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abstract

Several important classes of liability are sensitive to the direction of future mortality trends,
and this paper presents some recent developments in fitting smooth models to historical
mortality-experience data. We demonstrate the impact these models have on mortality
projections, and the resulting impact which these projections have on financial products. We base
our work round the Lee-Carter family of models. We find that each model fit, while using the
same data and staying within the Lee-Carter family, can change the direction of the mortality
projections. The main focus of the paper is to demonstrate the impact of these projections on
various financial calculations, and we provide a number of ways of quantifying, both graphically
and numerically, the model risk in such calculations. We conclude that the impact of our
modelling assumptions is financially material. In short, there is a need for awareness of model
risk when assessing longevity-related liabilities, especially for annuities and pensions.
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". Introduction

‘It’s tough to make predictions, especially about the future.’
Lawrence Peter ‘Yogi’ Berra, U.S. baseball player and team manager

‘I never think of the future. It comes soon enough.’ Albert Einstein, interviewed in 1930

1.1 Actuaries do not have the luxury of thinking like Albert Einstein, as
almost every calculation which they make involves some sort of assumption
about the future. A particularly topical assumption is that of future mortality
trends, usually labelled as ‘mortality improvements’, due to the clear expected
direction of change.

1.2 One of the most commonly used models for projecting future mortality
is the Lee-Carter model (Lee & Carter, 1992). Although originally created for
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forecasting life expectancy, it is also used to forecast mortality rates at each
age. This paper presents some recent developments in the fitting of Lee-
Carter models, specifically the idea of using smoothing methods to reduce the
number of effective parameters in the model. A useful by-product of this
smoothing is a new approach to projecting future mortality trends within the
Lee-Carter framework. We illustrate the fitting of these smoothed models,
and also the financial impact of the projections produced by them. We find
that model risk is a particularly important source of uncertainty for actuaries
pricing and reserving for pensions and annuities, often as important as the
uncertainty within the model itself.

Æ. Data and Data Preparation

2.1 The data used in this paper are the number of deaths aged x last
birthday during each calendar year y, split by gender. Corresponding mid-
year population estimates are also given. The data, therefore, lend themselves
to modelling the force of mortality, mxþ12;yþ

1
2
, without further adjustment. We

use two such data sets, one provided by the Office of National Statistics
(ONS) and one by the CMI. The CMI data come in the form of initial
exposed-to-risk, and were adjusted to an approximate mid-year central
exposed-to-risk by deducting half of the deaths.

2.2 We use ONS data for England and Wales for the calendar years
1961 to 2006 inclusive. This particular data set has death counts and
estimated exposures only up to age 89, and we will work here with the subset
of ages 40 to 89, which is most relevant for insurance products sold around
retirement ages. ONS death data are provided by the date of registration,
but, between 1993 and 2005, they are also available by the date of
occurrence. In this paper we have used the registration data throughout for
consistency. This is the same data set as used in Richards et al. (2006), but
with a smaller age range and some extra years of data. More detailed
discussion of this data set, particularly regarding the estimated exposures,
can be found in Richards (2008a).

2.3 The other data set which we will use is the experience data for
assured lives collected by the CMI for calendar years 1947 to 2005 inclusive.
For consistency with the ONS data set, we will use the same age range of
40 to 89. Note that the CMI data set is only useful for male lives, as the data
are sparse for females.

2.4 All the data here are therefore supplied aggregated, and we will
model the mortality of groups. This is in contrast to the models of individual
mortality which are used for detailed life insurer data, as outlined in
Richards (2008b). Note that both the models for groups in this paper and the
individual models of mortality in Richards (2008b) are all models for the
force of mortality (hazard function), rather than for the mortality rates often
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used by actuaries. Mortality rates (qx) can, of course, be calculated precisely
from knowledge of the force of mortality.

2.5 We also use three data sets for actual pensions in payment: two for
annuity portfolios; and one for a defined benefit pension scheme. Details of
these portfolios are provided in Section 8. The portfolios are used to simulate
the lifetime of the people behind the annuities or the pensions. Prior to
carrying out the simulations, we deduplicated the portfolios using the
procedure outlined in Richards (2008b), i.e. pensions or annuities paid to
the same person were identified and aggregated. Simulating without
deduplication would be doubly misleading: first, it is common for people to
have more than one annuity, so the mortality experience for annuities is not
independent; and second, wealthier people have a greater tendency to have
multiple annuities, so a correct picture of the financial volatility can only be
obtained by adding up pension and annuity records for the same person.
Failure to deduplicate prior to simulation would give a falsely comforting
picture of the binomial risk, and it would likely also under-estimate the
concentration risk because of large aggregated pensions.

Figure 1. Average number of policies per person in each of equal-sized
membership bands ordered by total annual annuity income; band 1 is the
5% of lives with the smallest annual pensions, through to band 20 which is
the 5% of lives with the largest annual pensions; data taken from the large

life-office annuity portfolio used in Richards (2008b)
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2.6 These statements require some justification. Figure 1 shows the
average number of annuities after deduplication for each life identified in a
large life office annuity portfolio. Deduplication was done using the process
outlined in Richards (2008b). Each of the 20 groups in Figure 1 represents
the same proportion of the lives. On the left we have the 5% of lives with the
smallest total pension, where there are very few duplicates and an average
of 1.03 policies per person. On the right we have the 5% of lives with the
largest total pension, where there are many duplicates and an average of 1.84
policies per person. This correlation of the number of policies with wealth
demonstrates the importance of deduplication when performing any statistical
analysis.

2.7 There is a degree of self-fulfilling prophesy in Figure 1, however. By
adding together pensions across duplicates, of course larger incomes will
appear to have a higher average number of policies! We can, however, prove
this another way, by using geodemographic profiles according to Richards
(2008b). Table 1 shows the average total annuity and average number of
policies for each of 11 Mosaic groups assigned by United Kingdom postcode.
These postcode profiles are not defined in relation to pension size, but there
is a clear link between geodemographic group and average benefit size. This
suggests that geodemographic profiles are useful in clarifying policyholder
status where benefit levels are small and medium sized. As expected, there is

Table 1. Summary statistics by Mosaic group for large annuity portfolio

Mosaic group name

Average
annuity
(» p.a.)

Average
policies
per life

Symbols of success 4,348 1.33
Rural isolation 3,405 1.30
Grey perspectives 2,708 1.29
Suburban comfort 2,203 1.24
Urban intelligence 2,489 1.22
Happy families 1,856 1.19
Ties of community 1,592 1.19
Twilight subsistence 1,394 1.17
Blue collar enterprise 1,444 1.16
Welfare borderline 1,281 1.14
Municipal dependency 1,093 1.12

Unmatched or unrecognised postcodes 2,619 1.17
Commercial addresses 4,365 1.35

All lives 2,663 1.24

Source: Postcode Mosaic groups from Experian Ltd applied to the large life-office annuity
portfolio used in Richards (2008b). Statistical models require the independence assumption to
hold, i.e. data sets have to be deduplicated. This is all the more critical when important subsets of
policyholders have more duplicates than others, as clearly shown here.
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also a strong correlation with the average number of policies, thus proving
that wealthier and higher-status individuals have a greater tendency to have
multiple policies.

2.8 Another way of looking at the issue of duplicates is to examine the
proportion of lives and amounts by each number of policies per individual.
This is done in Table 2, which shows that nearly a third of pensions are in
respect of individuals with multiple policies. This means that deduplication is
essential in forming an accurate picture of liabilities for this annuity portfolio.

â. Models and Notation

3.1 All the models used in this paper are based on the Lee-Carter (1992)
framework:

log mx;y ¼ ax þ bxky ð1Þ

where mx;y denotes the force of mortality (hazard rate) at age x in year y,
ax is the effect of age x, ky is the effect of calendar year y, and bx is the
age-specific response to the calendar year effect. Since we are dealing with
two-dimensional data sets, it is convenient to rewrite equation (1) in matrix
form, and we define: M ¼ ðmx;yÞ, the matrix of the forces of mortality indexed
by age and time; a

0
¼ ða1; . . . ; ana

Þ, the vector of age effects (na is the number
of ages and 0 denotes the transpose of a vector (or matrix)); j0 ¼ ðk1; . . . ; kny

Þ,
the vector of calendar year effects (ny is the number of years); and

Table 2. Proportion of portfolio by number of policies held

Number of policies Proportion of total:

per individual (a) by lives (b) by amounts

1 83.3% 67.6%
2 2.6% 20.3%
3 2.6% 6.4%
4 0.8% 2.6%
5 0.3% 1.3%
6 0.2% 0.6%
7 0.1% 0.4%
8 0.1% 0.3%
9 0.0% 0.1%

10 0.0% 0.1%
11 0.0% 0.1%
12 0.0% 0.1%

Total 100% 99.9%

Source: Data from large life-office annuity portfolio used in Richards (2008b). The column for
amounts does not quite add up to 100%, because there are some individuals with even more than
12 policies (up to a maximum of 31 for this portfolio).
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b
0
¼ ðb1; . . . ; bna

Þ, the vector of age-specific responses. With this notation we
can now rewrite equation (1) in matrix form as:

logM ¼ a10 þ bj0 ð2Þ

where 1 is a vector of 1s and is of length ny.
3.2 The Lee-Carter model is designed with forecasting in mind, since the

year effect across ages is reduced to the single time-indexed parameter j. The
Lee-Carter assumption certainly simplifies the forecasting problem, but it is
as well to remember that it is not immune to the problems of any forecasting
method: (a) model risk; (b) parameter uncertainty; (c) parameter stability;
and (d) stochastic variation. Model risk stems from the model assumption
determining the forecast, but what if the model is wrong? The main point of
the present paper is to discuss the impact of model assumptions on the
pricing of financial products. Parameter uncertainty exists even if we have
the correct model, since parameter estimates are still subject to sampling
variation. As for parameter stability, the Lee-Carter model makes the strong
assumption that the estimated values of a and b (estimated from past data)
remain fixed at these values in the future. Kingdom (2008) suggests that this
assumption may not hold in practice. Finally, as for stochastic variation,
only if points (a), (b) and (c) are successfully negotiated will our confidence
interval give a true reflection of the likely future course of mortality.

3.3 We will use three models in this paper. First, we have the Lee-Carter
model, where we estimate the parameters ax, bx and ky by the method of
maximum likelihood. The parameters in (1) are not identifiable, since the
following transformations yield the same fitted values of mx;y for any real
value of c:

ax ! a�x ¼ ax ÿ cbx bx ! b�x ¼ bx ky ! k�y ¼ ky þ c: ð3Þ

We therefore fix a convenient parameterisation by setting
P

kj ¼ 0 andP
k2

j ¼ 1. This has the attractive feature that a is a measure of average log
mortality by age (under equation (3)). Under this model, mortality
projections for mx;y are obtained by projecting a time series for ky. This
model will be denoted ‘original Lee-Carter’, or just ‘LC’, although the
maximum-likelihood approach to parameter estimation was developed by
Brouhns et al. (2002). The model in Lee & Carter (1992) was not fitted
originally by maximum-likelihood estimation.

3.4 The second model is where smoothness is imposed on the bx. The
thinking behind this model is that, with data sets with small numbers of deaths
(such as insurance data), the estimates of the bx can be volatile, and this leads to
inconsistent forecasts of future mortality; smoothing the bx will fix this
problem. This model was proposed by Delwarde et al. (2007), and they smoothed
the bx using penalised B-splines or P-splines (Eilers & Marx, 1996); this model
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will be denoted ‘DDE’. As with the original Lee-Carter model, projections
for mx;y are still obtained by projecting a time series for ky, although,
potentially, this can differ due to the different structure for the bx.

3.5 The third model is where smoothness is imposed on both the bx and
the ky by means of P-splines. The thinking behind this model is that, in
addition to the advantages of the DDE model, we also have an estimate of
the underlying trend in the kys. This approach gives an alternative method of
forecasting the kys since the penalty function enables forecasting to take
place. This model will be denoted ‘CR’ in this paper. Projection with penalty
functions is discussed in detail in Richards et al. (2006).

3.6 It is not the aim of this paper to provide an exhaustive comparison
of all the mortality models in existence, nor even of all the extensions to the
Lee-Carter model. For example, Renshaw & Haberman (2006) proposed an
extension of the Lee-Carter model to include cohort effects, which was also
discussed in CMI (2007), while Kingdom (2008) raised questions about the
assumption of the stability over time of the Lee-Carter parameters. Other
classes of models for projection include penalised-spline models ö Richards
et al. (2006) ö and a wide family of models for international data is assessed
by Cairns et al. (2007). Rather, our aim is to show that, even within this
small family of models, the financial consequences of model choice can be
quite substantial.

ª. Graphical Description of Penalised Splines

4.1 We provide a short description of the Eilers & Marx (1996) method
of P-splines. Figure 2 gives a plot of the log of the observed forces of
mortality, denoted by �, for those aged 70 at age of death, taken from the
CMI data set. There is some variation from year to year, but an underlying
trend is evident, especially the very dramatic fall in log mortality which has
occurred since around 1970. Familiar polynomial regression uses polynomials
as the basis for regression, but there is no reason why other functions cannot
be used. The lower panel shows a basis consisting of 15 cubic B-splines.
Each B-spline consists of four cubic pieces bolted smoothly together at
positions known as knots to give the functions illustrated ö see de Boor
(2001) for more details.

4.2 We suppose that the number of deaths, dy in year y, has a Poisson
distribution with mean eymy, where ey is the central exposure and my is the
force of mortality. The classical Gompertz model is a generalised linear model
(GLM) with log my ¼ aþ by. In the same way, using the B-spline basis in
Figure 2, we have:

log my ¼
X

j

BjðyÞyj ð4Þ
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where BjðyÞ denotes the jth B-spline evaluated at year y; in vector/matrix
notation we have:

log l ¼ Bh ð5Þ

where B ¼ ðBjðiÞÞ is the regression matrix. The resulting fitted log mortality
is shown by a dashed line ÿÿÿ in Figure 2. It seems that we have over-
fitted or undersmoothed the data, particularly in the early years, since the
dashed line oscillates rather a lot. We refer to regressing on a basis of
B-splines as B-spline regression.

Figure 2. Log mortality for males aged 70 (CMI data) together with fitted
regressions and associated coefficients; B-spline basis in lower panel
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4.3 Each regression coefficient yj can be associated with its
corresponding basis function, and Figure 2 also shows each ŷj, the estimated
value of yj, plotted ~ at its corresponding B-spline BjðxÞ. The erratic nature
of the fitted curve is a consequence of the erratic nature of the fitted
coefficients. Eilers & Marx (1996) placed a penalty on differences between
nearby coefficients, as in the second order penalty:

ðy1 ÿ 2y2 þ y3Þ
2
þ � � � þ ðycÿ2 ÿ 2ycÿ1 þ ycÞ

2
ð6Þ

where c is the number of coefficients. We note that (6) is a measure of
roughness, since it increases as the fitted function becomes less smooth. We
incorporate this penalty function into the log-likelihood, creating a penalised
log-likelihood function. Fitting is now a balance between the goodness of fit
and the roughness of the fitted curve, i.e. a balance between maximising
the log-likelihood and maximising the smoothness. For more details see
Richards et al. (2006). Figure 2 shows the results of optimising the Bayesian
Information Criterion, one method of choosing the balance between fit and
roughness. The coefficients, plotted & in Figure 2, have been ‘ironed out’,
and the resulting fitted curve has a pleasing smoothness to it. We refer to
regressing on a basis of B-splines with penalties as P-spline regression.

4.4 We can now summarise our three models for logM :

LC : a10 þ bj0 ð6Þ

DDE : a10 þ Babj
0 ð7Þ

CR : a10 þ Babk
0B0y ð8Þ

where Ba and By are regression matrices evaluated on B-spline bases for age
and year respectively, and b! Bab and j! Byk. In (7) there is a penalty on
the coefficients b, and in (8) there are penalties on both b and k.
4.5 Figure 2 also illustrates how forecasting with P-splines is achieved.

Linear forecasting of the last two coefficients leaves the roughness measure
unchanged, and the forecast then follows from the forecast coefficients. We
note that, for the purposes of projection, the knot points for the penalised
splines for kt are set such that one sits on the final year of the data (2006 for
the ONS population data, 2005 for the CMI assured lives). In this paper we
have used a five-year knot spacing in order to simplify presentation, but
other spacings are possible and yield similar fits.

ä. Graphical Comparison of the Model Fits

5.1 Figure 3 shows parameter plots for ax, bx and ky for the three
models in the left column. The solid dots show the unsmoothed values from
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Figure 3. Parameter plots for ax, bx and ky (left column), and the same
parameters after linear adjustment (right column); the original Lee-Carter
parameters are shown as solid dots, while the DDE parameters are shown

by a solid line and the CR parameters are shown by a dashed line;
the linear-adjusted plots show the same coefficients on the left after

subtracting a fitted straight line; they show, for example, that the pattern
of ax by age is not as linear as it seems (ONS data)
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the original Lee-Carter model. In each case there is an obvious smooth
pattern in the parameters, hence the extension of the DDE and the CR
models to smooth bx (DDE and CR) and ky (CR only).

5.2 In Figure 3 the only practical distinction between the DDE and the
CR models is for the ky parameter, as the lines are largely coincident for the
plots for ax and bx. The DDE model has unsmoothed ky values, so that the

Figure 4. Log mortality at selected ages (ONS data); the dark grey line for
original Lee-Carter parameters is largely obscured by the DDE line due to
them being almost completely co-incident, i.e. the LC and DDE fits are

almost identical
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DDE parameter line, in effect, joins the dots for the original Lee-Carter
model. In contrast, the CR model shows deviations from the Lee-Carter ky

parameters, due to smoothing.
5.3 Note that the ax parameters are unsmoothed in all of the models,

hence the DDE and the CR parameter curves for ax, in effect, join the dots
for the original Lee-Carter model. The plots for ax in Figure 3 show a high
degree of regularity, and suggest that all three models are over-parameterised
with respect to age; the full freedom of a separate parameter for each ax is
unnecessary when each value is so closely placed next to its immediate
neighbours. Therefore, a further simplification could be achieved by spline
smoothing for ax. This is not straightforward, however, since the constraints
in (3) interact with the penalty on a.
5.4 Figure 4 shows the crude mortality rates and the model fits under

the various models. The crude mortality rates are shown as open circles,
while the original Lee-Carter parameters are shown as a dark grey line. The
DDE parameters are shown by a light grey line and the CR parameters are

Figure 5. Mortality forecast at age 65 with 95% confidence intervals; the
solid grey line is the time-series Lee-Carter forecast, together with shaded

95% confidence area; the dashed line is the smoothed-ky Lee-Carter
forecast, together with 95% confidence bounds (ONS data for England and

Wales population)
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shown by a dashed line. The original Lee-Carter parameters are largely
obscured by theDDE line, due to them being almost completely co-incident, i.e.
the LC and DDE fits are almost identical.

5.5 Figure 5 shows the projected log-mortality at age 65 under the DDE
and CR approaches (the original LC approach is left out, as it produces near-
identical results to the DDE one). While the central projections are very
different, we can see that the confidence bounds substantially overlap,
suggesting that the projection from one model is quite consistent with the
projection from the other. It is interesting that the original Lee-Carter model
has a confidence area which is essentially the more pessimistic half of the
confidence area for the CR (smoothed-ky) model. One notable feature is that
the CR model has a much wider confidence interval.

Figure 6. Mortality forecast at age 65 with 95% confidence intervals; the
solid grey line is the time-series Lee-Carter forecast, together with shaded

95% confidence area; the dashed line is the smoothed-ky Lee-Carter
forecast, together with 95% confidence bounds; in contrast to Figure 5, the
projections from the two types of model are largely coincident, while this
time it is the smoothed-ky model with the narrower confidence bounds

(CMI assured lives data)
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5.6 In Figure 6 the central projections are now broadly coincident, but
this time it is the original Lee-Carter approach which has the wider
confidence area. This is because the CMI data set is much smaller, and a
much greater degree of smoothing is being applied. The smoothing is
achieved by the penalty function, which is also what forms the basis of the
forecast. Thus, a heavy degree of smoothing yields an apparently greater
degree of certainty in the forecast. This is the reverse of Occam’s Razor,
where simpler models are preferable. In contrast, with smaller data sets it is
hard to prove the existence of more complicated patterns, thus leading to
only simplistic models being fitted with narrow confidence bands, which
might give an illusion of certainty. This paradox is discussed in greater detail
in CMI (2005).

5.7 One concern about the assured lives data is that the data volumes
have reduced radically in recent years ö see Figure 7 ö which raises
concerns about whether the socio-economic composition might have
changed, thus affecting the projections. The other obvious comment is that
the CMI data are, in any case, rather limited for post-retirement ages. It is

Figure 7. Exposures in CMI assured lives data set; the rapid reduction in
data volumes of recent years carries the risk that the composition of the
data has materially changed; the distribution by age also militates against

relying on this data set for applications to post-retirement mortality
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for these reasons that most of the illustrations in the tables and figures in
this paper are based on the ONS population data. There is the obvious
question of whether results based on the general population are applicable to
annuitants and pensioners, known as basis risk to actuaries and as bias to
statisticians. In answer to this, we would say that this paper presents a
methodology, not an answer, and readers can apply the methods here to the
data set of their choice. For those wishing to produce projections for one
population with reference to another, we refer readers to Currie et al.
(2004).

5.8 In discussing interest rate models, Cairns (2004) wrote: “[...] probability
statements derived from the use of a single model and parameter set should
be treated with caution.’’ The same can be said equally well of models of
longevity risk, and is a reason for exploring trend risk with multiple data sets
and multiple models.

å. Financial Comparison of the Models

6.1 One issue when presenting results from these models is what to do
about the missing mortality rates above age 89. One approach would be to
use mortality rates from the Human Mortality Database, and assume that
each age above 89 experiences the same changes as at age 89. However, this
seems somewhat arbitrary, and it risks introducing distortions for the
purpose of this paper. Instead of calculating life expectancies and annuity
values throughout life, we will therefore calculate temporary values up to age
90. This enables conclusions to be drawn about the various projection
methodologies without worrying if they are, in part, influenced by the further
assumptions above age 89.

6.2 Table 3 shows the time lived between ages 60 and 90 for a male
aged 60 at outset in 2007. The first row shows the number of years lived
between ages 60 and 90 at the estimated period rates in 2007. These rates are
estimated using the Lee-Carter model and data up to 2006, so the small
variation in the first row shows the uncertainty over projections even for just
one year.

Table 3. Years lived up to age 90 for a 60-year-old male in 2007

Model 1% 5% 50% 95% 99%

Current rates 21.03 20.96 20.81 20.65 20.58
LC 24.48 24.11 23.14 22.08 21.62
DDE 24.48 24.11 23.14 22.09 21.62
CR 25.51 25.14 24.12 22.92 22.37

Source: Complete life expectancy using population data and projected current rates in 2007
(ONS data)
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6.3 The second row shows the same time lived, but this time uses the
time-series projection method in the original Lee-Carter (1992) model. This
projection adds 2.33 years to the time lived on current rates, but it could be
as high as 3.45 years or as low as 1.04 years on the 1st and 99th percentiles,
respectively.

6.4 The third row shows the same figures for the DDE model, which
differs only in that the bx values are smoothed before projection. The
projection methodology is the same time-series approach as the Lee-Carter
model, hence the near identical values.

6.5 The fourth row of Table 3 shows the values produced by the model
with smoothed bx and ky values. Unlike the LC and DDE models, the
projections here are based on the penalty function used to smooth the ky

values. As we can see, this adds anything from 0.75 to 1.04 extra years to the
time lived for the original Lee-Carter model. However, even the most
optimistic scenario still has an average loss of four-and-a-half years of life
out of the possible 30. Table 4 shows how these life expectancies compare to
those derived from some common projections in recent use.

6.6 Table 5 shows the annuity factors corresponding to the expected
years lived in Table 3. To put these in perspective, Table 6 shows equivalent
reserves calculated using some current deterministic bases. We can see that
the medium-intensity cohort projection (‘medium cohort’) produces a lower
reserve than all three central projections under the Lee-Carter models. It is

Table 4. Years lived up to age 90 for a 60-year-old male in 2007 according
to some deterministic bases in current use

Basis Years lived

Medium-cohort 22.97
Long-cohort 23.30
QIS4 24.65

Source: Own calculations using bases from CMI (2002) and CEIOPS (2007). Projected current
rates for population in 2007, with reduction factors as listed. The QIS4 value is a 25% reduction
to the central projection of mortality rates under the original Lee-Carter model, i.e. it compares
with the 23.14 figure in Table 3.

Table 5. Value of a temporary continuous annuity to age 90 for a
60-year-old male in 2007, discounting at 5% interest per annum

Model 1% 5% 50% 95% 99%

Current rates 12.50 12.48 12.41 12.35 12.32
LC 13.67 13.55 13.22 12.85 12.69
DDE 13.68 13.55 13.22 12.85 12.69
CR 14.00 13.88 13.55 13.16 12.98
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for this reason that Willets (2007) labelled the medium cohort as an extreme
‘trend-reversal scenario’; mortality improvements under the medium cohort
tail off too sharply to be a sensible best-estimate projection. The figure for
the long cohort is almost identical to the central projections for the
Lee-Carter and the DDE models. However, the long cohort is clearly weaker
than the central projection for the CR model, and much weaker than the
proposed Solvency II standard in QIS4 at this age.

6.7 Table 7 shows the change in the annuity factor relative to the
central projection. We can see that there is a 5% chance that mortality trends
will cost over 21

2% more than the central projection for each model, while,
equally, there is a 5% chance that mortality trends will cost around 21

2% less.
This is the normal understanding of the financial uncertainty over annuity
pricing; within a given model framework, we can calculate the size of each
loss along with a probability for it. The key phrase is ‘within a given model
framework’ however, since it is not possible to know if the model is (or will
be) correct. This leads us next to consider model risk, namely the consequence
of a pricing actuary’s model not being the correct one.

6.8 Table 5 shows the annuity factors corresponding to the expected
years lived in Table 3, while Table 8 shows the change in the annuity factor
relative to the current rates without the improvements. We can see that the
median increase in reserve due to Lee-Carter improvements is an extra 6.48%

Table 6. Value of a temporary continuous annuity to age 90 for a
60-year-old male in 2007, discounting at 5% interest per annum,

according to some deterministic bases in current use

Basis Reserve

Medium cohort 13.13
Long cohort 13.23
QIS4 13.78

Source: Own calculations using bases from CMI (2002) and CEIOPS (2007). The QIS4 value is
a 25% reduction to the central projection of mortality rates under the original Lee-Carter model,
i.e. it compares with the 13.22 figure in Table 5.

Table 7. Percentage change in the value of a temporary continuous
annuity to age 90 for a 60-year-old male in 2007, discounting at 5% interest
per annum; values from Table 5 expressed relative to the central projection

(50th percentile)

Model 1% 5% 50% 95% 99%

Current rates 0.73 0.52 0 ÿ0.52 ÿ0.74
LC 3.45 2.50 0 ÿ2.76 ÿ3.97
DDE 3.45 2.50 0 ÿ2.76 ÿ3.97
CR 3.34 2.45 0 ÿ2.88 ÿ4.19

Longevity Risk and Annuity Pricing with the Lee-Carter Model 17



in cost, although it could be as high as 9.36% or as low as 3.02%, according
to the 1st and 99th percentiles, respectively. However, the stronger mortality
improvements resulting from smoothing the ky values has resulted in a
further increase in the reserve of 2.68% on the central scenario. This is
broadly similar in size to the uncertainty cost referred to in {6.7 and in
Table 7, suggesting that model risk is just as important as trend risk. The
problem is that you can quantify uncertainty within a given model, but you
cannot quantify the uncertainty over the model itself.

6.9 To put all these figures in a financial perspective, the typical pricing
margin for an immediate annuity is around 4% to 5% of premium. The
uncertainty over which model to use can either cut calculated annuity profits
in half, or else increase them by half. This is quite separate from the
uncertainty over trend, which can itself have the same effect. The model does
not directly affect the profitability itself, just its measurement.

6.10 Another important risk which we have not considered is basis risk,
namely whether projections based on the population data or on assured lives
apply to pensioners and annuitants. People in receipt of private pensions
and annuitants are a select sub-group of the population in general, and may
not exhibit the same pattern of mortality trends. There may be felt to be less
basis risk with the CMI assured lives data, but these mainly comprise
holders of endowment policies at ages younger than 65. The population data
cover the right age range, but not the select group which pensioners are.
Equally, the CMI data cover private insured lives, but do not cover the right
age range. Neither seems wholly satisfactory, and so some degree of basis
risk must remain as long the data set for projections is not the same as the
population whose benefits are being valued.

Table 8. Percentage increase in the value of a temporary continuous
annuity to age 90 for a 60-year-old male in 2007, 5% interest per annum;
values from Table 5 expressed relative to figures using current rates, i.e.
without any projection; for comparison, the equivalent figure for the

high-intensity cohort projection (‘long cohort’) is 6.56%

Model 1% 5% 50% 95% 99%

Current rates 0 0 0 0 0
LC 9.36 8.58 6.48 4.09 3.02
DDE 9.39 8.61 6.51 4.11 3.04
CR 12.00 11.26 9.16 6.58 5.37
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æ. Reserving for Longevity Risk

‘The rates of mortality or morbidity should contain prudent margins for adverse deviation [...]. In
setting those rates, a firm should take account of [...] anticipated or possible future trends in
experience [...] but only where they increase the liability.’

FSA (2008), INSPRU {1.2.60(5)

‘The longevity shock to be applied is a (permanent) 25% decrease in mortality rates for each age.’
CEIOPS (2008) {TS.XI.C.6

‘For recovery plans based on valuations with effective dates from March 2007, mortality
improvement assumptions that appear to be weaker than the long cohort assumption will attract
further scrutiny and dialogue with the trustees where appropriate. Furthermore, assumptions which
assume that the rate of improvement tends towards zero, and do not have some form of underpin,
will also attract further scrutiny.’ Pensions Regulator (2008a) {2.7

‘though long cohort with some form of underpin will be used when looking at the secondary
trigger, a medium cohort assumption with a stronger underpin would clearly be equivalent.’

Pensions Regulator (2008b)

7.1 One way of looking at trend risk is to consider the probability of
reserve adequacy. This is done for the DDE and the CR models in Figure 8.
The curves plotted are the ogives under each model, i.e. the cumulative
probability distribution function that the annuity reserve factor on the
horizontal axis will be adequate. The ogive for the CR model is markedly to
the right of the ogive for the DDE model, because the CR model requires
higher reserves for the same probability of reserve adequacy. This is because
the CR model projects faster improvements, as shown in Figure 5. The
reserve factors for the medium and high-intensity cohort projections are also
marked, together with the 99.5% stress scenarios under each model.

7.2 Figure 8 illustrates one of the difficulties of model risk; the 99.5%
stress scenario under the DDE model might just be regarded as prudent
under the CR model. Note that it is important to consider reserving margins
as a whole, and it is particularly important not to overdo things by
combining 99.5% stress scenarios for all the various risks. Thus, the 99.5%
stress scenario in Figure 8 is a result of stressing the trend assumption, but
any reserve sufficiently above 50% might be regarded as prudent with respect
to trend risk.

7.3 Figure 8 also shows the reserves calculated according to two bases
in recent use. The long cohort could function as a best estimate under the
DDE model, but it could not be regarded as prudent. Under the CR model
the long cohort would be too weak to be even a best-estimate, let alone a
prudent reserving basis. The medium cohort would be regarded as inadequate
under either model. The comparison with the 99.5% values is also
instructive, since it suggests that the long cohort cannot be regarded as a
stress scenario for ICA purposes. Figure 8 further suggests that, at this age at
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least, the Pensions Regulator (2008a) was reasonable in requiring a
strengthened version of the long cohort for pension scheme reserving to be
considered prudent. Prudence is, of course, a matter of judgement, and
therefore an opinion, rather than an absolute value. Equally, however, a claim
of prudence has to be substantiated, and it is hard to do this convincingly
without reference to a statistical projection model.
7.4 Figure 8 also shows the reserve calculated according to the proposed

Solvency II standard known as QIS4 (CEIOPS, 2007). Under the DDE model,
this would be regarded as a beyond-ICA stress scenario, with a probability of
99.8% of reserves at this level being adequate. However, under the CR model
the probability of QIS4 reserves being adequate is a mere prudent-seeming
86.7%. Figure 8 suggests that the 25% shock in QIS4 is not an unreasonable
reserving standard for new annuity business written around age 60.

7.5 All these calculations are for a specimen level pension at age 60, so

Figure 8. Probability of reserve adequacy against trend risk according to
the DDE model (solid line) and the CR model (dashed line); temporary

30-year continuous annuity to male aged 60 at outset, valued at 5% interest
per annum using population mortality (ONS data); for a given annuity
reserving factor on the horizontal axis, you can read off the probability
that it will be adequate for trend risk under the two models; the ‘99.5%
stress scenario’ is the reserve using the 99.5th worst projection under

each model
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it is important to consider the effect for some real portfolios, which we will
do in the next section.

ð. Portfolio Simulations

‘trustees [...] must take advice from their actuary [...] on best estimates and on appropriate
margins for prudence. This may be by way of stochastic modelling to illustrate the variability of
outcomes and their relative likelihood.’

Pensions Regulator (2008a) {1.12

8.1 Leaving aside economic assumptions like interest rates, there are
three components of longevity risk which we can test via simulation. We will
assume that current base mortality is known, although this is not the case in
practice, and is therefore also a component of longevity risk. The first
component is the uncertain direction of future trends, which includes
uncertainty about the model for trends as well as uncertainty within the
model. The second is the binomial risk for a particular portfolio’s experience,
namely who happens to die when. The third is the concentration risk, where
a large proportion of the financial liabilities is concentrated in a relatively
small number of lives. Table 7 shows the impact of trend risk on a specimen
annuity, but it is instructive to look at the impact on some actual portfolios
whose age distributions are shown in Figure 9. As well as considering trend
risk, we can also simulate the portfolio in run-off to examine binomial and
concentration risk as well. The recent availability of inexpensive computers
with multiple floating-point cores has made it possible to simulate entire
portfolios quickly. This is in contrast to the error-prone approach of trying

Figure 9. Age distribution of three portfolios, at 1 January 2007, for
pensions or annuities in payment to lives aged between 40 and 90; the larger
portfolio on the left contains both IFA introduced open-market annuities
and internal-vesting business from the insurer’s personal pensions (see also
Table 9); the medium-sized portfolio in the middle contains internal-vesting
annuities only (see also Table 10), while the small portfolio on the right is a

defined benefit pension scheme (see also Table 11)
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to pick a handful of policies which are supposed to be representative of the
portfolio as a whole. Using purpose-written Cþþ programs, we can simulate
the larger of the two annuity portfolios here in run-off 10,000 times in
around an hour on an eight-core server.

8.2 Tables 9 and 10 show the results of 10,000 simulations of two
different annuity portfolios. As expected, the smaller portfolio has to hold
proportionately more extra capital for a given level of certainty. Larger
portfolios benefit from the law of large numbers, as the binomial experience
variation is proportionately less. Thus, there is a direct capital benefit from
scale in the annuity business. However, the benefit is relatively modest, as the
difference at the 99.5% level is just 0.62% of the median value, despite the
larger portfolio being more than ten times the size of the smaller one.
Conversely, this shows that annuity portfolios and pension schemes are
exposed to a non-diversifiable amount of longevity trend risk, and that trend
risk usually dominates binomial experience risk above modest portfolio sizes.
For the large annuity portfolio, the extra cost at the 99.5% level is just 0.50%

Table 10. Percentage variation around the median run-off cost for a small
annuity portfolio

Trend
risk Measure Min% 0.5% 1% 5% 95% 99% 99.5% Max%

No Lives ÿ0.92 ÿ0.66 ÿ0.59 ÿ0.42 0.41 0.57 0.63 0.87
Amounts ÿ1.78 ÿ1.12 ÿ1.00 ÿ0.71 0.68 0.94 1.07 1.43

Yes Lives ÿ6.43 ÿ4.11 ÿ3.67 ÿ2.52 2.15 3.08 3.44 4.31
Amounts ÿ6.58 ÿ3.98 ÿ3.61 ÿ2.52 2.18 3.10 3.50 4.74

Source: Own calculations using 10,000 simulations of a portfolio of 15,429 males aged between
40 and 90, with an amounts-weighted average age of 67.3. Temporary annuities to age 90 are
valued continuously at 5% interest per annum. Projections are according to the CR model and
population mortality. The age profile of this portfolio is given in the middle panel of Figure 9.

Table 9. Percentage variation around the median run-off cost for a large
annuity portfolio

Trend
risk Measure Min% 0.5% 1% 5% 95% 99% 99.5% Max%

No Lives ÿ0.29 ÿ0.20 ÿ0.18 ÿ0.12 0.13 0.18 0.20 0.26
Amounts ÿ0.70 ÿ0.51 ÿ0.46 ÿ0.32 0.31 0.45 0.50 0.74

Yes Lives ÿ4.95 ÿ3.25 ÿ2.91 ÿ2.01 1.85 2.56 2.88 4.89
Amounts ÿ5.44 ÿ3.61 ÿ3.24 ÿ2.21 2.02 2.73 3.12 5.21

Source: Own calculations using 10,000 simulations of a portfolio of 207,190 males aged
between 40 and 90, with an amounts-weighted average age of 72.52. Temporary annuities to age
90 are valued continuously at 5% interest per annum. Projections are according to the CR
model and population mortality. The age profile of this portfolio is given in the left panel of
Figure 9.
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without trend risk, whereas it is multiplied six-fold to 3.12% if trend risk is
included. Even for the smaller annuity portfolio, the extra cost at the 99.5%
level is 1.07% without trend risk, whereas it more than triples to 3.50% if
trend risk is included.

8.3 However, trend uncertainty is not always the dominant part of the
mortality risk, as shown in Table 11. In this example, the combination of
binomial risk and concentration risk comprises nearly two-thirds of the
variation in cost at the 99.5% level; with trend risk the extra cost relative to
the median is 7.23%, whereas without trend risk it is 4.52%. Indeed, the vast
majority of pension schemes in the U.K. are much smaller than the one in
Table 11; according to the GAD (2005) there were 7,470 private sector
defined benefit pension schemes in the U.K. with fewer than 100 members.
For such schemes, binomial and concentration risk often dominate all other
sources of risk, leading Richards & Jones (2004) to recommend that schemes
of this size should consider annuity purchase as their default investment
option.

8.4 Figure 10 shows the probability of adequacy for a large annuity
portfolio under the DDE and the CR models using population data. The
model risk is considerable; whereas a long-cohort reserve is a prudent best
estimate under the DDE model, it is wholly inadequate under the CR model.
In one sense the comparison is a little harsh, as the projection basis is being
required to allow for binomial risk and concentration risk, as well as trend
risk. In practice, of course, a mortality basis would include a margin for
adverse deviation (MAD) in the base table rates, which would have the effect
of shifting the reserve lines in Figure 10 to the right. However, the
comparison is not so unreasonable for this portfolio, as trend risk dominates
the other two, as shown in Table 9.

8.5 An oft-unappreciated element of model risk is the choice of data set,
and this is illustrated in Figure 11. Here the reserves are much higher due to
the lower rates of mortality experienced by assured lives. The projections are

Table 11. Percentage variation around the median run-off cost for a small
pension scheme

Trend
risk Measure Min% 0.5% 1% 5% 95% 99% 99.5% Max%

No Lives ÿ3.55 ÿ2.09 ÿ1.85 ÿ1.31 1.30 1.86 2.02 2.99
Amounts ÿ7.64 ÿ4.98 ÿ4.54 ÿ3.25 2.90 4.06 4.52 5.90

Yes Lives ÿ10.11 ÿ7.25 ÿ6.53 ÿ4.33 3.77 5.19 5.73 7.56
Amounts ÿ12.72 ÿ8.31 ÿ7.37 ÿ5.19 4.66 6.55 7.23 10.57

Source: Own calculations using 10,000 simulations of a portfolio of 2,268 males aged between
40 and 90, with an amounts-weighted average age of 67.2. Temporary annuities to age 90 are
valued continuously at 5% interest per annum. Projections are according to the CR model and
population mortality. The age profile of this portfolio is given in the right panel of Figure 9.
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now quite different, as shown in Figure 6, and in Figure 11 the long-cohort
projection appears beyond prudent as it produces reserves beyond what were
required in any of the 10,000 simulations.

8.6 In both Figures 10 and 11 the reserve under the QIS4 stress scenario
is higher than any of the 10,000 simulations under either model or data set.
This suggests that the QIS4 shock of a 25% permanent fall in mortality rates
is perhaps over-prudent for very mature portfolios, while it does not look at
all unreasonable at new business ages in Figure 8.

8.7 On each occasion, we have fitted a model within the Lee-Carter
framework. Whether or not we choose to smooth the ky values results in very
different projections, with very different pictures of what is an adequate
reserve for trend risk. Equally, even within the same model-fitting
framework, using a different data set again gives a radically different picture.
Both choices of model and of data set are aspects of model risk, which has
been shown here to be very important for annuities and pensions. There are,
of course, many other models available for mortality, which can only add to
model risk. In light of this, it would seem sensible for insurers to have large
margins in their reserving basis for the highly uncertain direction of future

Figure 10. Probability of reserve adequacy for a large annuity portfolio
against combined binomial risk, concentration risk and trend risk according
to the DDE model (solid line) and the CR model (dashed line); temporary
30-year continuous annuities payable to males until age 90, valued at 5%

interest per annum using population mortality (ONS data)
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mortality improvements. Equally, insurance company shareholders need to
make sure that the pricing of annuity business adequately compensates them
for the undiversifiable risk which they run.

æ. Conclusions

9.1 This paper has presented a smoothed approach to the fitting of the
parameters in a Lee-Carter model for mortality. The smoothing of the time
component ky allows an alternative means of projection to the usual time-
series approach. This approach does not materially change the fitted values
of mx;y, but it does change the projections. We emphasise that we have only
touched on the problem of model risk, the first of the four problem areas
identified in {3.2. Forecasting methods other than the Lee-Carter model
could be used, or, indeed, other variants of the Lee-Carter model itself.
Within the Lee-Carter model the principal source of variation is the variation
in j, and this we have addressed. The variation and the stability of both a

Figure 11. Probability of reserve adequacy for a large annuity portfolio
against combined binomial risk, concentration risk and trend risk according

to the CR model (dashed line); temporary 30-year continuous annuities
payable to males until age 90, valued at 5% interest per annum using

assured-lives mortality (CMI data)
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and b have not been addressed, and these sources of variation can only add
to our uncertainly about the future. Forecasting of mortality should be
approached with both caution and humility.
9.2 This paper shows how the measurement of uncertainty within a

given model framework is financially material to writers of immediate
annuities. However, the presentation of alternative projections within the
same framework shows how model uncertainty is just as important
financially. This model risk limits what can be expected of long-term
mortality projections, and serves as a reminder as to why explicit margins for
prudence are required in pricing and in reserving for pensions and annuities.

9.3 It is not the aim of this paper to provide all the answers to the
question of projecting mortality and longevity risk. However, it may prompt
life office boards to ask questions about annuity pricing; if model risk is so
significant, is a 5% pricing margin enough for the risk in guaranteed
annuities at ages 60 to 65? Equally, trustees and employers may probe
scheme funding bases; should companies with defined-benefit pension plans
not buy out liabilities while there is still capacity and appetite from insurers?
Perhaps the actuary’s role should be a little less about calculating the value
of the liability, and much more about demonstrating the depths of what we
do not ö and cannot ö know.
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