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Abstract

In this article we review the state of play in the use of stochastic models for the
measurement and management of longevity risk. A focus of the discussion concerns
how robust these models are relative to a variety of inputs: something that is par-
ticularly important in formulating a risk management strategy. On the modelling
front much still needs to be done on robust multipopulation mortality models, and
on the risk management front we need to develop a better understanding of what
the objectives are of pension plans that need to be optimised. We propose a variety
of ways forward on both counts.

Keywords: Longevity Risk, Stochastic mortality models, Robustness, Risk man-
agement.
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1 Introduction

This paper considers recent developments on the modelling and management of
longevity risk: the risk that, in aggregate, people live longer than anticipated. There
are a number of aspects to this problem. First, we need to develop good models
that will help us to measure and understand the risks that will arise in the future,
with longevity risk being one out of a number of risks such as interest-rate risk and
other market risks. Pension plan trustees and sponsors then need to consider the
results of this exercise in relation to the plan’s risk stated risk appetite and risk
tolerances. Finally, they need to make active risk management decisions on how
best to manage the plan’s exposure to longevity risk as part of a bigger package of
good risk management.

1.1 Structure of the paper

This paper starts with a review of developments in the modelling of longevity risk.
We consider how three distinctively different approaches to modelling have ‘inter-
bred’ in recent years and we discuss some difficulties with the most recent and also
more complex models. Alongside this we discuss uncertainties in the underlying
population data that, to date, has not received much attention from the modelling
community but is beginning to cause practitioners some anxiety.

We then move on to discuss the question of robustness. There are many outputs
from a modelling exercise, but, here, our ultimate goal is to ensure that a particular
model produces recommendations for risk management actions that are robust, and
which the end users can understand and trust. Without this endpoint, the efforts
of those researchers who do the modelling will be fruitless.

2 Modelling challenges

Recent years have seen the development of a wide range of new stochastic models for
future improvements in mortality rates. One element of this paper is to challenge
the usefulness of all of these models. Our hypothesis is that developing new models
is relatively easy. That is, additional features can easily be added to existing models
such as the Lee-Carter model (Lee and Carter, 1992) or the CBD model (Cairns,
Blake and Dowd, 2006b) and it is normally straightforward to fit these models
to the usual datasets and to get a better fit. However, the question remains as to
whether or not this added complexity actually improves our ability to forecast future
developments in mortality. Answering this question is much more difficult, if it can
be answered at all.

Alongside the modelling and consequent measurement of longevity risk, we also have
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to think about the management of that risk. The transfer of longevity risk from
pension plans to reinsurers, insurers and to the capital markets (for example, hedge
funds specialising in insurance-linked securities) is a relatively new phenomenon as
plan sponsors have begun to get a better grip on the risks inherent in the running
of these plans. This market has been slowly gaining momentum with most activity
in the UK, but with large and notable transactions in the Netherlands (e.g. Aegon
2012) and the USA more recently. Again we consider what transactions are easy
and which ones are difficult. For an actuarial consultancy, it is easy to recommend
a customised longevity swap. This would be part of a package of over-the-counter
transactions that hedge out the interest-rate, inflation and longevity risks that are
embedded in a portfolio of pensions in payment. Recommending a longevity swap
is “easy” from the consultant’s perspective because the end result of zero risk is
guaranteed (notwithstanding counterparty risk). All that remains is to negotiate a
good price for the swap or, perhaps, to conclude that the price is too high and that
the plan should wait until market conditions and the plan funding position improve.
But is a customised longevity swap actually the best solution? Alternatives do exist
in the form of q-forwards and S-forwards (see www.LLMA.org). These are derivative
securities whose payoffs are linked to an index of mortality rather than the pension
plan’s own mortality. As a consquence, therefore, their use gives rise to basis risk.
But for many pension plans (the hedgers), some residual risk might be acceptable
of the hedge is relatively cheap compared to the customised longevity swap. But
many consultants will complete avoid consideration of such contracts for a variety
of reasons:

• assessment of basis risk is difficult and, perhaps, beyond the capabilities of the
consultant;

• assessment of the risk appetites of the plan trustees and sponsor is difficult;

• communication of the nature of the underlying derivatives (e.g. q-forwards) is
difficult (what does a q-forward have to do with long-term survivorship?);

• perceived reputational risk from the consultant’s perspective if he/she rec-
ommends an index-linked solution that subsequently requires topping up (a
customised swap might be suboptimal but the reputational risk is minimal).

A significant issue concerns establishment of the risk appetites of a plan sponsor and
trustees. The use of a customised longevity swap seems to be consistent with zero
appetite for risk. But the paradox here is that pension plans seem to be left with
two parts: the part of the plan that deals with pensions in payment is completely
intolerant of risk; and the pre-retirement liabilities and associated assets. Typically,
for the latter portion of the plan, trustees and sponsors are apparently happy to
continue with a risky, equity driven, investment strategy. This apparent paradox is
discussed further in Section 6.
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Figure 1: Timeline for the development of stochastic mortality models. Arrows
indicate the influence that individual models have had on the development of later
generations. (Source: Cairns, 2012.)

With the above discussion in mind, the objective of this paper is to focus minds on
the development of a longevity risk management strategy for pension plans and an-
nuity providers that we can have confidence in; that we believe is (close to) optimal;
and that we know is robust.

3 Model development: a genealogy

We now review briefly some of the key developments in modelling over the last 20+
years before discussing in a later section where efforts might be focussed in the future
on the development of new models (especially in a multifactor setting). We choose
to refer here to the modelling ‘genealogy’ because the majority of new models can
be thought of as being modifications (that is, the descendants) of earlier models.
This is illustrated in Figure 1.

Models for mortality are typically expressed in terms of the death rate, m(t, x), for
age x in year t or the corresponding mortality rate (probability of death), q(t, x). A
commonly used approximation that links the two is that 1−q(t, x) ≈ exp[−m(t, x)].
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Model formula

M1 logm(t, x) = β
(1)
x + β

(2)
x κ

(2)
t

M2 logm(t, x) = β
(1)
x + β

(2)
x κ

(2)
t + β

(3)
x γ

(3)
t−x

M3 logm(t, x) = β
(1)
x + κ

(2)
t + γ

(3)
t−x

M4 logm(t, x) =
∑

i,j θijB
ay
ij (x, t)

M5 logit q(t, x) = κ
(1)
t + κ

(2)
t (x− x̄)

M6 logit q(t, x) = κ
(1)
t + κ

(2)
t (x− x̄) + γ

(3)
t−x

M7 logit q(t, x) = κ
(1)
t + κ

(2)
t (x− x̄) + κ

(3)
t ((x− x̄)2 − σ̂2

x) + γ
(4)
t−x

M8 logit q(t, x) = κ
(1)
t + κ

(2)
t (x− x̄) + γ

(3)
t−x(xc − x)

Table 1: Formulae for the mortality models: The functions β
(i)
x , κ

(i)
t , and γ

(i)
t−x are

age, period and cohort effects respectively. The Bay
ij (x, t) are B-spline basis functions

and the θij are weights attached to each basis function. x̄ is the mean age over the
range of ages being used in the analysis. σ̂2

x is the mean value of (x− x̄)2. (Source:
Cairns et al., 2009.)
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Stochastic mortality modelling in demography and actuarial work can mainly be
traced back to the model of Lee and Carter (1992) (model M1 in Table 1). However,
the medical statistics literature does contain the Age-Period-Cohort model (APC)
which pre-dates the Lee-Carter model (see, for example, Osmond, 1985). It is only
since 2000, that a variety of models have been proposed as alternatives to the Lee-
Carter model to address its deficiencies (although, because of its simplicity, the
Lee-Carter model does still have its supporters). Some of these new models can be
thought of as direct descendants of the Lee-Carter model (such as Hyndman and
Ullah, 2007, and Booth et al., 2002), by adding additional age-period effects. Other
models had distinctly different roots. Currie, Durban and Eilers (2004) (building on
Eilers and Marx, 1996) proposed the use of two-dimensional P-splines (M4 in Table
1). Cairns, Blake and Dowd (2006b) (CBD) proposed a two-factor with parametric
age effects in contrast to the fully non-parametric Lee-Carter model (M5 in Table
1).

Basic analysis of underlying mortality data in the early 2000’s (Willetts, 2004) re-
vealed patterns in the data related to year of birth that could not be easily explained
through the use of age-period models. This gave rise to a number of new models
based on the three approaches that built cohort effects into the model: Renshaw
and Haberman (2006) building on Lee-Carter (M2); Cairns et al. (2009) building
upon CBD(M6, M7 and M8); and Richards et al. (2006) building on Currie et al.
(2004) (M4). The growing number of models led to the comprehensive studies of
Cairns et al. (2009, 2011a) and Dowd et al. (2011a,b), who used a wide range of
criteria to compare different models, as well as providing a framework for developing
and analysing other new models in the future. Of the models considered in these
comparative studies, several fitted historical data well but M2 and M8 were found
to have significant (and apparently insurmountable) problems with robustness (see,
also, CMI, 2007) leading to a recommendation that these models are not used in
practical work except with extreme caution and only then in expert hands.

Other strands of work have sought to take the best features of the different ap-
proaches to create new models. Delwarde et al. (2007) introduced the use of
P-splines into the Lee-Carter model. Plat (2009) and Currie (2011) added non-
parametric age effect into the CBD family of models (M5, M6 and M7) with the
key benefit that these models could be extended to a wider range of ages than was
previously recommended by Cairns et al. (2006b, 2009). Plat’s work has since been
developed further by Börger et al. (2013).

Most recently, new models have begun to emerge that attempt to model mortality
in multiple populations, by adapting standard single-population models. So far
these have focused on the simpler single-population models, and includes the work
of Li and Lee (2005), Cairns et al. (2011b), Li and Hardy (2011), Jarner and Kryger
(2011) and Dowd et al. (2011a). Much work remains to be done in this direction, but
a better understanding of multipopulation dynamics is central to the development
of a vibrant market in longevity transactions.
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Figure 2: Standardised errors ϵ(t, x) = (D(t, x) − m̂(t, x)E(t, x))/
√
m̂(t, x)E(t, x)

where the E(t, x) are the exposures, D(t, x) are the actual deaths and the m̂(t, x) are
the estimated death rates under the Lee-Carter model (M1; left) and the CBDmodel,
M7, with three period effects and a cohort effect. Black (t, x) cells correspond to
ϵ(t, x) < 0, gray cells correspond to ϵ(t, x) ≥ 0 and white cells correspond to missing
or excluded data. If the model is true then the ϵ(t, x) should be independent and
approximately standard normal. Data: England and Wales males aged 60 to 89
from 1961 to 2005.

Besides the models discussed above, a variety of other approaches have been pro-
posed. Cairns, Blake and Dowd (2006a) reviewed how arbitrage-free frameworks
for modelling interest rate risk and credit risk can be adapted to form different
frameworks for modelling mortality risk. The models covered in Figure 1 and Ta-
ble 1 can best be described as ‘short-rate’ models in the interest-rate context. Of
the alternatives proposed, most progress has been made on so-called ‘forward rate’
models (Miltersen and Persson, 2005, Olivier and Jeffery, 2004, Smith, 2005, Cairns,
2007, Bauer, 2006 and Bauer and Russ, 2006). In a similar spirit, Cairns, Blake and
Dowd (2008) describe in more detail the SCOR (Survivor Credit Offered Rate) mar-
ket model. Compared to the extended family models illustrated in Figure 1, these
forward-rate models bring with them greater challenges in terms of complexity and
calibration, but they also offer good prospects for efficient market consistent val-
uation from one time period to the next. Finally, other avenues that concern the
use of additional covariates such as smoking prevalence (Kleinow and Cairns, 2011)
or income (Kallestrup-Lamb, Blake, Cairns and Dowd, work in progress) are also
under consideration, but such approaches are constantly hindered by the lack of
good quality data.
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So why do we need all of the extra complexity that these models bring? The answer
lies with the quality of the fit of the model to historical data. Cairns et al. (2009)
compared eight models and found that, using the Bayes Information Criterion, the
more complex models (e.g. M7) fitted the historical data much better. Addition-
ally, an analysis of standardised residuals reveals that the simple models such as
Lee-Carter and CBD violated key assumptions such as conditional independence of
the death count in individual (t, x) cells. Figure 2), for example, shows strong diag-
onal clusters of gray and black cells (left-hand plot) when, in fact, these should be
distributed randomly throughout the plot. This contrasts with the more complex
CBD model with a cohort effect (M7) (which includes a cohort effect) where the
plot of residuals is much more random (Figure 2, right).

But this raises a potential problem. Models such as Lee-Carter and the basic CBD
(Cairns et al., 2006b) are known to be simple and robust, but violate the underlying
assumptions when they are fitted to the data (specifically that deaths are condition-
ally independent and have a Poisson distribution. The model complex models such
as the CBD-M7 or Plat (2009) fit much better and satisfy the underlying assump-
tions. But, as a general rule of thumb, greater complexity brings with it an increased
possibility that forecasts are less robust. Backing this up, Dowd et al. (2010,a,b)
compared six models and found that complex models that fitted historical data much
did not obviously outperform simple models in out-of-sample forecasting (nor did
they underperform).

A final problem with more complex models is that the more random processes we
have in a single-population model, the more complex it becomes to extend the model
to multiple populations.

3.1 Data reliability

Model fitting generally makes the assumption that the exposures data, E(t, x), is
accurate. However, for many national datasets and, potentially, smaller specialised
sub-populations, it is acknowledged that exposures are estimates and sometimes
quite poor estimates of the true values. This issue was mentioned in passing in
the discussion of US mortality data in Cairns et al. (2009). More recently, the
Office for National Statistics in the UK (ONS, 2012) made significant revisions to
estimated exposures from 2001 to 2011 for higher ages in the UK (including England
and Wales). The UK carries out population censuses every 10 years (the last being
in 2011). Even in the census years population estimates are subject to error, and
between censuses the ONS needs to estimate population sizes at each age through
estimates of deaths and net migration. In their analysis, Cairns et al. (2009) noted
that even for the best fitting models, standardised errors were bigger in magnitude
than they ought to be under the conditional Poisson model, and one explanation for
this is the fact that exposures are approximations. Indeed, for at least some smaller
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countries with much better systems in place for estimating population sizes at each
age, it seems that the standard mortality models fit better: a fact that might be the
result of greater accuracy of the exposures.

3.2 Applications of models

The models themselves have a number of applications.

As a starting point the basic outputs of models need to be communicated to end
users in a clear way. Various graphical methods, in particular, have been proposed
by Renshaw and Haberman (2006), Cairns et al. (2009, 2011) and Dowd et al.
(2010c).

A larger body of papers have sought to consider the pricing of longevity-linked
financial contracts. Solvency II and related issues have been discussed by Olivieri
and Pitacco (2009) and, with its one-year time horizon, Plat (2010), annuity pricing
by Richards and Currie (2009), and pricing in a more general context by Zhou and
Li (2013) and Zhou et al. (2011). This includes a requirement to calculate prices or
values at future points in time which creates a challenge in its own right: namely
that most stochastic mortality models do not give rise to simple analytical formulae
for even annuity prices. Some papers, therefore, propose methods for calculating
approximate values for key quantities (see, for example, Denuit et al., 2010, Cairns,
2011, Dowd et al, 2011b).

More recent work has focused on the use of models to develop and assess hedging
strategies including Dahl et al. (2008), Coughlan et al. (2011), Cairns et al. (2013a),
Cairns (2013), Dowd et al. (2011c) and Li and Luo (2012). Much more needs to be
done in this direction, in particular, to persuade end users to consider a wider range
of risk management options: a topic that is discussed later in this paper.

4 Robustness

A key theme in this paper is the need for robustness in the models, forecasts and
decisions that we might take in the measurement and management of longevity risk.
If any elements lack robustness, then end users will not have sufficient trust in what
is being recommended and, potentially a significantly suboptimal decision will be
taken.

The assessment of robustness takes many forms.
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4.1 Model fit

Models M1 to M8 in Table 1 consist of combinations of age, period and cohort effects.
We wish to know how robust are the estimated age, period and cohort effects are
relative to changes in:

• the range of ages used to calibrate the model;

• the range of years (especially adding one new year’s data);

• the method of calibration.

Additionally, are estimated age, period and cohort effects robust relative to uncer-
tainties in the estimated exposures (as in subsection 3.1). Where results are found to
be sensitive to these choices, is the sensitivity just a manifestation of identifiability
constraints (as discussed, for example, by Cairns et al, 2009) or is it a genuine lack
of robustness?

The method of calibration relates to the underlying statistical assumptions (for
example, the conditional independent Poisson assumption – see, Brouhns et al.,
2002; see also Li et al., 2009), is a Bayesian or frequentist approach being taken,
how much smoothing has been imposed, and what is the objective being optimised
(for example, maximum likelihood or a more simple form of linear regression)?

4.2 Model forecasts

In a similar vein, how robust are stochastic forecasts (both central trajectories and
the level of uncertainty around that trend) to changes in

• the range of ages used to calibrate the model;

• the range of years (especially adding one new year’s data);

• the method of calibration;

• the choice of stochastic model for simulating future period and cohort effects?

And how robust are forecasts relative to the more general treatment of model and
parameter risk and uncertainty in exposures data?

4.3 Business decisions

Finally, and related to the forecasts of future mortality rates, how robust are
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• financial variables such as the market consistent value of liabilities, and the
prices of, for example, q-forwards;

• risk management metrics (such as hedge effectiveness);

• risk management decisions (such as the choice of hedging instrument and the
number of units of that instrument);

relative to the factors listed in the preceeding subsections.

5 Future developments

The preceding sections have revealed a tension between the needs for robustness
on the one hand and the temption to add complexity to models to explain better
smaller and smaller details of single population data. We will focus here on the
development of models that will meet the needs of industry and on development of
a better understanding of the objectives that longevity-risk hedgers seek to optimise.

5.1 Modelling

The key challenge on the modelling front is to develop robust multipopulation mod-
els. There are several reasons for this.

• Pension plans seek to measure accurately trends in mortality rates for their
own membership: both central trends and uncertainty around that. In the
majority of cases pension plans either have relatively small populations or
limited amounts of historical mortality data for their own population, and this
makes it difficult to develop a reliable single-population stochastic mortality
model. The use of a two-population model means that limited data for the
pension plan itself can be augmented by, for example, a much larger national
dataset. The use of Bayesian mathods, as in Cairns et al. (2011) means that
missing data can be easily dealt with, including earlier years for which pension
plan mortality data has been discarded.

• Pension plans seeking to manage their longevity risks need robust multipop-
ulation models that will allow them to compare the various customised and
index-linked derivatove solutions. Such models are necessary for both price
establishment and comparison as well as the assessment of residual risk (such
as basis risk in index-linked hedges).

• Life insurers seeking to measure accurately trends in mortality rates and the
uncertainty around them need good multipopulation models because they have
exposure, potentially, to many populations”
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– males and females;

– different contract types (e.g. assurances and annuities);

– smokers and non-smokers;

– multinational portfolios.

• Life insurers might bid to take over pension liabilities from pension plans. The
underlying risks being transferred need to be measured accurately (i.e. central
trend and uncertainty around that) in order to price the deal accurately. This
needs a multipopulation model.

• Life insurers, themselves, might seek to transfer longevity risk to third parties,
and so the same issues as for paneion plans apply but, perhaps, on a different
scale.

As remarked earlier, if a stochastic mortality model has, as its stochastic drivers,
additional numbers of processes then this makes extension to two or more popula-
tions much more challenging because of the need to consider correlations between all
of the driving processes in both populations. Therefore, there is a need to develop
a new approach that goes back to basics and focuses on models with fewer period
effects in particular. For example, an approach being developed by Cairns et al.
(2013b) moves away from the usual assumption that deaths in different (t, x) cells
have a conditionally independent Poisson distribution. Their approach is to model
the different between actual and expected as a mixture of traditional Poisson errors
and a new residuals process R(t, x) that allows for correlation between individual
cells. As an example, let

log m̃(t, x) = β1(x) + κ2(t) + κ3(t)(x− x̄)

be an adaptation of the CBD (Cairns et al., 2006b) and Plat (2009) models. This
is used to model the long-term developments in mortality. Local mortality adds the
residuals process, R(t, x), thus

logm(t, x) = m̃(t, x) +R(t, x).

Lastly, deaths follow the usual Poisson model

D(t, x) ∼ Poisson(m(t, x)E(t, x)).

With this type of approach, multipopulation modelling should focus only on correla-
tion between the processes driving the long-term m̃(t, x) processes: that is, assuming
that the R(t, x) processes for each population are independent (an assumption that
obviously needs verification!).

A different and, perhaps, less radical approach is to start with more complex single
population models but reduce the number of correlated processes between popula-
tions. An example would be the model M7 in Cairns et al. (2009) which has three
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period effects and one cohort effect in each population. If we have two populations
then a full time series model needs to consider correlations between six period ef-
fects (that is, 15 correlation parameters) and between two cohort effects. With three
populations the number of correlation parameters starts to become unmanageable.
Instead, we can seek to minimise the number of non-zero correlations: for exam-
ple, is the main correlation between the principal period effects, κ1(t), affecting the
level of mortality, while correlations between the slope and curvature period effects
between the two populations are negligible. More theoretically, we might seek to
establish a correlation between some linear combinations of the period effects with
zero correlation otherwise.

The second modelling challenge concerns the treatment of exposures. As remarked
earlier, modellers have, in the past, always treated exposures as accurate point
estimates or (as in Cairns et al., 2009) by treating specific cohorts as missing data.
There is an urgent need to develop a new statistical methodology that considers
exposures themselves as being subject to uncertainty. A key question then is to
consider whether or not ex ante forecasts that assume that exposures are accurate
are themselves robust. Secondly, we need to consider how, in individual populations,
exposures might, from time to time, be revised up or down. Thes revisions could,
potentially, result in significant changes in base mortality tables and also in central
trajectories.

6 Risk Appetite

6.1 Derisking glide paths

We will now discuss how a pension plan might choose between the various hedging
options. Anecdotal evidence based on recent deals and professional magazines (e.g
Khiroya and Penderis, 2012) points to the following situation as being the typical
approach that consultants recommend to UK pension plans. Consultants typically
refer to a derisking glide path, especially for defined benefit plans that are closed to
new members and potentially have no further accrual for existing members. This
glide path is characterised by a number of features.

• For pensions in payment, the plan should seek the hedge the liabilities in a
way that minimises or even eliminates the risk of deficit for that subset of the
pension plan membership. For a fully derisked position this means one of a
collection of individual buyouts, a bulk buyout (both of which transfer legal
responsibility for payment of the pension to the insurer), a bulk buyin or a
customised longevity swap.

• For active members where pensions are linked to future salary increases, the
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Figure 3: Semi-quadratic utility function for a pension plan. (Source: Cairns, 2012.)

plan continues to invest in a mixed portfolio of risky assets (e.g. 60% equities,
40% bonds).

• Where the plan is in deficit, then derisking activities are deferred until the
funding level has improved. In this situation a generally more risky asset
strategy is adopted to increase the chances of achieving a fully funded position.

• Intermediate options might be considered for deferred pensioners and also ac-
tive members if the defined benefit does not include future salary increases.
In this case customised buyouts and longevity swaps are potentially very ex-
pensive due to significantly elevated levels of longevity risk inherent in such
transactions relative to pensions that are already in payment to older plan
members.

With this background in mind we have to ask what type of risk appetite or objective
do the pension plan trustees have in mind that results in the derisking glide paths
described above? We can find a candidate for this in the realm of utility theory.
Specifically, we consider a semi-quadratic utility function of the form u(x) = −(1−
x)2 if the funding level, x < 1 and u(x) = 0 if x ≥ 1 (see Figure 3).
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In some sense, this utility is consistent with the stratgies recommended above to
follow a derisking glide path. For pensions in payment, in particular, once the plan
is fully funded then derisking means that there is no chance to fall below the bliss
point, B, in Figure 3. And if the funding level is below 100% then the plan should
adopt a more risky investment strategy until it can get back up to 100% funding, at
which point it should derisk as a one-off, irreversible transaction. However, this logic
only follows if the plan has no unhedgeable liabilities such as salary risk for active
members. In this case it is less clear that 100% removal of risk for one sub-population
is actually optimal.

In the same setting with a mixture of member classes, there is an implicit conclusion
that it is locally optimal to totally derisk in relation to one population and to
maintain a substantially risky strategy for a different sub-population. This might
be valid if these were isolated entities but, in reality, they are two parts of one larger
entity with a single risk appetite for that entity.

6.2 Size matters

We will now consider other reasons why a pension plan might cosnider alterntives
to bulk buyouts and customised longevity swaps.

In Figure 4 we present a stylised view of the relative costs of four options for a
pension that contains only pensions in payment.1

• Individual buy out. The plan buys individual annuities one by one for its
pensioners. In this case the cost does not depend on the size of the plan (that
is, the number of members).

• A bulk buyout of the full set of pensioners. This type of transaction enjoys
economies of scale, so that the price per unit falls as the size of the plan
increases. Additionally, the price will fall with size because sampling risk in
the runoff of the liabilities will, relatively, be smaller. There is a minimum size
to this type of transaction, below which the receiver (for example, a monoline
insurer) would not be interested in taking over the liabilities.

• A customised longevity swap. This is part of a buy in strategy involving
additional hedges, for example, against inflation risk in pensions in payment.
Customised longevity swaps have a much higher threshold for engagement with
the receiver of the longevity risk than bulk buyouts. The price of a longevity
swap would also reward scale and reductions in sampling risk and there might
be a crossover of the price per unit of risk relative to bulk buyout.

1For further longevity risk-management options, see Blake et al. (2006), Coughlan et al. (2007),
Cairns et al. (2008) and www.llma.org.
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Figure 4: Potential prices per unit for different longevity hedging instruments as a
function of the size of a transaction. Quantities and relationships are illustrative
only and have no scientific basis. (Source: Cairns, 2012.)
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• Use of index-linked longevity hedging instruments. This type of transaction
has a much lower threshold for engagement (in theory, a single q-forward or
S-forward contract). In theory, the price should not reflect the size of the
transaction, but, in practice, the expenses related to the contract would push
up the price per unit of smaller deals.

Figure 4 and the remarks above point to lower prices for larger plans, but poten-
tially, as we move further up the scale, transactions might become so large that the
receivers’ appetite for taking on longevity risk diminishes. So the price per unit
might actually have to rise in order to balance supply and demand.

Now consider the impact of each of these types of transaction on a pension plan’s
expected utility. Figure 5 presents a stylised view of this in a way that is consistent
with Figure 4, and plots the difference in expected utility of a given strategy relative
to the individual buyout strategy. Figure 5 assumes a strictly concave and strictly
increasing utility implying that the plan always has some appetite for risk rather
than (as in Figure 3) zero appetite for risk above some threshold.

• We include no hedging as one option. The normalised utility increases with
scale relative to individual buyout because the plan benefits from lower levels
of sampling risk. The two curves cross over because individual buyout includes
expenses and a risk premium.

• Bulk buyout and customised longevity swaps achieve essentially the same end-
point as individual buyouts using different vehicles and so the differences be-
tween the three simply reflects the different prices per unit of risk and the
scale thresholds for bulk buyouts and longevity swaps.

• The curve for an index hedge falls from right to left because of two factors.
First, the increasing cost of a smaller transaction size as in Figure 4. Second,
the relative level of basis risk that arises with an index-linked transaction rises
as the size of the plan gets smaller and this pushes down further the normalised
utility.

The way that we have constructed our stylised plot means that the optimal hedge
will depend on the size of the pension plan. For small transactions up to 200,
individual buyouts are optimal even though index-lonked hedges are available over
some of that range. Bulk buyouts take over between 200 and 440, index hedges
between 440 and 680, and finally customised longevity swaps are optimal above 680.
However, we stress that in practice the bands over which each strategy might be
optimal will vary substantially from situation to situation without any guarantee
that the order is the same as that presented here or that individual strategies will
be optimal at any level of scale (for example, higher levels of risk aversion will push
down the utility of the index-hedge relative to the customised transactions).
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The point of this example, though, is to show that, particularly if the pension plan
has some appetite for risk at all funding levels, then all options should be considered,
and that there is no default option that will always come out top. Instead a variety
of factors come into play: price per unit of risk as a function of scale; sampling risk;
basis risk; and risk aversion.

7 Summary

In this paper we have attempted to contrast aspects of longevity risk measurement
and management that are easy versus those that are difficult. Building new and
ever more complex models and the recommendation of customised longevity hedges
are tasks that are (relatively) easy. In contrast, the development of models that are
robust and fit for purpose in a multipopulation setting is much tougher. Robust-
ness, in particular, is a particular criterion that cannot be ignored or glossed over:
without a proper analysis of robustness practitioners will not engage with a model
or, therefore, use it in the development of risk management strategies.

A rigorous assessment of all of the risk management options including index-linked
hedges is also a much tougher call, and this includes a proper prior assessment of
the pension plan’s risk appetite and risk tolerances.
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