.1%,1%, 5%, 95%, 99%,
99.9%).

loss accumulated by time t > 0 can be offset by the risk premiums, the risk loading and
the capital with probability 1 − ε. Since in our analysis the initial capital is set equal
to zero, this amount corresponds to the CaR (Capital-at-Risk) of the insurer over the
period (0, t) with confidence level equal to 1 − ε, once the investment returns over (0, t)
have been considered. Hence

UReq
1−ε (0, t) = CaR (0, t)1−ε

[
1 + E

(
j̃
)]−t

,

with
CaR (0, t)1−ε = −Uε (t) ,

and Uε (t) is the ε-th quantile of the risk reserve Ũ at time t. Equation (13) can be
expressed in terms of capital ratio ũt, so that

rbc1−ε (0, t) = −uε (t)

r̄t
, (14)

where

uε (t) =
Uε (t)

πt

; r̄ =
1 + E

(
j̃
)

(1 + g) (1 + i)
.

4.1 Analysis of the capital ratio and the risk based capital

In Figure 5 we present the quantiles of the capital ratio of the four insurers considered
for different confidence levels. From the comparison between the four insurers, it emerges
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Figure 7: Simulated probability distribution of the process X̃ at time t = 1 and t = 3.

that increasing the percentage of the financial resources invested in the equity component,
increases the expected value of ũt; moreover the upper percentiles (i.e. the 75%, 99% and
99.9% percentiles) increase, whilst the lower percentiles (i.e. the 0.1%, 1% and 25%
percentiles) decrease. However, over the long run, the shape of the upper percentiles
suggests a higher probability mass in the upper tail of the distribution for Insurer C than
for the Standard Insurer. This fact can be better observed in Figure 6, in which we show
the simulated distributions and the first four moments of the capital ratio at time t = 1
and t = T = 3 for the Standard Insurer and Insurer C. We also note that a riskier asset
portfolio implies a higher volatility of the capital ratio. The contribution over time to
the capital ratio from the claim process and the asset return process is shown in Figures
7-9. In particular, we note the change in the shape of the distribution of j̃ for the different
asset allocations: at time t = 1, in fact, the probability distribution of j̃ for the case of the
Standard Insurer is very peaked, with low volatility; moving from the Standard Insurer
to Insurers A, B and C we can observe the increased variance, skewness and kurtosis of
the distribution. This phenomenon is even more accentuated for the (cumulated) return
process j̃ at time t = 3. Finally, we point out that in the case of Insurer C, the process
j̃ is lognormal; the estimated moments of the distribution as shown in Figures 8-9 match
the exact moments.

Given how a more aggressive asset allocation strategy affects the capital ratio, we
expect more demanding risk based capital requirements in correspondence of a higher
equity component in the investment portfolio. This is in fact the case, as shown in
Table 3, which contains the capital requirements for the four insurers, together with the
corresponding safety loading coefficient and the total amount of the premiums that they
have to pay at inception. In particular, we observe that the safety loading coefficient ϕ
decreases as α increases, consequently the level of the inital gross premiums decreases
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Figure 8: Simulated probability distribution at time t = 1 of the rate of return on the asset
portfolio, j̃, for each asset allocation considered in this paper.
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Figure 9: Simulated probability distribution at time t = 3 of the (cumulated) rate of return on
the asset portfolio, j̃, for each asset allocation considered in this paper.
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Standard Insurer Insurer A
(15% equities - 85% bonds) (30% equities - 70% bonds)

rbc1−ε (0, t) ϕ = −1.42%; π0 = 157.73 ϕ = −2.08%; π0 = 156.67
(equation (14)) T = 1 T = 2 T = 3 T = 1 T = 2 T = 3
1 − ε = 99.0% 26.75 34.71 40.14 28.93 37.27 42.89
1 − ε = 99.9% 40.13 52.28 60.28 42.34 53.19 63.30

Insurer B Insurer C
(50% equities - 50% bonds) (100% equities - 0% bonds)

rbc1−ε (0, t) ϕ = −2.59%; π0 = 155.86 ϕ = −2.92%; π0 = 155.33
T = 1 T = 2 T = 3 T = 1 T = 2 T = 3

1 − ε = 99.0% 32.95 42.17 48.24 46.69 57.00 62.41
1 − ε = 99.9% 46.59 60.39 69.24 62.43 75.58 82.77

Table 3: The risk based capital for the four insurers considered in this analysis. The table also
shows the safety loading coefficient and the corresponding initial premiums for each insurer.

as well. On the other hand, the capital requirements for example at 99.0% confidence
level increase from 26.75% (Standard Insurer) to 46.69% (Insurer C) over the first year,
reaching the 62.41% level over the 3 years time horizon, as shown in Table 3. Therefore,
the raise in the capital requirements induced by a riskier asset allocation strategy implies
more financial pressure on the shareholders of the companies, as they have to provide
further capital injections.
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Appendix: the dynamic of the asset portfolio

Assume that the insurer enters time t with available financial resources At. This resources
are then used to settle the claims of the year and, at the same time, they are also increased
by the premiums received. Hence, the total resources available for investment purposes
are At + Ft, where F is the net cashflow generated by the insurance business including
claims, premiums and expenses, as defined in section 1. The insurer invests this amount
in the financial market by acquiring a portfolio composed by α% equity and (1 − α) %
bonds of different maturity. Hence, the portfolio is given by

At + Ft = xS
t St + xP

t Pt

where xS
t and xP

t are respectively the number of shares in equity and bonds purchased.
In order to preserve the asset allocation, we need

xS
t St = α (At + Ft)

xP
t Pt = (1 − α) (At + Ft) .

Therefore, the insurer enters time t + 1 with a portfolio’s value

At+1 = xS
t St+1 + xP

t Pt+1

= α [At + Ft]
St+1

St

+ (1 − α) [At + Ft]
Pt+1

Pt

.

As described in section 3, the insurance company invests every year (1 − α) % of its
resources in a mix of zero-coupon bonds with different maturities. Specifically, the insurers
invests β(i)% of the funds in zero-coupon bonds with time to maturity i = 1, 2, 3, 5, 10
years, and the mix is kept constant over time. Therefore, similarly to the asset portfolio,
the bond share is given by

(1 − α) (At + Ft) = x
(1)
t P (t, t + 1) + x

(2)
t P (t, t + 2) + x

(3)
t P (t, t + 3)

+x
(5)
t P (t, t + 5) + x

(10)
t P (t, t + 10) ,

where P (t, τ) is the price at time t of a zero coupon bond with redemption date τ > t,

and x
(i)
t , i = 1, 2, 3, 5, 10 years, are the units of zero-coupon bonds with time to maturity

i in the portfolio at time t. In order to maintain the mix unchanged over time, we require

x
(i)
t P (t, t + i) = β(i) (1 − α) (At + Ft) , ∀i = 1, 2, 3, 5, 10 years.

Consequently, the value at year t + 1 of the investment in the bond portfolio, Bt+1, is
given by

Bt+1 = (1 − α) [At + Ft]

[
β(1) 1

P (t, t + 1)
+ β(2) P (t + 1, t + 2)

P (t, t + 2)

+β(3)P (t + 1, t + 3)

P (t, t + 3)
+ β(5)P (t + 1, t + 5)

P (t, t + 5)
+ β(10) P (t + 1, t + 10)

P (t, t + 10)

]
.
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Since
Bt+1 = xP

t Pt+1,

then the unit price of the bond portfolio is

Pt+1 =
Bt+1

xP
t

= Bt+1
Pt

(1 − α) (At + Ft)
.
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