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MORTALITY RISK MODELING:
APPLICATIONS TO INSURANCE SECURITIZATION

ABSTRACT. This paper proposes a stochastic mortality model featuring
both permanent longevity jump and temporary mortality jump processes.
A trend reduction component describes unexpected mortality improve-
ment over an extended period of time. The model also captures the un-
even effect of mortality events on different ages and the correlations among
them. The model will be useful in analyzing future mortality dependent
cash flows of life insurance portfolios, annuity portfolios, and portfolios of
mortality derivatives. We show how to apply the model to analyze and
price a longevity security.

1. INTRODUCTION

Over the past half century, and especially in the most recent decades, remark-
able mortality improvements have led to the growth of the population of older
people (Bourguignon and Morrisson 2002, Lakdawalla and Philipson 2002, Vau-
pel 1998). To the extent that this progress is unexpected, it has a negative impact
on pension plans and annuity providers. In the US, private defined benefit pen-
sion plans currently have close to $6 trillion in liabilities for future benefits. In
addition, US life insurers hold approximately $2 trillion in annuity reserves (Salou
and Hu 2006, ACLI 2006). Uncertainty of longevity improvements increases risk
for pension funds and annuity insurers since annuity benefits may need to be paid
longer than expected. In a recent study of pension liabilities of the companies in the
UK’s FTSE100 index, Cowling and Dales (2008) found overly optimistic longevity
assumptions for pension valuations reported at the end of 2007. These authors
believe that companies underestimate future life expectancy by one to three years
and, therefore, understate the aggregate pension deficit of these companies by as
much £40 billion.

Date: September 24, 2009.
The paper was presented at the 4th International Longevity Risk and Capital Market Solutions
Symposium in 2008, the 2008 American Risk and Insurance Association annual meeting, and the
2008 Financial Management Association annual meeting. We appreciate the helpful comments and
suggestions from Richard MacMinn and participants at these meetings. We are especially grateful
to Enrico Biffis and two anonymous referees for their very useful comments.

1



2 MORTALITY RISK MODELING: APPLICATIONS TO INSURANCE SECURITIZATION

In contrast, in modeling life insurance, one naturally looks at scenarios which
are pessimistic about mortality improvement and often include threats such as
epidemics. Several recent articles focus on management such mortality risks, in-
cluding Hardy (2005), Rogers (2002), Goss et al. (1998), Cox et al. (2006), Cox and
Lin (2007) and Lin and Cox (2008). Genetic analysis has confirmed that the virus
of “Spanish flu” which killed 40 to 100 million people in 1918 developed in birds
and was similar to today’s “bird flu” (Juckett 2006). Some public health experts
think that a pandemic is overdue and another will inevitably occur (Dowdle 2006).
Should a pandemic occur, a life insurer will suffer financially since it will pay more
death benefits than expected when the policies were issued. It seems reasonable
that a major pandemic event could trigger turbulence in the life insurance indus-
try. Toole (2007) studied this issue in detail and concluded that the industry as a
whole can withstand a severe pandemic, as severe as the 1918 pandemic, with a
loss of about $64 billion relative to aggregate risk-based capital (RBC) of about $256
billion in 2005. While the industry as a whole can sustain a severe flu pandemic,
it would nevertheless be disruptive. Companies holding less than 100 percent of
RBC (only 14 companies in 2005) may become insolvent. As Toole (2007) notes, if
a severe pandemic were to occur when the financial markets are weak (e. g. when
asset values such as mortgage-backed securities are depressed), then the financial
impact could be much worse and the number of companies near insolvency could
be much greater. Thus, it seems clear that including pandemic effects is an impor-
tant issue in modeling mortality for life insurance liabilities.

In light of the above discussion, the terms mortality risk and longevity risk are
opposite in this paper. Mortality risk is the risk of more deaths than expected, or
the risk that observed death probabilities are higher than expected. We are usually
thinking that severe, short-termed events such as pandemics underlie mortality
risk. On the other hand, more lives may survive than expected or observed death
rates may be lower than expected. Unanticipated improvements in medicine and
health technology may give rise to longevity risk, leading to a surge in mortality
improvement in a short period (e.g. one or two years) or excess improvement over
a long period (e.g. more than ten years). For longevity events with a long-term
effect, the slope of the mortality curve may deviate from that of the base trend
with normal deviations, as evident, for example, in the US population mortality
dynamics in the 1970’s. Actual mortality has been improving so parametric models
estimated with actual data will reflect improving mortality. Models that have a



MORTALITY RISK MODELING: APPLICATIONS TO INSURANCE SECURITIZATION 3

random deviation from the expected mortality may reflect some longevity risk,
but this is not a reflection of a fundamental change in the trend (as we have in
mind). Our model, for which we will provide a detailed discussion later, allows
for such fundamental changes.

Marocco and Pitacco (1998), Milevsky and Promislow (2001), Dahl (2004), Mil-
tersen and Persson (2005), Cairns et al. (2006), Dahl and Møller (2006), Gründl et al.
(2006), Ballotta and Haberman (2006), Biffis and Millossovich (2006) and Bauer and
Kramer (2007) focus on mortality risk as deviations from a trend. In those papers,
the base trend may reflect mortality improvements, but longevity risk is not mod-
eled explicitly. On the other hand, pension and annuity research has focused on
longevity risk. Loise and Serant (2007) model longevity (and mortality) risk us-
ing a stationary Gaussian process. However, this model may not be appropriate
for modeling longevity (and mortality) shocks which may not follow a station-
ary Gaussian process. To describe the stochastic longevity trend, Hári et al. (2008)
extend the Lee-Carter model with a time-varying, stochastic drift. Biffis (2005) cap-
tures mortality random departures around a time-varying target with a longevity
compound Poisson process, but that model cannot guarantee a nonnegative force
of mortality.

US mortality data has only two extreme events, 1918 flu pandemic and the
change in the rate of improvement of mortality around 1970. However, experts
conjecture that we may experience extreme events of both types in the future. This
means that in investigating the impact of possible future events, we cannot sim-
ply calibrate our models to the experience. Therefore, we offer a flexible, although
somewhat complex, method of including expert opinion in forming future mortal-
ity scenarios.

Specifically, we propose a new approach by introducing a trend reduction jump
component to describe longevity risk. Unexpected longevity improvement, in gen-
eral, may be less dramatic than that of a mortality death shock but in the long run
longevity risk may be just as important. Most of longevity risk events in the past
seem to have a pattern: unexpected survival gains often extended over a long pe-
riod of time, leading to a steeper downward sloping force of mortality curve. The
traditional one-time jump models such as the model that combines a geometric
Brownian process and a compound Poisson jump process, can not provide this
kind of longevity risk.
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Moreover, to obtain relevant results, a stochastic mortality model must reflect
three major features of the current mortality universe: (a) both mortality improve-
ment and deterioration jump factors, (b) correlation among different ages and over
time, and (c) uneven effects of a mortality jumps across different ages. Our model
attempts to address these issues. In particular, we are explicitly combining both
mortality and longevity risk in a single, comprehensive model in order to make
a more realistic assessment of future survivor dependent cash flows. Finally, we
show how to determine a parsimonious version with historical data.

As an application to mortality risk management, Blake et al. (2006) examine
a wide variety of longevity bonds. We continue in the same vein, but with ex-
plicit mortality derivatives such as options which we think can be important tools
in managing mortality and longevity risk. Derivatives can be written on indices
based on publicly available data like the LifeMetrics index (Coughlan et al. 2007)
offered by Goldman-Sachs1and the Credit Suisse index2.

Our paper is organized as follows. In Section 2 we describe mortality dynamics
as a combination of a Lee-Carter diffusion process, a permanent longevity jump
process and a temporary mortality jump process. In Section 3 we discuss capital
market solutions for mortality and longevity risk, including new structures with
our proposed longevity index respectively. We show how to price those securi-
ties with the indifference pricing method in Section 4. We conclude the article in
Section 5.

2. DYNAMIC MORTALITY MODEL

Stochastic mortality models usually start with the assumption that there is an
“initial” curve for the force of mortality. For a life (x) at time 0, the remaining
life time random variable is denoted T (x). The force of mortality at time t > 0 is
denoted µ(x + t, t). In effect, the force acting during the life of a person age x at
time t = 0 is a stochastic process {µ(x + t, t) : t ≥ 0} evolving from an initial curve
µ(x, 0) = µ(x). Mathematically speaking this is very complex. In order to reduce
the complexity, the model specifies the force of mortality as a parametric function
of age and time, with a small number of parameters.

Statistical methods applied in actuarial practice use this same approach. The
expected value, or forecast value, of the force of mortality µ(x + t, t) acting on

1http://www.qxx-index.com
2http://www.credit-suisse.com/ib/en/fixed income/longevity index.html
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(x + t) at time t, given T (x) > t, is used to price life insurance and annuity polices.
However, actual mortality experience can change in a nondeterministic way and
deviate from expected mortality rates.

Here is how we will model these events. The aggregate effect on (x) over the
period (0, h) is a random variable since it is the path integral over the sample path
{µ(x + t, t) : 0 ≤ s ≤ h} of the force of mortality:∫ h

0

µ(x + t, t) dt.

The probability S(x, h) that (x) will attain age x + h is random at time 0, because it
depends on the sample path of the force of mortality:

S(x, h) = exp

(
−

∫ h

0

µ(x + s, s) ds

)
.

The probability that (x) will attain age x+h is the expected value of the probability:

Pr [T (x) > h] = E [S(x, h)]

Among the reasons for changes in the force of mortality are the following:
• general trends in health and mortality resulting in gradual improvements

to mortality,
• deviations from the general trends,
• relatively rare advances in medical technology resulting in sudden and per-

manent improvements in mortality, and
• sudden catastrophic surges in mortality from events such as pandemics re-

sulting in temporary increases in mortality.
Therefore, it is natural to develop a model for mortality changes based on the evo-
lution of the force of mortality with general trend, diffusion process and jump
components. A number of recent studies have sought to model mortality trend
involving both age-dependent and time-dependent terms (Lee and Carter 1992,
Renshaw et al. 1996, Lee 2000, Sithole et al. 2000, Milevsky and Promislow 2001,
Olivieri and Pitacco 2002, Dahl 2004, Cairns et al. 2006). Our model is inspired by
and closely related to this stream of research. As an extension, we explicitly model
both mortality and longevity jump processes in a single model (See Section 2.2).

2.1. Modeling General Mortality Trends. We adopt the well-known Lee and Carter
(1992) mortality model as a basis. This model captures the evolution of mortality in
mutually exclusive age cohorts, while at the same time a time-series common risk



6 MORTALITY RISK MODELING: APPLICATIONS TO INSURANCE SECURITIZATION

factor, k(t), links all cohorts together. The force of mortality µLC(x, t) is modeled
as3

(2.1) µLC(x, t) = exp [a(x) + b(x)k(t)] .

The parameters a(x) and b(x) are age-specific while k(t) is time varying.
We fit the model to the US male data for ages x = 0, 1, . . . , 103 and times t =

1901, 1902, . . . , 2005, using the technique suggested by Lee and Carter (1992). Ta-
bles for years 1901 to 1999 are from the Human Life Table Database.4 Tables for
2000 to 2005 are from the Human Mortality Database.5 The estimates of a(x) and
b(x) are in Table 1 and the estimated k(t) is shown in Figure 1. There are several
generalizations of Lee and Carter (1992) model in the literature. We believe that
our ideas illustrated below could be applied to them as well by using the original
Lee-Carter model.

Following Lee and Carter (1992), the mortality index k(t) evolves as

(2.2) k(t + 1) = k(t) + g1 + g2 × Flu + σz(t), t = 1901, 1902, . . . , 2005

where g1, g2, and σ are constants and z(1901), z(1902), . . . , z(2005) are independent
standard normal random variables. The flu in 1918 is identified by a dummy vari-
able, Flu, in equation (2.2). Specifically, Flu = 1 if t = 1918, and 0 otherwise. Then
we obtain the estimated g1 = −0.2244, g2 = 2.2065, and σ = 0.6123. Simulating
mortality scenarios with the Lee-Carter model, involves simulating future mortal-
ity index values k(t) for t > 2005. For convenience we now re-label the years so
that year 2005 corresponds to t = 0. For a person age x in 2005, we can generate
Lee-Carter model scenarios for future values of the force of mortality as follows:
For x = 0, 1, . . . , 103,

(2.3)
µLC(x, 0) = µ(x) observed in 2005

µLC(x, t) = exp [a(x) + b(x)k(t)] t > 0.

3Lee and Carter use the central death rate rather than the force of mortality. For reasonable as-
sumptions about the distribution of deaths between age x and x+1, the two measures are the same
or very close. For example, if the force of mortality is constant between integral ages, the central
death rate at age x and the force of mortality at age x are equal. The data base has values of q(x, t).
Under the same assumption, q(x, t) = 1− e−µ(x,t) so we can easily change from q(x, t) to µ(x, t).
4Data source: Human Life Table Database. Max Planck Institute for Demographic Research (Ger-
many), University of California, Berkeley (USA) and the Institut national d’études démographiques
(France). Available at www.lifetable.de (data downloaded on June 8, 2008).
5Data source: Human Mortality Database. University of California, Berkeley (USA), and Max
Planck Institute for Demographic Research (Germany). Available at www.mortality.org or
www.humanmortality.de (data downloaded on June 8, 2008).
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TABLE 1. The estimates of a(x) and b(x) based on the US Male Pop-
ulation data from 1901 to 2005.

Age a(x) b(x) Age a(x) b(x) Age a(x) b(x)
0 -3.4039 0.1736 35 -5.5990 0.1061 70 -3.0020 0.0392
1 -5.6955 0.2612 36 -5.5442 0.1043 71 -2.9207 0.0398
2 -6.2000 0.2374 37 -5.4851 0.1017 72 -2.8391 0.0400
3 -6.4963 0.2287 38 -5.4259 0.0990 73 -2.7575 0.0396
4 -6.7038 0.2269 39 -5.3661 0.0966 74 -2.6766 0.0393
5 -6.8571 0.2171 40 -5.3015 0.0934 75 -2.5950 0.0384
6 -6.9863 0.2029 41 -5.2354 0.0903 76 -2.5132 0.0378
7 -7.1111 0.1908 42 -5.1666 0.0872 77 -2.4290 0.0377
8 -7.2240 0.1820 43 -5.0960 0.0841 78 -2.3429 0.0381
9 -7.3290 0.1820 44 -5.0242 0.0812 79 -2.2492 0.0371

10 -7.3986 0.1878 45 -4.9509 0.0784 80 -2.1687 0.0391
11 -7.3761 0.1883 46 -4.8750 0.0752 81 -2.0834 0.0391
12 -7.2273 0.1737 47 -4.7995 0.0721 82 -2.0022 0.0384
13 -6.9989 0.1495 48 -4.7227 0.0687 83 -1.9251 0.0370
14 -6.7715 0.1278 49 -4.6471 0.0655 84 -1.8509 0.0352
15 -6.5665 0.1113 50 -4.5699 0.0621 85 -1.7774 0.0335
16 -6.3902 0.0992 51 -4.4928 0.0593 86 -1.7025 0.0319
17 -6.2527 0.0934 52 -4.4151 0.0569 87 -1.6262 0.0309
18 -6.1422 0.0903 53 -4.3380 0.0554 88 -1.5482 0.0303
19 -6.0618 0.0911 54 -4.2612 0.0544 89 -1.4695 0.0298
20 -5.9908 0.0944 55 -4.1827 0.0532 90 -1.3906 0.0295
21 -5.9233 0.0959 56 -4.1041 0.0521 91 -1.3116 0.0290
22 -5.8849 0.0986 57 -4.0249 0.0506 92 -1.2336 0.0282
23 -5.8732 0.1006 58 -3.9452 0.0488 93 -1.1572 0.0274
24 -5.8802 0.1021 59 -3.8663 0.0471 94 -1.0828 0.0265
25 -5.8953 0.1039 60 -3.7859 0.0453 95 -1.0142 0.0269
26 -5.9028 0.1050 61 -3.7063 0.0440 96 -0.9457 0.0265
27 -5.9019 0.1067 62 -3.6267 0.0423 97 -0.8779 0.0265
28 -5.8855 0.1082 63 -3.5503 0.0410 98 -0.8122 0.0267
29 -5.8537 0.1092 64 -3.4739 0.0395 99 -0.7502 0.0268
30 -5.8191 0.1101 65 -3.3970 0.0383 100 -0.6867 0.0270
31 -5.7830 0.1100 66 -3.3189 0.0375 101 -0.6228 0.0277
32 -5.7435 0.1099 67 -3.2396 0.0370 102 -0.5587 0.0262
33 -5.6993 0.1091 68 -3.1614 0.0376 103 -0.5230 0.0222
34 -5.6519 0.1079 69 -3.0822 0.0383

When we use the model to simulate future values of the force of mortality ap-
plying to a life age x at t = 0 over a period of T years

µLC(x, 0), µLC(x + 1, 1), µLC(x + 2, t + 2), . . . , µLC(x + T, T ),
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FIGURE 1. Estimated time-series common risk factor k(t) shown in
the vertical axis for year t = 1901, 1902, ..., 2004, 2005 in the horizontal
axis.

we need to provide for the cases for which x + j > 103 and j > 0. In other words,
the way we use the model requires extending equation (2.3) to ages x > 103 after
the first year. A natural approach is to simply extend both functions a(x) and b(x)

linearly using the values for ages 90 to 103 as a basis for the extrapolation. This
approach results in the linear extrapolation of a(x) and b(x),

a(x) = −7.43 + 0.067x

b(x) = 0.055− 0.0003x

extending equation (2.3) to x > 103 for t > 0. This is consistent with models
with linearly changing mortality, as described by Schoen (2006). In applications
for which “oldest-of-old mortality” is critical other approaches might be necessary.

2.2. Modeling Mortality Jumps. Our goal is a stochastic mortality model suit-
able for dynamic financial analysis, taking into account the complexity of observed
mortality dynamics. We consider two types of mortality shocks: permanent jump
G(x, t) and temporary jump H(x, t).

The unexpected mortality improvement that results from genetic, environmen-
tal, behavioral, bio-reliability, and/or heterogeneity forces and constraints, often
has a long-term effect on future mortality rates. In contrast, many catastrophe
death events, like the 1918 worldwide flu and the 2008 earthquake in China, have
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a more severe but transitory effect on death rates. In many cases, these short-term
events drive up the death rate just for a couple of years, but the mortality falls back
to the normal level afterwards. Accordingly, we view sharp decreases in mortal-
ity as “permanent” events, for instance, associated with aforementioned medical
advances while dramatic increases as “temporary” events such as pandemics.

When we add these two types of mortality jump events G(x, t) and H(x, t) to
the Lee-Carter force of mortality µLC(x, t), the initial version of our model takes
the form

(2.4) µ(x, t) = µLC(x, t)× exp (−G(x, t) + H(x, t)) ,

where µLC(x, t) is the force of mortality from the Lee-Carter model (2.3).

2.2.1. Permanent Longevity Jump G(x, t). The unexpected mortality improvement
process G(x, t) consists of a jump reduction component K(x, t) and a trend reduc-
tion component D(x, t). That is,

G(x, t) = K(x, t) + D(x, t).

The jump reduction component K(x, t) is the one-time longevity jump induced
by a surge in survival rates over a short period (for example, a year) with a perma-
nent effect on longevity. It is defined as

(2.5) K(x, t) =
∞∑

s=1

ysAs(x)1{t≥ηs},

where ηs is the time of jump reduction event s. The time ηs can be modeled as
the arrival time of the s-th event of a point process, as described in Daley and
Vere-Jones (2003). The simplest version would be the arrival times of a Poisson
process, in which case the times would have gamma distributions. A second feasi-
ble choice would be a Hawkes process. The primary difference between these two
approaches lies in the ability of a Hawkes process to create event clustering.

The positive variable ys is the maximum mortality improvement of all ages in
medical advancement event s. The effect of ys is transferred to the mortality rates
through a function As(x) for age x with 0 ≤ As(x) ≤ 1. When As(x) = 0, medical
advancement s has no effect on age x. In contrast, As(x) = 1 means age x enjoys
the biggest mortality improvement (ys) among all ages. When 0 < As(x) < 1, it
captures the effects that fall between the above two extremes. That is, the function
As(x) differentially spreads the mortality improvement across x’s because, when a
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medical advancement occurs, the benefits of the technology usually vary by age.
For example, compared to demography changes of the whole population in the
1970’s, the annual improvement in mortality of old ages in the same period is much
more dramatic than that of young ages. In fact, Cutler and Richardson (1998) find
that improvement for the elderly was greater than for the young in the 1970’s as a
result of a decrease in cardiovascular disease deaths. Since cardiovascular disease
is more prominent late in life than earlier, the life expectancy gain is greater for the
elderly than for the young. Mortality improvements due to a change in a cause of
death may vary by age.

There is no definitive data set to say what the function As(x) should look like.
Practitioners will use a conservative choice, depending on the products being mod-
eled. If you think the shape shown in Figure 2 may be more realistic in the future,
you must believe that there is little mortality improvement for the very young and
very old.

FIGURE 2. Medical advancement by age.

Furthermore, the annual mortality rate over a long period (e.g. twenty years) may
continue to improve at a much higher rate than that in other periods, leading to
a steeper downward-sloping force of mortality curve. For example, the annual
percentage decrease in death rates for the US population aged 55 and above in
the 1970’s, on average, is about three times that of the same age cohort in other
periods. This type of mortality improvement, in a certain sense, is more significant
than the one-time longevity jump K(x, t). The data shows no one-time longevity
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surge across ages (like a 20 percent decrease in µ(x, t) during one year), but that
does not mean there was no longevity risk. The cumulative effect of unanticipated
mortality improvement over an unexpectedly long period of time obviously has a
devastative effect on the financial stability of pensions plans and annuity markets.

Therefore, we model this long-term decay in mortality rates by introducing a
trend reduction component D(x, t) defined as follows:

(2.6) D(x, t) =
∞∑
i=1

ζi(t− υi)Fi(x) exp(−ξi(t− υi))1{t≥υi},

where υi is the time of trend reduction event i. The time of the trend reduction
event υi can be modeled like the time ηs, which we discussed after equation (2.5).

The percentage change in µ(x, t) is the log µ-ratio, log
µ(x, t + 1)

µ(x, t)
. When a trend

reduction event occurs, we calculate the difference between its average percentage
change in the trend reduction period and its average level in the whole observation
period. In equation (2.6), ζi represents the maximum excess change across ages
given ζi > 0. For instance, consider male mortality in the 1970’s: age x = 0 had the
biggest annual excess longevity gain 0.0211 above its average improvement from
1901 to 2005, so ζi = 0.0211.

Like Ai(x), the function Fi(x), with 0 ≤ Fi(x) ≤ 1, distributes age effects. Given
ζi = 0.0211, we have Fi(0) = 1 in the 1970’s. Based on the historical data, we can
obtain other Fi(x)’s. For example, Fi(75) = 0.3723 for age 75. This means µ(75, t)

decreases by an excess 0.0211 × 0.3723 × 100 = 0.79 percent per year during this
trend reduction period. Moreover, the factor (t−υi) provides cumulative mortality
improvement as t increases beyond the jump event time υi.

How long the aforementioned mortality trend reduction will last in the future is
a topic for debate: ten years, twenty years or even longer? The parameter ξi > 0

specifies the length of trend reduction event i. Should one believe that history will
reflect the future, when ζi = 0.0211 and Fi(75) = 0.3723, for example, one might
choose ξi = 0.01. In this case, when an unexpected medical advancement causes
an annual excess decrease in µ(75, t), the force of mortality curve for age 75 will
have a notable steeper downward slope for about 35–40 years, the pattern similar
to the curve for age 75 after year 1970 in Figure 3.
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FIGURE 3. Actual force of mortality µ(75, t) for age 75 in year t. The
vertical axis stands for force of mortality and the horizontal axis rep-
resents year.

2.2.2. Temporary Adverse Mortality Jump H(x, t). The transitory mortality jump process
H(x, t) is defined as follows:

(2.7) H(x, t) =
∞∑

j=1

bjBj(x) exp(−κj(t− τj))1{t≥τj},

where τj is the time of adverse mortality event j. The time of the adverse mortality
event can be modeled like the time ηs, which we discussed after equation (2.5).
The basic effect of a pandemic is modeled using a Poisson process with a jump
size bj > 0, where bj is the maximum severity of jump event j. The function Bj(x),
with 0 ≤ Bj(x) ≤ 1, distributes mortality jump impact across ages. Bj(x) can be
random to reflect various age effects for different types of events or it can also be
deterministic. For example, the specification of Bj(x) in Figure 4 would apply to
a pandemic for which the bulk of the mortality spike is under a certain age (for
example, under age 50 as is the case for deaths in the 1918 worldwide flu).

Since modeling transitory nature of mortality jumps is important in practice, we
introduce a nonnegative deterministic function exp(−κj(t − τj)) in equation (2.7)
with κj > 0. The higher κj the faster the jump effect will die out.6 We can estimate

6In general, κj is much larger than ξi because of the temporary effect of catastrophe mortality event
and the long-term impact of unexpected mortality improvement.
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FIGURE 4. Pandemic effect by age.

κj to fit the historical data and make the mortality jump only have the impact over
a reasonable short period of time.

2.3. Comment on Estimation Issues. The primary motivation for the model that
we have presented is to provide a flexible and realistic model that can be used to
capture adverse mortality and longevity risks in a business application. In order
to allow for these effects in a manner that can be compared to the historical data, a
fair number of parameters needs to be included. This poses significant estimation
challenges. Our method of estimation/calibration can best be described as follows:

(1) Estimate the original Lee-Carter model based on the available data;
(2) Calibrate the A, B and F functions to approximate past history. If the pri-

mary focus is on pandemics one would look at how the mortality effects
were distributed across ages and calibrate accordingly;

(3) Calibrate the jump frequency for the point processes driving mortality changes
in a range that is consistent with history. For example, one can use the his-
torical frequency of pandemics as a guide to setting the jump frequency.

In financial and economic applications of jump-diffusion type models, one issue
that emerges is how to appropriately disentangle the diffusion from the jump dy-
namics. The problem is acute in the modelling of stock market returns because one
generally introduces jumps into the model with the idea of picking up “crashes”
such as 1929, 1987 or 2008 but what can happen is that the estimation of such
a model produces a preponderance of high frequency low severity jumps rather
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than the intuitively pleasing outcome of fairly smooth diffusion behavior punctu-
ated by occasional severe jumps. In our model we are focused on mortality rather
than equity returns but the same question can be asked. While we do not have an
estimation procedure that simultaneously sorts out the diffusive and jump para-
meters of our model, we do feel that the infrequent occurrence of severe adverse
mortality events makes our imposed reconciliation of the diffusion and adverse
mortality jumps reasonable. In the case of possible jump components to mortality
improvement we are not able to reliably measure the extent to which jump behav-
ior is present. Insofar as the stochastic features of the model can be ascertained for
a given parameterizations, the user of the model can at the very least perform risk
management functions for a range of life insurance products on plausible mortality
scenarios.

In sum, while our model can generate a rich set of scenarios, it does pose a se-
rious estimation challenge. This is especially so because of the relative paucity of
extreme events in mortality data sets. Indeed our goal is to allow for scenarios
reflecting expert judgment about these events, which may not be the same as the
data. For example our approach allows one to set the frequency of a severe 1918-
like flu so that it is a 1 in 25 year event, even though such a flu has been observed
only once in 100 years. Therefore, “estimation” of this model requires a combina-
tion of traditional estimation techniques and expert judgement.

2.4. Parsimonious Model. For the Lee-Carter base model substituting in equation
(2.3) for µLC(x, t), equation (2.4) becomes

(2.8)

µ(x, t) = exp [a(x) + b(t)k(t)−G(x, t) + H(x, t)]

= exp [a(x) + b(t)k(t)]

× exp

{
−

∞∑
s=1

ysAs(x)1{t≥ηs}

}

× exp

{
−

∞∑
i=1

ζi(t− υi)Fi(x) exp(−ξi(t− υi))1{t≥υi}

}

× exp

{
∞∑

j=1

bjBj(x) exp(−κj(t− τj))1{t≥τj}

}
.

A permanent longevity jump can be driven by the one-time component K(x, t)

that substantially reduces µ(x, t) within a short period of time, but it can also come
from the trend reduction component D(x, t) that accumulates the excess mortality
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improvement over a long time. As discussed in Section 2.2.1, of these two com-
ponents, D(x, t) seems to play a more important role, especially for ages above 65
— the age range we are keenly interested in for longevity risk. Accordingly, we
provide a parsimonious version of our model,

(2.9)

µ(x, t) = exp [a(x) + b(t)k(t)]

× exp

−
M(t)∑
i=1

ζi(t− υi)Fi(x) exp(−ξi(t− υi))1{t≥υi}


× exp


N(t)∑
i=1

bjBj(x) exp(−κj(t− τj))1{t≥τj}

 .

In equation (2.9), the permanent longevity jump is only a function of the trend
reduction component. The process M counts mortality trend reduction jumps;
and M(t) is the number of such jumps by time t. Similarly, the process N(t) counts
the number of catastrophe death events by time t. Evidently, equation (2.9) can be
further simplified to this:

(2.10)

µ(x, t) = exp [a(x) + b(x)k(t)]

× exp

−ζF (x)

M(t)∑
i=1

(t− υi) exp(−ξ(t− υi))1{t≥υi}


× exp

bB(x)

N(t)∑
i=1

exp(−κ(t− τj))1{t≥τj}

 ,

assuming constant mortality and longevity jump effects for age x.

2.5. Example. Below we show how to apply the parsimonious equation (2.10) to
model mortality dynamic process. All of our estimates are based on the aforemen-
tioned US male population mortality tables from 1901 to 2005. As we noted earlier,
we begin by using the data to estimate the Lee-Carter model.

The importance of the impact of medical advancement on pension plans and
annuity insurers should not be underestimated. Trend reduction factors in our
model provide for such mortality improvements. The 1970’s were the years of
accelerating decline of mortality for most ages, so our trend reduction parameters
are estimated from this period. The left graph of Figure 5 shows our estimated
F (x) for different ages based on the data from 1970 to 1979. As mentioned in
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Section 2.2.1, age 0 had the highest average annual excess mortality decrease rate
ζ = 0.0211, so F (0) = 1. However, we can observe mortality declines at high excess
rates mostly at the older ages. On the other hand, during the 1970s, mortality
increased for some male young ages, perhaps due to an increase in homicides,
suicides, and accidents. If an age does not have an excess mortality decrease rate,
we set their F (x) = 0. Since the annuity benefits in general are distributed mostly
in the older age ranges, their unexpected improvement in life expectancy will have
a great bearing on the overall impact of the longevity event. Furthermore, based
on the historical data, we specify the trend reduction event arrival rate λν = 0.01

and the duration parameter ξ = 0.01.
The 1918 worldwide flu is considered the most severe flu epidemic. Naturally,

it serves as the basis for the estimation of our temporary adverse mortality jump
parameters. The right graph of Figure 5 presents B(x), the normalized log µ-ratio
in 1918 relative to 1917 for different ages. The 1918 flu increased the one-year force
of mortality for different ages very unevenly. The flu struck ages 0-50, especially
ages 20-40, seriously while there were no excess deaths at the ages above 53. Ac-
cording to Taubenberger and Morens (2006), these older people survived earlier
flu epidemics and may have acquired immunity to the flu virus. Among all ages,
age 28 has the highest log µ-ratio, which is the value for b. Specifically, b = 0.9647

and F (28) = 1. Since the 1918 flu is approximately a one-in-one-hundred-year
event, λτ = 0.01. Moreover, this pandemic only lasted a couple of years so κ = 1 is
reasonable.

With the observed force of mortality for age x in year t = 2005 as the base case,
sample paths of µ(x, t) for ages 30, 40, 50 and 60 in one simulation iteration are in
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FIGURE 5. The left figure is the function F (x), the normalized annual
excess percentage decrease in µ(x, t) for different ages in the 1970’s.
The right figure is the the function B(x), giving the impact of the 1918
worldwide flu on µ(x, t) across ages.
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FIGURE 6. These are simulated sample paths of the force of mortal-
ity, based on equation (2.10) and the parameters described earlier.
The top path is the simulated force of mortality µ(60, t), the one just
below it is µ(50, t), then µ(40, t) and µ(30, t).

Figure 6. They highlight three major features of our model: First, effects of both
mortality improvement and deterioration jump factors are clear. For example, the
curve of µ(40, t) has a steeper downward slope that starts in year t = 2027 and
lasts for about 20 years (its trend reduction longevity jump D(40, t) illustrated in
the left graph of Figure 7). Moreover, age 40 has a sharp increase in µ(40, t) in
year t = 2014 but µ(40, t) falls back to the normal level afterwards (its temporary
jump factor H(40, t) shown in the right graph of Figure 7). Second, the movement
of different µ(x, t)’s are correlated among different ages and over time. This is
partially attributed to the functions F (x) and B(x). Third, F (x) and B(x) also
distribute uneven effects of a mortality jump across different ages. Based on the
historical data, in our model, the adverse mortality jumps mainly strike younger
ages while the older ages enjoy more excess survival gains.

All parameters of the example shown in the above example are estimated from
the historical data. This is a problem that we will want to carefully consider, as
opinions vary widely regarding future health care system and pandemic. The
shape of mortality curve often changes in different mortality or longevity jump
events. Toole (2007) concludes that the typical distribution of excess death rates
for seasonal influenza is U-shaped; that is, “excess deaths are heaped at age 0,
quickly decrease to close to zero until they start to increase again at older ages
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FIGURE 7. This shows the trend reduction longevity jump D(40, t)
for age 40 (left) based on equation (2.6) and temporary adverse mor-
tality jump H(40, t) (right) based on equation (2.7). These are the
ones used in the simulated paths shown in Figure 6.

(typically age 65) with a rapid rise at ages 85 and older.” However, the 1957 pan-
demic showed a spike in excess death rates at ages 65 and older but there were no
excess death at age 0 (Luk et al. 2001). Another exception is the 1918 worldwide flu
as mentioned earlier: there were no excess deaths at ages above 65. It is important
to note our model can flexibly estimate the impact of a particular jump pattern by
adjusting F (x) and B(x) based on different opinions or updated information.

The parsimonious model (2.10) does not include the jump reduction component
K(x, t) since there is no clear historical evidence to guide us on its pattern. As long
as the estimates of y, A(x) as well as the jump intensity are developed based on
judgment, it is not difficult to include K(x, t) in a richer model. An illustration is
provided in the next section.

2.6. A Simple Model. Although we envision the primary role of our model as risk
management tool for the generation of a robust set of plausible mortality scenarios,
it is possible to calibrate the model to behave in a manner that is qualitatively simi-
lar to the basic Lee-Carter model. This can be done using jump events in longevity
and adverse mortality and a fixed base mortality rate resulting in a simple model
of the form

(2.11) µ(x, t) = µ(x, 0) exp (−K(x, t) + H(x, t)) .

We calibrated this model by taking µ(x, 0) as the force of mortality as of 2005 from
the data that we have discussed above. We then used the forces of mortality for
the period 1965 through 2005 to estimate average rates of mortality improvement
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by age. We calibrated the adverse mortality effects as was done in the previous
section. This led to the functions A(x) and B(x) shown in Figure 8.
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FIGURE 8. The functions A(x) and B(x) for a very simple calibration
process. The left figure is the function A(x), the normalized annual
average rates of mortality improvement in µ(x, t) for different ages.
The right figure is the the function B(x), giving the impact of the 1918
worldwide flu on µ(x, t) across ages.

One can use the improvement in mortality to identify average rates but it is not
clear how one can identify the frequency with which longevity events occur. For
the purposes of this simple example, we use a Poisson process with intensity 0.50

to model longevity jumps and a jump size y = 0.06506. Although we know what
the product of these two values ought to be, we cannot identify them individually.
Consequently, one must judge the parameters by the qualitative features of the
model.

Figure 9 shows simulated mortality trajectories for the model parameters that
we have described. If one compares this with the trajectories from the basic Lee-
Carter model they are similar in their longevity behavior.

3. SECURITIZATION OF MORTALITY AND LONGEVITY RISKS

3.1. Market Development. Financial innovation has led to the development of
several classes of mortality securities. The Swiss Re bond, the first pure death-risk
linked deal, was issued in December 2003 (MorganStanley 2003, Swiss Re 2003,
The Actuary 2004). After successfully issuing the first-ever pure death-linked se-
curity, Swiss Re sold two new mortality bonds with different tranches in April and
December 2006 (Lane 2006). Following Swiss Re, some life insurers started to re-
duce their extreme mortality exposures through financial markets. For example,
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FIGURE 9. Evolution of mortality for a simple model, based on equa-
tion (2.11) and the parameters described earlier. The top path is the
simulated force of mortality µ(60, t), the one just below it is µ(50, t),
then µ(40, t) and µ(30, t).

in May 2006 Scottish Re sold a mortality bond with two tranches via a special pur-
pose vehicle called Tartan Capital Ltd., and in November 2006, AXA issued its first
catastrophe mortality deal — the Osiris bond (Lane and Beckwith 2007). See Bauer
and Kramer (2007) for more details.

Capital market solutions for unanticipated longevity risk have been explored
relatively recently, first appearing in articles by Blake and Burrows (2001), Milevsky
and Promislow (2001), Lin and Cox (2005) and others. Possibly inspired by the suc-
cessful securitization of catastrophe mortality risks, in November 2004, the Euro-
pean Investment Bank (EIB) offered the first longevity bond to provide a solution
for pension plans to hedge their long-term systematic longevity risks. Unlike the
Swiss Re mortality bond, the EIB longevity bond did not sell. The design of the
EIB bond may be problematic. The EIB bond provides “ground up” protection,
covering the entire survival payment. Since the plan can predict the number of
survivors to some extent, especially in the early contract years, a more satisfactory
solution may be a hedge using, for example, J.P. Morgan q-forwards with a settle-
ment date 10 or more years in the future, rather than hedging the whole benefit
liability.

3.2. J. P. Morgan q-Forwards. A q-forward contract requires at maturity an ex-
change of a fixed amount based on the predetermined mortality rate, in return for
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TABLE 2. An illustration for a q-forward to hedge longevity risk for
a pension plan, described by Coughlan et al. (2007)

Notional Amount GBP 50,000,000

Trade Date December 31, 2006
Effective Date December 31, 2006
Maturity Date December 31, 2016
Reference Year 2015
Fixed Rate 1.2%
Fixed Amount Payer J.P. Morgan
Fixed Amount GBP 60, 000, 000 = 0.012× 50, 000, 000
Reference Rate LifeMetrics male q65 in the reference year

for England & Wales national population
Floating Amount Payer XYZ
Floating Amount Notional Amount × Reference Rate × 100
Settlement Net settlement = Fixed Amount − Floating Amount

a variable amount based on a realized mortality rate published at a specified future
date by J.P. Morgan, in the LifeMetrics system.7 Coughlan et al. (2007) describe an
example with a 10-year q-forward written on the one-year death rate q65 for males
age x = 65 in England & Wales. See Table 2 for a summary. The example pro-
vides a longevity hedge for the XYZ pension plan. The q-forward was opened on
December 31, 2006 with a notional amount of £50,000,000 and a fixed death rate
q65 = 1.2%. The floating-rate payer XYZ pays an amount proportional to the mor-
tality rate at maturity on December 31, 2016, determined by the reference rate in
2015.

At the maturity, the contract is settled at the net amount which is the difference
between the fixed amount and the floating amount. For example, if the reference
rate is only 1%, then XYZ Pension gets £10, 000, 000 at settlement of the q-forward
contract, calculated as the net settlement amount:

Net Settlement = Fixed Amount − Floating Amount

= 50, 000, 000× 1.2%× 100− 50, 000, 000× 1%× 100

= £10, 000, 000.

Better mortality means fewer than 1.2% of those age 65 in 2015 die within the year,
and XYZ will have more than expected pension benefits to pay if it has similar
experience. If the reference rate is higher than the fixed rate 1.2%, the settlement is

7Available at www.lifemetrics.com.
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negative and XYZ pays J.P. Morgan. In this case, mortality increases and it is likely
that the pension plan pays lower pension benefits.

Life insurers can use q-forwards to hedge mortality risk in a similar way. In
summary, insurers or pension plans can take a position (as fixed amount payer or
floating amount payer) in q-forwards to hedge their liability to pay benefits to their
clients.

The q-forward contract could be modified to create q-calls and q-puts. There
are two practical problems with the q-forward (or analogous options). When the
q-forward is opened in 2005, XYZ has to estimate the number of survivors to age
65 in 2015 in order to determine the size of the hedge. While XYZ may be more
concerned about rates 10 years in the future, they also have longevity risk during
the 10 year contract period beginning in 2005. The example only hedges survivor
risk from age 65 to age 66.

The other problem is that it is difficult to extend the q-forward hedge. The ex-
ample covers survivor risk only for one year. While XYZ could open a portfolio of
q-forwards on the indices q64+k,2014+k for k = 1, 2, . . . , it would also have to fore-
cast the number of survivors to each age in order to determine the size of each
q-forward contract. This gets more difficult as the hedge is extended because of
the problem of estimating the number of survivors, exactly the risk the q-forward
is supposed to hedge.

3.3. Securities Based on a Longevity Index. Consider the XYZ plan again. As
before, XYZ has a liability to make payments to a plan participants who survive to
age 66 in 2016. When the longevity security is opened in 2005, those participants
are age 55. XYZ knows how many participants, their gender, and projected benefits
so there is no problem in determining the size of the hedge. Let us consider one
participant with 1 unit of annual benefit paid at age 66 in 2016.

In its funding calculations, XYZ will have an estimate of the probability that a
participant now age 55 survives to age 66, denoted 11p

XYZ
55 . The index allows XYZ

to hedge underestimating this value (and underfunding its liabilities).
The index for this hedge is based on the government or Lifemetrics series of

future death probabilities q55,2005, q56,2006, q57,2007, . . . , q65,2015, published each year
from 2006 to 2016. The first index value is p55,2005 = 1 − q55,2005, published in 2006.
The second index value is

2p55,2005 = (1− q56,2006) p55,2005
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which is published in 2007. The subsequent index values are calculated analo-
gously. The index value for hedging the payment in 2016 is

11p55,2005 = (1− q55,2005) (1− q56,2006) (1− q57,2007) · · · (1− q65,2015)

and it is based on the national population experience during the hedge period
from 2005 to 2015. XYZ can use the index directly to hedge its payments to the
cohort of plan participants age 55 in 2005. Forwards or options can be written on
this index just as easily as they might be written on q65,2015 but with no problem in
determining the hedge size. Moreover, XYZ could just as easily extend the hedge
to the second benefit payment with an option on the next index value 12p55,2005.

For example, a call option could pay XYZ when the realized population rate

11p55,2005, published in 2016, exceeds a strike rate such as 11p
XYZ
55 (which the plan

uses in 2005). The population index is likely to be in the money in the same cir-
cumstances that the plan has experienced unexpected increases in longevity, since
the two groups are subject to some of the same forces of mortality.

Using the population index, based on LifeMetrics or government data, reduces
moral hazard since the index is transparent to all investors. However, basis risk
may be a problem. Generally pension plan participants have higher survival rates
than the population as a whole. However, XYZ could estimate this relationship sta-
tistically and use this relation to adjust its hedge. We show how to price longevity
options in the next section.

4. MORTALITY SECURITIZATION MODELING

Insurance–linked securitization, as an alternative risk management method and
a new investment opportunity, has gained more and more attention from both
scholars and practitioners. Accordingly, to develop this emerging market, actuar-
ies and financial economists have begun to make considerable efforts to improve
its structure and take on the challenges to connect financial and insurance pricing
theories. The well-known capital asset pricing model (CAPM) lacks the flexibility
to be applied appropriately to heavy-tailed insurance risks. On the other hand,
many insurance principles lack the ability to produce arbitrage–free prices. To
address these problems, we use the indifference pricing method to price mortality
and longevity securities. To illustrate the idea, we combine the indifference pricing
method and our proposed stochastic mortality model. We show how to estimate
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the risk aversion parameter, using annuity market data. Then, we use the esti-
mated parameter to price a longevity option. The same techniques can be used to
price other mortality securities.

4.1. Indifference Pricing Method. We consider longevity risk in a life-only single
premium immediate annuity (SPIA) for age x. We further assume the annuity ben-
efit is s̄, paid at the end of each period. Thus, the present value of future annuity
benefits for an annuity written on M lives (xi) at time 0, for i = 1, 2, . . . ,M is

(4.1) Xi = s̄
∑

k

e−krkI{T (xi)≥k},

where rk is the default-free interest yield from time 0 to time k and k runs over the
payment times.8 The aggregate present value is

(4.2) Y =
M∑
i=1

Xi.

The premium P per policy is to be determined from the equation:

(4.3) E[u(w + MP − Y )] = u(w),

where w is the wealth of the insurer prior to accepting the risk to be priced. We use
the exponential utility function,

(4.4) u(w) =
1− e−αw

α
,

where α is the risk aversion parameter of the insurer. The random variable Y

depends on the random path of future force of mortality values {µ(x+t, t) : t ≥ 0},
which can be simulated with our model, using equation (2.10). The risk aversion
parameter α in equation (4.3) can be approximated using known insurance market
prices. Under our exponential utility function, the premium implied by (4.3) may
be expressed as

(4.5) P =
1

Mα
log E

[
eαY

]
.

When calibrating to market data, we need to determine α so that equation (4.5) is
satisfied.

8The notation IA is the indicator function taking the value 1 if the event A occurs and the value 0 if
not.
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In the annuity pricing application we are considering, we are pricing an aggre-
gate annuity exposure for which the component risks are identical but not neces-
sarily independent. As we have noted, the indifference premium under exponen-
tial utility is given by (4.5). An approximation for P , which can be found in Gerber
and Pafumi (1998), can be made as

P ≈ 1

Mα

[
αE[Y ] +

1

2
α2Var(Y )

]
.

Since the aggregate loss is composed of M identical risks, E[Y ] = ME[X] and thus

(4.6) P ≈ E[X] +
α

2M
Var(Y ).

The mortality is uncertain but it is reasonable to assume that, given a mortality
scenario Θ, the annuitant lives are independent. In this case, the variance of Y is
the sum of two terms:

Var(Y ) = E[Var(Y |Θ)] + Var[E(Y |Θ)]

= E[MVar(X|Θ)] + Var[ME(X|Θ)]

= ME[Var(X|Θ)] + M2Var[E(X|Θ)].

The approximation becomes

(4.7) P ≈ E[X] +
α

2
E[Var(X|Θ)] +

Mα

2
Var[E(X|Θ)].

When the mortality scenario is known (as in traditional actuarial calculations with
static tables), there is no variance in E(X|Θ), the third term is zero, and the pre-
mium P per policy does not depend on the number of polices M . However, in
general mortality scenarios are uncertain and the premium P will depend on the
portfolio size M as indicated by (4.6). Moreover, even when the lives are condi-
tionally independent, given the mortality table, the premium still depends on the
size of the portfolio as indicated by (4.7).

4.2. Estimating α from annuity prices. The Genworth Financial Group sold around
$560 million of single premium individual annuities in the US in 2005 with a
monthly payout rate of $6.40 per $1,000 premium (Stern 2008). We assume that
the policies are identical, issued to males age 65 with a gross premium of $250,000.
Since aggregate premium is $560 million, then the number of policies is M =

560 million/250, 000 = 2, 240.
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We assume the underlying expense factor is 12.25 percent, which is around the
industry average, so the net premium per policy to the insurer is

P = 250, 000× (1− 0.1225)

= $219, 375.

Equation (4.1) gives the present value of benefits for one life with s̄ = 250× 6.40 =

$1, 600 per month.
We estimate the risk aversion parameter α from equation (4.5) by simulation,

with a “Monte Carlo simulation within a Monte Carlo simulation”. We start with a
trial value of α = α0 and estimate the corresponding value of E(eα0Y ) = E[E(eα0Y |Θ)].
First we generate 10,000 of scenarios Θj . Then we simulate M = 2, 240 values of
eα0Y |Θj , for each j, and estimate E[eα0Y |Θj] with the sample mean. The estimate
of E

(
eα0Y

)
is the mean of these sample means. This is a very fast calculation. The

corresponding model price, from equation (4.1), is

P0 =
1

Mα0

log E
(
eα0Y

)
.

We repeat the calculation with another trial value α1, then obtaining P1. Then we
use the secant method to find a third approximation,

α2 = α1 −
α1 − α0

P1 − P0

(P1 − P ) .

This process converges rapidly to α = 4.8 × 10−7. For the value of α that was de-
termined above, the unscaled utility function for Genworth is shown in Figure 10.

In this example, we used the population mortality tables rather than annuity
tables because we do not have a time series of annuity tables. On a static basis,
population mortality tables will tend to underestimate the longevity risk in annu-
ities relative to the applicable set of annuity tables, thereby tending to create an
overestimate of α. However, we estimated α using Lee-Carter projections for mor-
tality fluctuations which embeds longevity risk. As we do not know the mortality
assumptions that Genworth used in setting their annuity rates, this exercise must
be viewed as an illustrative approximation. The reason that we calibrated α us-
ing Lee-Carter projections rather than the full model is that the full model induces
significantly thicker longevity tail risk than Lee-Carter projections alone. Indeed,
if α is estimated under the full model a significantly lower value of α is obtained
because of the greater tail risk and the Genworth annuity premiums do not appear
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FIGURE 10. Genworth’s estimated utility function under the expo-
nential utility model for α = 4.8 × 10−7. The vertical axis represents
utility and the horizontal axis represents wealth, both in thousands.

to contain a material charge for this tail risk. It seems reasonable to believe that our
estimated α = 4.8×10−7 can serve as an upper bound for Genworth’s risk aversion
to annuity longevity risk. Although we show how to determine α with an annuity
market quote, the same technique can be applied to estimate life insurance risk
aversion parameters. We will use this value in the next section to estimate what
Genworth would pay for a longevity option.

4.3. Longevity Option Price. Let us now illustrate the pricing of longevity options
using indifference pricing with the pricing parameter α that we have previously
derived from annuity prices. Consider a 10-year call option issued in December
2005 based on our longevity index 10p65,2005 as defined in Section 3.3 with a no-
tional amount of $100, 000, 000 and a strike price of p. The dollar payoff from this
longevity call at maturity in 2015 may be expressed as

(4.8) C =

100, 000, 000 (10p65,2005 − p) if 10p65,2005 > p

0 otherwise
.

Although one can attribute a “cohort” to the payoff amount, in practice the owner
of the option is most likely concerned with the total dollar exposure as it relates
to a pension fund or annuity pool liability. We apply equation (4.3) to price this
longevity call option for a mortality data generating process driven by our mor-
tality model and by the Lee-Carter model alone. In all cases we assume that the
market risk aversion parameter is α = 4.8 × 10−7, in line with the estimate that
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TABLE 3. 10-year longevity call option prices with data generating
process driven by our model.

Strike rate p 0.775 0.780 0.785 0.790 0.795
Call price $1,121,364 $924,288 $772,136 $652,506 $553,345

TABLE 4. 10-year longevity call option prices with data generating
process driven by the Lee-Carter model alone.

Strike rate p 0.775 0.780 0.785 0.790 0.795
Call price $191,962 $77,070 $23,864 $5,522 $937

was made for the Genworth Financial Group. Table 3 shows longevity call op-
tion prices for a range of strikes for mortality driven by our model. Table 4 shows
longevity call option prices for a range of strikes for mortality driven by the Lee-
Carter model alone. For example, given the strike level p = 0.775 and the US
treasury discount factors for the 2005 calendar year,9 our 10-year longevity call op-
tion price equals $1,121,364 if the mortality data generating process is driven by
our model.

Evidently, the nature of the mortality data generating process if critical in assess-
ing the risk in a longevity derivative contract. In the trading of standardized equity
and interest rate derivatives, one discovers that market prices reflect a “smile”. In
simple terms, one finds that is it far more expensive to purchase “lottery tickets”
on equity indices or interest rates than basic theory suggests. If the market for
longevity derivatives should evolve to a level of reasonable liquidity, it would not
be surprising of similar effects were observed. While no one can be certain of the
true nature of longevity risk, our model has shown that then presence of relatively
infrequent mortality improvements poses a significant risk. Figure 11 shows a his-
togram of simulated values of 10p65,2005 for 1 million draws using the full model.
Figure 12 shows a histogram of simulated values of 10p65,2005 for 1 million draws
using the Lee-Carter model alone. Evidently, it is the right tail behavior that is
driving the differences between the prices of the longevity calls across the two
mortality data generating processes.

9To be precise, we require discount factors that are representative of interest rates for 2005. We take
the average US treasury coupon-curve yields for 2005 as published in the Federal Reserve’s H15
data set and strip them to produce zero-coupon data. We then fit a Nelson-Siegel yield curve to this
zero-coupon data which can be extrapolated beyond the last observation. At this point we have a
set of discount factors that is representative of market conditions in 2005.
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Reinsurance contracts typically have a cap on the reinsurer’s liability. It is rea-
sonable to anticipate that mortality traders may follow this tradition. The typical
reinsurance contract is analogous to a call spread with two calls having different
strike prices. Consider a call spread written on the survivor index 10p65,2005, with
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Reinsurance contracts typically have a cap on the reinsurer’s liability. It is rea-
sonable to anticipate that mortality traders may follow this tradition. The typical
reinsurance contract is analogous to a call spread with two calls having different
strike prices. Consider a call spread written on the survivor index 10p65,2005, with
lower strike level, “attachment point”, p1 and an upper strike level, or “detach-
ment point”, p2 and a notional amount of $100, 000, 000. The dollar payoff from
this longevity call spread at maturity in 2015 may be expressed as

(4.9) B =


100, 000, 000 (p2 − p1) if 10p65,2005 ≥ p2

100, 000, 000 (10p65,2005 − p1) if p1 <10 p65,2005 < p2

0 if 10p65,2005 ≤ p1

.

Table 5 shows the longevity call spread option prices for a range of strikes for
mortality driven by our model. Note that the spreads in Table 5 have different, de-
creasing seniorities due to decreasing trigger and exhaustion levels. In particluar,
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FIGURE 12. Range of outcomes for 10p65,2005 under the Lee-Carter
model alone.
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Table 5 shows the longevity call spread option prices for a range of strikes for
mortality driven by our model. Note that the spreads in Table 5 have different, de-
creasing seniorities due to decreasing trigger and exhaustion levels. In particluar,
spread A has the lower attachment and detachment points relative to the other
spread options and thus it demands a higher price.
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TABLE 5. Prices for 10-year longevity call spread options.

Spread A Spread B Spread C Spread D
Attachment point p1 0.775 0.780 0.785 0.790
Detachment point p2 0.780 0.785 0.790 0.795
Price $122,985 $70,405 $39,337 $25,835

spread A has the lower attachment and detachment points relative to the other
spread options and thus it demands a higher price.

5. SUMMARY

We have described a mortality model which provides a rich and realistic space
of sample paths of future mortality rates. The model evolves as a dynamic process
that combines a general mortality trend, a diffusion process, a permanent longevity
jump process, and a temporary mortality jump process. Furthermore, we describe
a parsimonious version of the model based on judgement and historical mortality
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data available through the Human Life Table Database and the Human Mortal-
ity Database. Another novel aspect is that our model includes uneven effects of a
mortality or longevity shock to different ages. In addition, the model is tractable
enough to allow path-by-path simulation which can be combined with pricing
techniques, as we illustrate with the indifference pricing method. The model is
well-suited to risk management application where there is a need to test extreme
but plausible mortality scenarios.
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