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The paper analyses the practical aspects of granularity adjustment for quantification of the contribution

of name concentrations to portfolio risk: proposals are made for the unique choice of systemic risk

variance; aggregation of credit risk parameters from exposure to counterparty level is analysed;

granularity adjustment capital allocation to individual counterparts is being discussed, proposing to

include single name granularity adjustment capital into performance measures and risk based pricing

tools; Monte Carlo approach for estimating single name concentration risk capital is being introduced.

Practical aspects of granularity adjustment estimation are illustrated by empirical calculations using

real bank portfolio data and the comparison with Gordy and Lütkebohmert results is presented.

Keywords: granularity adjustment; value at risk; Monte Carlo simulation; idiosyncratic risk; systemic risk.

Introduction

Starting from year 2007 many banks in different countries have adopted the new capital

requirements, which are known as Basel II (BCBS 2004). The main difference between

previous capital requirements (Basel I) and current Basel II is that banks were allowed to

use internal credit risk models for estimating supervisory required capital. As banks are

exposed to other types of risk than credit, market and operational risk, Basel II capital

requirements were expanded to cover other types of risk. For this purpose Basel II requi-

rements are divided into three parts or three pillars. Pillar I covers minimum requirements
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for estimating capital for the three main banking risks, namely credit, market and ope-

rational. Pillar II is devoted to other risk types, not captured by Pillar I: business, credit

concentration, information technologies, legal and compliance, liquidity, reputation, re-

sidual, settlement, strategic. Risks under Pillar II are covered under internal capital assess-

ment process (ICAP) and supervisory review and evaluation process (SREP). ICAP and

SREP require that risks not covered under Pillar I must be assessed by banks on their own

via Pillar II ICAP, and supervisors during SREP check whether ICAP process undertaken by

banks is adequate to cover other risks*. In general Pillar II is about good risk management

practices in banks. Pillar III concerns market discipline, i.e. disclosing of information to

public about risks banks take, methods used to estimate and manage risk.

One of sub-types of credit risk is credit concentration risk, i.e. the possibility for a

bank to incur relatively (compared to bank’s capital, assets or total risk if it possible to

estimate the latter) large loss from credit portfolio, so that this loss would endanger

normal activity of a bank. Concentration risk might appear both in bank assets (banking

and trading books) and liabilities, in making transactions and from other banking ope-

rations. Being more specific, concentration risk might arise from large credits to single

borrower, related borrowers, borrowers having high risk ratings, borrowers from the

same country, geographic region, economic sector, the same type of collateral, maturity,

currency of denomination, the same type of credit product, etc. (Valvonis 2007).

Concentration of exposures in credit portfolios is an important aspect of credit risk. It

may arise from two types of imperfect diversification. The first type, name concentration,

relates to imperfect diversification of idiosyncratic risk in the portfolio either because of

its small size or because of large exposures to specific individual obligors. The second

type, sector concentration, relates to imperfect diversification across systematic compo-

nents of risk, namely sector factors. The existence of concentration risk violates one or

both of two key assumptions of asymptotic single risk factor (ASRF) model that underpins

the capital calculations of the internal ratings based (IRB) approaches of the Basel II

Framework. Name concentration implies less than perfect granularity of the portfolio,

while sector concentration implies that risk may be driven by more than one systematic

component (factor).

As due to specific assumptions of Basel II capital calculation requirements for credit

risk it was not possible to cover credit concentration risk under Pillar I, banks themselves

have to estimate capital requirements for this risk under Pillar II. One of the methods

proposed by some authors (see BCBS, BIS 2001) is so called granularity adjustment (GA)

and its revised version (see Gordy and Lütkebohmert 2007). Advantage of the GA is that

this approach is compatible with Basel II credit risk model. Other methods, for example,

proposals by Tasche are based on expected shortfall risk measure (Martin et al. 2007).

Although expected shortfall risk measure is believed to be superior to value at risk (VaR)**,

but as Basel II credit risk model is based on VaR risk measure as well as GA, for Basel II

purposes GA is preferred. Moreover, revised GA has a closed form mathematical solution,

which makes it easier to implement in practice in banks.

On the one hand banks are required to calculate capital requirements for concentration

risk, on the other hand there seems to exist methods for evaluating this risk. The goal of

this paper is to analyze practical aspects of applying GA in banks, namely: the aggregation

of multiple exposures into a single exposure for the purpose of assessing the effect of

the single name concentration risk; the calculation of the credit risk drivers, i.e. Probability

of Default (PD) and Loss Given Default (LGD) to this single exposure so that the final

parameters are unique and the largest exposures make the largest influence; also paper

considers questions involving the choice of the systemic risk and its parameters (variance

of the systemic risk for example) and small practical correction of the GA formula which

allows to avoid additional new data requirement, i.e. the volatility of the inputs to IRB

formula. As credit risk capital is used for measuring risk adjusted performance of credit

exposures as well as in risk based pricing, capital for credit concentration risk must also

be included in these calculations. In other words, in risk adjusted performance measure-

*For more details see CEBS
(2006).
**See for example Artzner et al.
(1999), Acerbi and Tasche
(2002).
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ment banks cannot use just Basel II Pillar I capital required for credit exposure, as in this

way capital would be underestimated for credit concentration risk. As GA is estimated

for portfolio of exposures, the natural wish is to distribute GA capital to individual

exposures. This issue is also discussed in the paper. The paper also gives some empirical

GA estimation results and shows how GA works on real bank credit portfolio data.

Chapter 1 of the paper reviews theoretical assumptions behind Basel II credit risk

model and why it is needed to estimate capital for credit concentration risk separately.

Chapter 1 also discusses in detail GA estimation methodology proposed by some authors

as it will be challenged from the practical perspective in the Chapter 2 of paper. Chapter

3 gives some empirical estimation results and practical conclusions from one real bank

portfolio. Chapter 4 analyses GA allocation problem and the last chapter concludes.

1. Theoretical background

This chapter briefly describes theoretical aspects of Basel II IRB model, assumptions of

this model and practical implications. Analysis of IRB model directly leads to motives

why, what and how IRB models need to be supplemented, for example, with GA estimate.

1.1. Basel II IRB model

The Basel II IRB model was built in order to allow banks to apply their own standards

for evaluation of credit risk parameters and ultimately supervisory required capital. On

the other hand calculation of the required capital must involve the following properties:

universality for all banks (all banks should be able to apply required capital calculation

rules, independently from geographic location, type or size of bank), capital portfolio

invariance (the model is portfolio invariant if the capital required for any given loan

should only depend on the risk of that loan and must not depend on the portfolio it is

added to), and so on*. Thus seeking to satisfy all these assumptions the simple and also

elegant decision was made – ASRF portfolio credit risk model. Single risk factor and

asymptotic are the two main assumptions of Basel II IRB model.

Asymptotic means that the portfolio is infinitely fine grained and thus it consists of a

nearly infinite number of credits with comparatively small exposures. Single risk factor

means that only one systematic risk factor influences the default risk of all loans in the

portfolio.

In ASRF model, credit risk in a portfolio is divided into two categories, systematic and

idiosyncratic risk. Systematic risk is the market risk or the risk that cannot be diversified

away. It refers to the movements of the whole economy. Idiosyncratic risk is described as

the risk of value changes due to the unique circumstances of a specific obligor. ASRF

model under IRB approach assumes that bank portfolios are perfectly fine-grained, that

is, idiosyncratic risk is fully diversified away, so that economic capital depends only on

systematic risk (this way portfolio invariance condition is satisfied).

Assume that the normalized asset return R
i
 of the i’th obligor in the credit portfolio is

driven by a systematic risk factor X and an idiosyncratic noise component �
i
. For consistency

with the ASRF framework of Basel II assume that X is one-dimensional, i.e. that there is

only single systematic risk factor ,1
iiii

XR ερρ −+= here X and �
i
 are independent

identically distributed normal random variables (i.i.d. N(0,1)). This means that R
i
 has a

standard Gaussian distribution. The component �
i
 represents the risk specific to i’th

obligor, while X is a common risk to all. Note that �
i
 represents the asset correlations,

where jijiRRE ρρ=][ . It should be mentioned that asset return correlations and

default correlations are not the same. Typically, the default correlation is much smaller

than the asset correlation**. According to the theory of Merton (1974) the i’th obligor

defaults with probability PD
i
 if )(

1

ii
pR −

Φ≤ , denoting this indicator with Z
i
. Here and

throughout the paper Φ is cumulative distribution function of standard normal random

variable. Thus the conditional probability of default equals to

*These properties are described
in Gordy (2003).
**For more details see Frey et
al. (2003).
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Next consider credit portfolio consisting of n obligors. The portfolio has asset correla-

tions �
i
, exposures at default EAD

i
, probabilities of default PD

i
 and loss given default

LGD
i
*. The portfolio loss rate is given by .
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⎛
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LGDEADEADLELq
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α (1)

here E(L) is the expected loss of the portfolio.

From Vasicek (1991) and the law of large numbers it follows that cumulative probability

of the percentage loss on a portfolio of n loans has very skewed distribution and all the

formulae used in IRB model (mentioned in this chapter) hold only asymptotically**.

1.2. Granularity adjustment as a supplement to Basel II IRB model

As it was discussed previously the ASRF model assumes that bank credit portfolio

consists of an infinite number of relatively small exposures to one economy or economic

sector. But real bank portfolios are not infinite and exposures are not of the same size,

moreover banks are not operating in single economic sector. This implies, that in practice

banks are exposed to a lesser or greater concentration of single obligor risk compared to

infinitely fine grained portfolio under ASRF model. On the other hand banks are more

diversified with respect to economic sectors, as banks operate in more than one economic

sector. Looking from a conservative point of view and from supervisory perspective,

overestimation of sector concentration risk with ASRF model is not a problem***. On

the other hand, underestimation of single name concentration risk is an important issue,

as banks for this reason hold less capital than they should.

The GA is an extension of the ASRF model which forms the theoretical basis of the IRB

model. Through this adjustment, originally omitted single-name concentration is

integrated into the ASRF model. The GA ceteris paribus can be calculated as the difference

between unexpected loss in the real portfolio and in an infinitely granular portfolio with

the same risk characteristics. GA is an additional required capital to cope with unsystematic

(idiosyncratic) credit risk arising from the credit portfolio. It is by means of this adjustment

that one could estimate additional capital to cover single name concentration risk for

portfolios which contain very large or varied exposure sizes, relative to those which are

more “granular” or contain large numbers of smaller exposures.

There are at least three approaches proposed in credit risk literature how GA could be

estimated: by Vasicek (2002), by Emmer and Tasche (2005), by Gordy and Lütkebohmert

(2007). The intuition behind the Vasicek method is to augment systematic risk (by

increasing factor loadings) in order to compensate for ignoring idiosyncratic risk. An

important problem is, however, that the systematic and idiosyncratic components of the

risk have very different distribution shapes. This method is known to perform poorly in

practice (see Gordy and Lütkebohmert 2007). The approach proposed by Emmer and

Tasche (2005) is based on the default-mode version of CreditMetrics and so shares the

Merton model foundation with the IRB model. In contrast to the approach proposed by

Gordy and Lütkebohmert (2007), it does not maturity-adjust the input parameters and

does not account for idiosyncratic recovery risk. However, in principle it could be extended

to capture both aspects. Its major drawback is that the formula itself is quite complex,

especially compared to the one proposed by Gordy and Lütkebohmert.

*Here and throughout the pa-
per LGD is not random and all
expectations are empirical.
**More detailed derivation of
Basel II IRB model can be found
in Gordy (2003).
***Ceteris paribus and under
assumption that correlation is
calibrated more precisely.
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The revised GA proposed by Gordy and Lütkebohmert (2007) serves as a revision and

extension of the methodology proposed in the Basel II second consultative paper (BCBS,

BIS 2001). Revised GA develops a relatively simple and what is most important applicable

in practice methodology for approximating the effect of undiversified idiosyncratic risk on

VaR. Also in keeping with the Basel II second consultative paper (BCBS, BIS 2001), the data

inputs to the revised GA are drawn from parameters already required for the calculation of

IRB required capital. The other advantage of GA calculation method proposed by Gordy

and Lütkebohmert is the closed form solution and consistency with Basel II IRB model.

Thus further in this paper GA approach proposed by Gordy and Lütkebohmert is discussed.

An important question is how much additional capital is required if a single loan is

added to the credit portfolio. In order to answer this question, the derivative of the VaR

must be calculated. It can be shown mathematically that the derivative is given by the

conditional mean of the marginal loan, on condition that the value of the credit portfolio

and VaR are exactly identical*. If this general result is applied to a simple one-factor

model, the Basel II IRB model can be obtained.

Let us write portfolio loss in the following mathematical expression: L = u(1), where

[ ] [ ]( ),||:)( XLELXLEu −+= εε                                                                                       (2)

and [ ]XLE | ** representing losses driven only from the systemic risk (conditional expec-

tation serves as a projection). The second order Taylor expansion for the q-th quantile of

the portfolio loss is

[ ]( ) [ ] [ ]( )( ) +−+
∂

∂
+≈

=0

|||)(
ε

ααα
ε

ε

XLELXLEqXLEqLq

[ ] [ ]( )( ) .||2/1

0

2

2

=

−+
∂

∂
+

ε

α
ε

ε

XLELXLEq

First derivative in Taylor expansion of quantile vanishes, since the idiosyncratic com-

ponent conditional on the systematic component [ ]XLE |  vanishes. The second derivative

in Taylor expansion is GA, because it represents the additional fraction to the VaR due to

the undiversified idiosyncratic component. This second derivative in Taylor expansion

can be expressed as

( )
,

)(

)()(

)(2

1
:

)(

2
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x
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dx
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α
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2

xLVx =σ and h is the density of the systematic factor X.
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= .

From T. Wilde (2001) result for CreditRisk+ framework, the derivative can be expressed as

,
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where 
[ ]
[ ]

i

i

i
LGDE

LGDE
C

2

= (3)

and [ ] ( )1)1)(()( +−⋅⋅⋅= XqLGDEPDx iiiqi α
ωμ , 

i
ω  are CreditRisk+ factor loadings. The

derivative is the following [ ] iiiqi PDLGDEx ωμ ⋅⋅=′ )( . Recall that in CreditRisk+ model the

expected loss is [ ]
iii

PDLGDER ⋅=: and the unexpected loss capital requirement

is [ ] ( )1)(: −⋅⋅⋅= XqPDLGDEK
iiii α

ω ***. The complete GA takes the following form:

*For more details see Gourier-
oux et al. (2000).
**Starting from formula (1) X
has gamma distribution and
differs from the systemic risk in
the ASRF model.
***For more details see Gordy
and Lütkebohmert (2007).
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Following Gordy and Lütkebohmert methodology it is assumed that X is gamma

distributed with mean 1 and variance 1 / � for some positive �.

The simplified version of GA* looks like this if one drops the second term members:
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In the above formulae of GA all the parameters are available in IRB model (like PDs,

EADs, LGDs) and the only unavailable parameters are �, � and factor loadings �
i
.

Conditional on X = x, the probability of default in CreditRisk+ model is

)1()( xPDxPD
iiii
⋅+−⋅= ωω , where �

i
 is the factor loading which controls the sensitivity

of i’th obligor to the systematic risk factor and PD
i
 is the non-conditional probability of

default. In CreditMetrics the variance of the conditional probability of default is

( ) 211

2
),(),()]([

iiiii
PDPDPDXPDVar −ΦΦΦ=

−−

ρ , (6)

where
2

Φ denotes the bivariate normal cumulative distribution function. The correspon-

ding variance in CreditRisk+ is

./)()]([
2 ξω

iii
PDXPDVar ⋅= (7)

Now equating the two variance expressions ((6) and (7)) one obtains �:
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To obtain factor loadings �
i
, one needs to compare the asymptotic unexpected loss

capital charges across the two models:
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Equating (9) and (10) one gets
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⎝

⎛

−
Φ+Φ

−
Φ

=

−−

XqPD

PDqPD

i

i

i

i

i

i

i

α

ρ

ρ

ρ

ω (11)

Although the above GA estimation formulae seem to be complicated, with many

variables, but they are possible to implement in practice. On the other hand, while

implementing GA in practice, several challenges are faced:

- as GA measures single name concentration risk, all credit risk parameters (PD, LGD,

EAD, �) in GA formulae are on counterparty level. As some counterparties might have

several exposures one needs to aggregate PD, LGD, EAD and � from single exposures to

counterparty level;

*The accuracy of this simplified
version is described in Gordy
and Lütkebohmert (2007).
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- banks are required to estimate volatility of LGD ((3) formula). The proposal in Gordy

and Lütkebohmert (2007) is to estimate volatility of LGD using this formula

)1(
2

kkk
ELGDELGDVLGD −= γ  with supervisory set constant �. But as supervisors have

not set any value for �, banks themselves have to overcome this problem and estimate

volatility of LGD;

- estimation of � which is a PD(X) parameter and portfolio dependent. This is a draw-

back, because this parameter describes systemic risk and must be unique and satisfy

portfolio invariance. Thus � should not be dependent on any credit risk parameters;

- estimation of � is complicated, because to obtain � one needs to solve non-linear

equation. If GA is estimated each time capital adequacy is being calculated (can be every

day), each time non-linear equation for � must be solved. Thus some quick solution to

this non-linear equation is needed.

2. Challenges in implementing GA in practice

This chapter discusses practical aspects of implementing GA methodology in banks,

i.e. how to estimate various parameters in GA model.

2.1. Obtaining PD, LGD and EAD on counterparty level

To estimate GA for single name concentration risk, GA estimation is done on counterpar-

ty level, not on exposure level. In other words it is natural to assume that the counterparty is

defaulting, not individual exposures of this counterparty. This implies that credit risk pa-

rameters (PD, LGD, EAD, �) used in GA formulae must be estimated on counterparty level.

Lets assume that k’th obligor )1( nk ≤≤  has n
k
 exposures with the following charac-

teristics ),,,(
iiii

LGDPDEAD ρ , )1(
k

ni ≤≤ :

- aggregation of EAD to counterparty level if counterparty has several exposures is the

most simple, as one just have to sum up EADs: ∑
=

=

kn

i

ik
EADEEAD

1

;

- as in Basel II IRB framework non retail borrowers are rated on counterparty level, so

PD is also estimated on counterparty level. Thus no aggregation of PDs for non-retail

borrowers’ PDs is required. As under Basel II banks are allowed for retail counterparties

to fix default on exposure level this way different exposures of the same counterparty

might have different PDs. Thus aggregation of PDs for retail counterparties is needed.

The proposal* here would be to set retail counterparty PD to the maximum PD of his

exposures’ PDs: ( )
knk

PDPDPDEPD ...,,,max
21

= ;

- if counterparty defaults, one would estimate how much bank is able to recover from

all exposures of this counterparty. In other words, if total exposure of counterparty is

∑
=

=

kn

i

ik
EADEEAD

1

and total loss from counterparty is ∑
=

⋅=

kn

i

iik
LGDEADELOSS

1

, then LGD

on counterparty level would be ELOSS
k
 /EEAD

k
 = k

n

i k

i

i
ELGD

EEAD

EAD
LGD

k

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⋅∑

=

:

1

 or in other

words exposure weighted LGD;

- as in Basel II IRB framework correlation is PD dependent, then correlation should be

estimated on a basis of ( )
kn

PDPDPD ...,,,
21

. Since correlation takes values dependent on

the product and assessment types (see Directive 2006/48/EC) the value should be taken

over the product segments (the maximum PD’s from the same product type exposures

(if there is such)). For the correlation expression for different product types (retail case)

the priority is given for the largest exposures (exposure weighted approach).

2.2. Variance of LGD

Note that in the paper of Gordy and Lütkebohmert formula (1), C
k
 is expressed through

the volatility of LGD, i.e. 222
][

kkk
VLGDELGDLGDE += . Since the volatility of LGD is not an

input to the IRB formula, banks in principle could be permitted to supply this parameter

for each loan. This procedure would require additional amount of new data and often it

*The alternative could be to
estimate exposure weighted PD.
But taking into consideration
that counterparty is considered
to be defaulted when counter-
part defaults of any one of his
exposures, thus to be consistent
with this definition of default
maximum on PDs should be ta-
ken. Taking exposure weighted
PD would underestimate PD on
counterpart level.
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seems preferable to impose a regulatory assumption to avoid this burden. For example

the relationship in the CP2 version of the GA uses )1(
2

kkk
ELGDELGDVLGD −= γ with the

regulatory parameter �� between 0 and 1. Let’s call this LGD volatility as Basel II volatility.

When this specification is used in industry models such as CreditMetrics or KMV Portfolio

manager, a typical setting is 25.0=γ . This value is also used in Gordy and Lütkebohmert

methodology.

This paper considers empirical approach for evaluating volatility of LGD. Let us consider

the exposure weighted deviation of LGD:

( )( ) =−= :][:
222

kkk
ELGDLGDELGDDev

[ ]( ) ,

1

2

∑
=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⋅−

kn

i k

i

ki
EEAD

EAD
ELGDLGD

where ∑
=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⋅=

kn

i k

i

ik
EEAD

EAD
LGDLGDE

1

22
:][ . The only difference of this derivation from the

standard ones is that instead of 1 / n
k
 it uses weights 

k

i

EEAD

EAD

.

Recall that n
k
 is a number of exposures for the k’th obligor or equivalently k’th position.

Thus we have that by applying exposure weighted LGD in GA formulae parameter C
k

equals:

.

1

1

2

∑

∑

=

=

⋅

⋅

=

k

k

n

i

ii

n

i

ii

k

EADLGD

EADLGD

C  (12)

Having empirical LGDs for each counterparty, one can compare the Basel II volatility

of LGD with the exposure weighted one. For the comparison to be more clear we involve

the GA component C
i
. With the Basel II volatility of LGD it is

( ) ( )
.

75.025.0
2

i

ii

i
ELGD

ELGDELGD
C

⋅+⋅

= (13)

Comparing the latter two expressions one obtains that neither Basel II C
i
nor exposure

weighted C
k
 dominates. In our portfolio we obtained that 0.685 per cent of all counter-

parts had the (13) expression strictly less than the (12), and these counterparts contained

1.263 per cent of all portfolio EAD.

Next let us assume the following scenario: if counterparty has an exposure equal to

EUR 1,000 and LGD = 1, after some time this counterparty is granted new exposure of

EUR 100,000 and LGD = 0.001. From the local (single counterparty) perspective the

concentration increases since the exposure increases to 101,000 (also observe that

expected loss with only first exposure included is 1,000 and with both exposures is

1,100). However the C
i
 from expression (13) to GA formulae doesn’t reflect the local

increase in the concentration, i.e. with only first exposure C
i 
= 1 and after second C

i

drops to 0.2582 (about four times), while in this scenario the (12) expression drops from

1 to 0.9092. Thus in this paper we suggest the conservative approach by implementing

the LGD volatility related input C
k
  to be the maximum of (12) and (13) expressions.

2.3. Solving non-linear equation to estimate �

Expression of �� in equation (5) has a non-linear form. If bank wishes to estimate GA

every time when required capital is estimated (this can range from daily to quarterly

estimation, and most probably shall be done monthly), each time non-linear equation

for � must be solved.

If factor loadings from formula (11) are put into the (8) formula, non-linear equation

for � is obtained:

( )
.

1
)()(

1

1

)),(),((

1)(

1
2

11

211

2

2

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

−
Φ+Φ

−
Φ

−ΦΦΦ
=

−
−−

−−

k

k

k
k

k

kkkk

q

PDqPD

PDPDPD

X

ρ

ρ

ρ

ρ
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This expression has an obvious drawback since the estimated value of ξ  depends on

the chosen PDs and thus on portfolio characteristics. To be consistent with the exposure

weighted approach and at the same time avoid the above mentioned dependencies, the

following aggregation is proposed:

(14)

To solve the non-linear equation for �* and make it computationally not burdensome,

as this equation needs to be solved each time GA is estimated, so called secant method

could be used. In numerical analysis, the secant method is a root finding algorithm that

uses a successions of roots of secant lines to better approximate a root of a function.

The secant method is defined by the recurrence relation: .

In GA case the function is 
( )

const
Xq

f −

−

=

2
1)(

1
)(

α
ξ

ξ and ‘const’ is the right hand

side of the equation (14). The first two steps in the recurrent relation we choose as x
0 
 = 0.1

and x
1 
 = 0.2 and the tolerance parameter is 

8100.00000001eps −

== . The number of

iterations of the secant method in our case is 100. The method is computationally simple

since it doesn’t involve any derivatives.

In Gordy and Lütkebohmert GA baseline parameterization (�
�

 = 0.25) the relation

between �
�

 and �  is the following (quantile q = 0.999):

� 0.2 0.25 0.35 0.5 0.75 1.00 1.50

� 4.66 4.83 5.09 5.37 5.68 5.91 6.23

For empirical portfolio using two years of historical data delta (��) is depicted below.

Figure 1. Evolution of �

Source: data from one Eastern Europe bank.

The average � is 5.212206=

av

δ  with 0.412447=

avξ . Note that the lower values of

� imply greater systematic risk which leads to higher unexpected loss, but in turn it

minimizes the GA. Also observe that in the Gordy and Lütkebohmert (2007) appendix it

is mentioned that the range 5.65.4 << δ is in line with common practice.

Having analysed mathematical aspects of estimating GA, next step is to see how the

proposals work in practice and what are the empirical results.

3. Empirical estimation results of single name concentration risk

This chapter gives an overview of empirical GA estimation results using real data of

one bank**. The goal of this chapter is to show how GA works in practice, how it

*This equation has a unique
solution in the interval [0; 2].
**This Eastern Europe bank
operates only in one country,
but is among the largest three
banks in the country. Bank is
undertaking universal opera-
tions, it has strong market po-
sitions both in non-retail (cor-
porate) and retail credit seg-
ments. As bank is a leader in
crediting corporate (majority of
largest corporate have expo-
sures in this bank) so naturally
this has effect on GA. The port-
folio analyzed below encom-
passes all exposures, of all types
and to all types of counterparts,
excluding exposures to central
government and subsidiaries of
bank.

)(
)()(
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changes with time, how empirical estimation results compare with those given in Gordy

and Lütkebohmert and how proposals in Chapter 2 for GA estimation work on real

bank data and affect GA. As for smaller and less sophisticated banks, especially those

not using IRB model for calculating the required credit risk capital, it might be impossible

to implement GA in practice, empirical calculation results could be a good benchmark

how much capital might be needed to cover single name concentration risk.

Figure 2 below shows the evolvement of number of counterparts in the reference

portfolio.

Figure 2. Number of counterparts in reference portfolio

Source: data from one Eastern Europe bank.

The Figure 2 above shows that during two years of observation period the reference

portfolio was rapidly growing in the number of counterparts. This is explained by the

fact that the reference bank operates in one of the new EU member states, where

financial sector was not developed for many years. Only during the observation period

banking and the whole financial sector experienced credit boom. To the analysis of GA

this adds additional interest as this fact would enable to investigating how GA behaves

in changing economic environment and radically changing credit portfolio.

Figures 3 and 4 below show that during the observation period credit portfolio of private

individual retail counterparts has increased considerably. Increase in funding of private indi-

viduals was mainly driven by increased number of mortgage and consumer loans.

Figure 3. Distribution of portfolio between borrower types

(measured on exposure size level)

Source: data from one Eastern Europe bank.
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Although consumer loans are very small in amount and mortgage exposures are some-

what larger, but on average exposures to private individuals are far smaller than to cor-

porate borrowers (compare Figures 3 and 4). On the other hand, as private individuals’

credit portfolio has increased considerably during the observation period as well as the

number of private individuals counterparts (see Figure 2), this caused to increase portfolio

diversification (which is evident from changes in Herfindahl-Hirschmann Index (HHI)).

Figure 4. Distribution of portfolio between borrower types

(measured on number of clients level)

Source: data from one Eastern Europe bank.

Portfolio structure in Figure 5 below also shows that the share of counterparts with

small total exposure (that would mainly be consumer, mortgage exposures to private

individuals and exposures to small corporations) has increased during the observation

period. Again, this means that during the observation period portfolio diversification

increased, implying that one would expect to observe a decreasing trend in GA although

the main impact on portfolio concentration and GA comes from largest counterparts

and their share in total credit portfolio.

Figure 5. Distribution of portfolio with respect to

exposure size (measured on counterparty level)

Source: data from one Eastern Europe bank.
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Figure 6 below shows how HHI was evolving during the observation period. In parallel

information is presented on how the share of largest counterparts was evolving. As it

could have been expected from changes in portfolio structure, shown in previous figures,

HHI was decreasing during observation period, i.e. single name concentration risk was

decreasing. All the indicators on share of largest counterparts were decreasing, again

showing decreasing trend in single name concentration risk.

Figure 6. Herfindahl-Hirschmann index and share of

largest counterparts

Source: authors’ calculations.

Finally Figure 7 below depicts GA calculation results (the detailed numbers are provided

in Table 1 in the Appendix).

Figure 7. Empirical GA+

Note: +aggregated GA estimation data is provided in Table 1 in the
Appendix.

Source: authors’ calculations.
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For the reasons described earlier, portfolio GA was decreasing over the observation

period. At the beginning of the observation period, when number of counterparts and

credit portfolio was small, GA was high (required capital to cover single name

concentration risk was 0.55 per cent from total credit portfolio under consideration).

Comparing this result with that in Gordy and Lütkebohmert (2007), GA of 0.55 per cent

corresponds to small bank credit portfolio. By the end of observation period, as credit

portfolio and number of counterparts increased considerably, GA dropped to 0.2 per

cent and this corresponds to medium credit portfolio GA.

It should be also noted, that throughout the whole observation period GA required

capital in absolute terms did not change significantly: at the beginning of observation

period capital to cover single name concentration risk was close to EUR 18 millions and at

the end of the period when portfolio increased in size and number of counterparts and

concentration reduced (HHI dropped from 0.004 to 0.0015) GA required capital decreased

to EUR 14 millions. From the figures above and statistical data in the appendix of the

paper, it can be concluded that during observation period capital for single name concent-

ration risk did not change drastically, although portfolio increased in size several times. This

implies, that single name concentration risk capital did not change in absolute terms, but

its share in total capital was changing dramatically. This would mean that for small banks

with relatively concentrated portfolios single name concentration risk capital might take

up relatively large proportion of the total capital. Increased capital requirements for such

banks, having no parent banks abroad, might cause serious reductions in capital ratios.

Empirical estimation results provided above, could be a good benchmark for banks,

which do not estimate PD, LGD and other credit risk parameters, needed to calculate

GA required capital. Banks not opting for Basel II IRB, could set capital for single name

concentration risk based on their credit portfolio HHI. In other words from Figure 6 and

Figure 7 above banks could find out what capital should be set aside for single name

concentration risk, corresponding to their portfolio HHI. This would yield a rough estimate

of the required capital.

Figure 8 below shows that there is a strong linear relationship between HHI and GA.

From this figure banks having no PDs and LGDs and not opting for IRB model, might find

out what GA per cent corresponds to their portfolio HHI. It should be noted however, that

empirical estimation results on GA and HHI presented below are for a bank that is local

market leader in large corporations credit segment. This implies that this bank might have

relatively larger share of large credits in its portfolio compared to its pears. Thus presented

relationship between HHI and GA should be considered as with high conservative margin.

Figure 8. Relationship between HHI and GA

Source: authors’ calculations.

Gordy and Lütkebohmert (2007) also provide simplified GA estimation method, when

not all, but some predefined number of largest counterparts are included into GA
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estimations. This way GA approximation is obtained. On one hand this makes all the

calculations easier, as not all of the exposures should be included for estimating GA. On

the other hand, approximation leads to higher GA compared to that if all exposures

would be included into calculations. So the natural and interesting question is how

many exposures should be included into GA estimations not to increase GA itself too

much?

Figure 9. Upper bound GA (differences from full

portfolio GA in percentage points)

Source: authors’ calculations.

The figure above shows the differences between two GAs, namely GA including x per

cent of largest counterparts and GA estimated using all of the counterparts. The results

in the figure above reveal that upper bounds works properly and as depicted in the

figure above, one observes very fast approximation of the true portfolio GA with increasing

share of counterparts used for estimating GA. The apparent difference is only observed

in cases when 10 per cent, 20 per cent, 30 per cent and 40 per cent of largest exposures

are included into portfolio for estimating GA. Although one should also observe that

with time and increasing portfolio diversification (as evident from figures earlier) difference

between upper bound approximations and total portfolio GAs are stable. For example

at the beginning of the observation period, when portfolio concentration was the highest,

difference between 10 per cent portfolio GA and GA of total portfolio was slightly

beneath 1 percentage point. At the end of the observation period this difference between

approximated GA and total portfolio GA decreased 2.6 times. If one includes at least 40

or 50 per cent of total portfolio counterparts in GA estimation, increase in capital

compared to total portfolio GA shall be negligible.

It is also possible to estimate or back-test the above GA calculations using “straight-

forward and dirty” method. In Basel II IRB framework ASRF credit risk model is used. As

in IRB model asymptotic assumption is not met, in GA calculations above two quantiles

of loss, namely of true portfolio risk and infinitely granular portfolio risk are compared.

Using Monte Carlo simulations and single risk factor model it is possible to obtain loss

distribution of bank credit portfolio (not infinitely granular portfolio) and by comparing

the unexpected loss of this simulated loss distribution with actual Basel II IRB required

capital, one would obtain required capital to cover single name concentration risk or

GA. In other words, usage of single risk factor credit risk model and Monte Carlo simu-
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lations shall account for differences in exposure size, credit portfolio concentrations and

other factors, that have impact on single name concentration risk (see Figure 10 below)*.

Figure 10. Monte Carlo simulation of GA

Source: formed by the authors.

Simulation is dependent on assumption that both systematic and idiosyncratic risk

components are normally distributed and default is modelled using Merton type model,

i.e. simulation is done using the same model as that in Basel II IRB, but as simulations are

done for many times this way asymptotic assumptions are met and loss distribution

obtained. In reality, for example systematic risk component might be distributed not

normally, for example take gamma distribution. In this case simulation would lead to

other loss distribution, other capital for unexpected loss and comparison results between

Basel II IRB required capital and simulated capital would be different.

Monte Carlo simulation on empirical data (end of December 2007) yielded, that after

6 millions of iterations GA is close to EUR 9.2 millions. Whereas closed form estimation

results for the same date indicate that GA is equal to EUR 13.7 millions (see Figure 7).

Simulation results differs from closed form estimation results (they cannot match exactly

for some methodological differences, like treatment of systemic risk (in closed form

estimation systemic risk is modelled using gamma distribution, whereas in Monte Carlo

simulation systemic risk factor follows normal distribution).

Although Monte Carlo simulation might seem as a straightforward way for obtaining

GA required capital, it has some disadvantages compared to GA estimation. First of all,

as for GA estimation purposes one needs 99.9 per cent quantile, this implies that actually

a quantile is simulated. This implies that very large number of simulations needs to be

run in order to get stable quantile estimate. As the tail of simulations shall contain only

0.1 per cent of all observations this means that after 1 million of iterations the tail shall

contain only 1,000 observations of loss. Alternatively one could say that this is equivalent

to 1,000 iterations of quantile. Clearly 1,000 observations in tail shall not give stable

quantile value. In order to get stable quantile estimate, possibly 10 millions of iterations

in total (10,000 observations in tail) might be needed. It arises from Glivenko-Cantelli’s

law which states that the empirical loss distribution could be approximated with the n

rate (n is the number of simulations). Thus from 10 million simulations one would expect

the 3.163e-4 accuracy, and since portfolio total amount reaches about 6.7 billions euros

we get that the precision could not be better than 1–2 million euros. So many iterations

require huge IT resources**. The second disadvantage of simulation is the fact that if

GA required capital suddenly changes because of structural changes in credit portfolio,

it might not be clear where this change comes from as simulation gives only the final

result. Closed form solution to GA estimates GA
i
 to each counterparty and one can infer

how GA
i
 changed and which counterparts contributed the most to the final GA figure.

Contribution to final GA figure by individual borrowers is another topic of interest that

is discussed in the following chapter of the paper.

*Monte Carlo simulation pro-
cess is depicted in Figure 2 in the
Appendix.
**Moreover, if portfolio contains
100,000 positions, then 10 mil-
lion iterations should be multi-
plied by 100,000 positions.
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The final step in analysing practical aspects of GA is it’s application in everyday

operations of bank. For this reason next chapter considers problem of GA allocation.

4. Allocation of credit concentration risk capital to individual exposures

If calculated GA capital is used in ICAP, meaning that bank actually allocates part of

capital to cover single name concentration risk, GA capital has to be allocated to individual

counterparts. In risk based pricing or risk adjusted performance measurement economic

capital allocated to exposure is being used. This implies that banks using Basel II IRB

capital for risk based pricing or risk adjusted performance measurement have to add to

this additional capital required to cover single name concentration risk. For example risk

adjusted return on capital formulae for ith exposure has to be adjusted this way:

.
GA_capitallIRB_capita

ted_returnRisk_adjus
RaRoC

ii

i
+

=

In formula (4) in the previous chapter total portfolio GA is a sum of GA
i
, i.e. total GA

is equal to sum of absolute GA
i
 contributions of all counterparts in the portfolio. It

should be noted that GA
i 
(absolute contributions to GA by single counterparty) does not

represent additional capital needed to be included in risk based pricing or risk adjusted

performance measurement. In fact so called marginal contributions to GA must be used*.

Marginal GA contribution for ith counterparty is defined in the following way:

.GAGAGA sureing_i_expolio_excludall_portfolioall_portfo
marginal
i −=

The practical problem with marginal GA is that it is computationally demanding to

recalculate portfolio GA excluding one by one each and every exposure. A practical

solution here might be the fact that for very small exposures in portfolio marginal GA

can be well approximated by absolute GA
i
. For the largest exposures, which are the

major source of concentration in credit portfolio and contribute the most to final portfolio

GA, marginal GA would need to be calculated. For example using the data from the

previous chapter, absolute contribution GA
i
 for largest counterparty in portfolio was

EUR 1.495 million when for the same counterparty marginal GA was only EUR 1.328

million. For small exposures, that help to diversify credit portfolio with respect to exposure

concentration, marginal GAs are negative. This is of no surprise, as small exposures help

to diversify portfolio.

Conclusions

Credit concentration risk, being one of the main Basel II requirements Pillar II issues,

receives big attention among practitioners and supervisors. The Basel II IRB models were

built to fit all banks (involving the properties of universality for all banks, capital portfolio

invariance and other), thus they contain some simplifying assumptions.

To make models simple and fit all banks elegant decision was introduced – ASRF

portfolio credit risk model. Single risk factor and asymptotic are the two main assumptions

of Basel II IRB model. On the other hand simplifications have led to some shortcomings

in model and supervisors require banks to overcome these shortcomings. For example,

asymptotic assumption in the model implies that the portfolio is infinitely fine grained

and thus it consists of a nearly infinite number of credits with comparatively small

exposures. As this is not true in practice, banks are required to measure additional required

capital to cover single name concentration risk or alternatively account for not perfect

granularity of their portfolios.

Performed survey of literature suggests that there are at least three approaches how

granularity adjustment could be estimated: by Vasicek (2002), by Emmer and Tasche

(2005) and by Gordy and Lütkebohmert (2007). Analysis of these three approaches

leads to the conclusion that the third approach proposed by Gordy and Lütkebohmert is

applicable in practice and has less drawbacks then the other two approaches.
*For more details see, for
example, Bessis (2002).
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Although Gordy and Lütkebohmert approach could be implemented in banks, trying

to implement this approach in practice inevitable leads to the following challenges for

which the paper suggests practical solutions:

1) as GA measures single name concentration risk, all credit risk parameters (PD, LGD,

EAD, �) in GA formulae are on counterparty level. As some counterparts might have

several exposures one needs to aggregate PD, LGD, EAD and � from single exposures to

counterparty level;

2) banks are required to estimate volatility of LGD;

3) estimation of model parameter � which is a function of PD(X) and portfolio de-

pendent. This is a drawback, because this parameter describes systemic risk and must be

unique and satisfy portfolio invariance. Thus � should not be dependent on any credit

risk parameters;

4) estimation of � is complicated, because to obtain � one needs to solve non-linear

equation. If GA is estimated each time capital adequacy is being calculated, each time

non-linear equation for � must be solved.

The paper also proposes an alternative approach for measuring concentration risk

capital using Monte Carlo simulations. As IRB model does not meet asymptotic assump-

tion, in GA calculations true portfolio risk and infinitely granular portfolio risk are

compared. Using Monte Carlo simulations and single risk factor model it is possible to

obtain actual loss distribution of bank credit portfolio and compare unexpected loss of

this simulated loss distribution with empirical (IRB or infinity granular portfolio) unexpected

loss. Although Monte Carlo simulation is a straightforward way to estimate GA, it has

some disadvantages compared to GA estimation using closed form solution. First of all,

large number of simulations needs to be run in order to get stable quantile estimate.

Second, if GA required capital suddenly changes because of structural changes in credit

portfolio, it might not be clear where this change comes from, as simulation gives only

the final result. Third, contribution to final GA figure by individual borrowers is not

known if Monte Carlo simulations are used.

Empirical analysis of GA estimation results also suggests that there is a strong linear

relationship between HHI and GA. This relationship enables banks not having own PD

and LGD parameters to infer what could be approximate GA required capital based on

concentration of their portfolio. The latter approach serves only as an approximation, as

GA, unlike HHI, considers not only exposure size, but also exposure risk. In other words,

GA and HHI relationship presented in the paper holds only for similar portfolio analyzed

in the paper.

Finally, the paper suggests that GA capital should be allocated to individual

counterparties, and the latter figures should be used in risk adjusted performance and

risk based pricing models, along with IRB capital.
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Figure 1. GA simulation process

Source: formed by the authors.

The cornerstone of simulation is borrower asset returns:

jijijj XR ερρ −+= 1

Single Xi (one realisation of economy to all borrowers) is

generated for ith iteration

Each borrower is generated random idiosyncratic risk
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Asset return is estimated for each borrower, conditional on economy realisation

for ith iteration (Xi) and realisation of individual idiosyncratic risk (�ji)
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∑
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Summary

Mindaugas Juodis, Vytautas Valvonis, Raimondas Berniûnas, Marijus Beivydas

Pastaruoju metu nemaþai pasaulio bankø ádiegë naujus kapitalo pakankamumo rei-
kalavimus ir vidaus reitingais pagrástus kapitalo poreikio skaièiavimo modelius. Ðie modeliai
buvo kuriami skirtingose ðalyse veikiantiems ir skirtinga bankine veikla uþsiimantiems
bankams, bet bankø prieþiûros institucijos siekë, kad jie tiktø visiems. Todël ðie modeliai
yra pagrásti tam tikromis supaprastintomis prielaidomis. Viena ið tokiø prielaidø – apie
paskolø portfelá sudaranèiø paskolø begaliná skaièiø. Bankø paskolø portfelius sudaro
baigtinis paskolø skaièius, todël taikant vidaus reitingais pagrástà modelá ði prielaida
netenkinama ir apskaièiuojamas maþesnis kapitalo poreikis, nei jis ið tikrøjø yra.

Siekiant iðvengti tokiø trûkumø, buvo kuriami metodai, kaip vidaus reitingais pagrástà
modelá patikslinti, dideliø skolininkø koncentracijos rizikai padengti skaièiuojant papildomo
kapitalo poreiká. Apþvelgtos literatûros analizë parodë, kad tokiø metodø yra trys. Ið jø
maþiausiai kritikuotinas ir praktiðkai pritaikomas bankuose yra M. B. Gordy ir E. Lütke-
bohmert pasiûlymas. Ðio straipsnio tikslas – iðanalizuoti M. B. Gordy ir E. Lütkebohmert
pasiûlytojo metodo praktinius ypatumus, aptarti empirinius ðio metodo taikymo rezultatus

PASKOLØ PORTFELIO KONCENTRACIJOS RIZIKOS VERTINIMAS TAIKANT
GRANULIARUMO MATÀ: PRAKTINIAI ASPEKTAI
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ir pasiûlyti alternatyvø metodà, leidþiantá ávertinti kapitalo poreiká stambiø skolininkø
koncentracijos rizikai padengti.

Straipsnio pirmoje dalyje analizuojami vidaus reitingais pagrásto modelio teoriniai
aspektai, taip atskleidþiant ðio modelio prielaidas ir prieþastis, kodël já bûtina tikslinti.
Toje paèioje dalyje taip pat aptariamas M. B. Gordy ir E. Lütkebohmert pasiûlytasis metodas,
skirtas dideliø skolininkø paskolø koncentracijos rizikai ávertinti. Nors ðis metodas ir
tinkamas ágyvendinti bankuose, pradedant tai daryti susiduriama su keletu praktinio
pobûdþio sunkumø. Pirma, granuliarumo rodiklis taikytinas skolininkams, o ne jø pasko-
loms, todël bûtina sustambinti to paties skolininko turimø keliø paskolø ásipareigojimø
neávykdymo tikimybës (PD), nuostolio ásipareigojimø neávykdymo atveju (LGD), paskolos
dydþio ásipareigojimø neávykdymo atveju (EAD) ir turto verèiø koreliacijos rodiklius. Antra,
norint apskaièiuoti granuliarumo rodiklá, bûtina ávertinti LGD rodiklio kintamumà, taip
pat rodiklius � ir �. Rodiklis � priklauso nuo paskolø portfelio sudëties ir skolininko PD
rodiklio, taèiau turëtø bûti egzogeninis. Rodiklis ��nustatomas ið netiesinës lygties, kuri
turi bûti iðsprendþiama kiekvienà kartà skaièiuojant granuliarumo rodiklá, todël bûtinas
greitas ir tikslus algoritmas, leidþiantis rasti �  rodiklá. Straipsnio autoriai pateikia siûlymø,
kaip ðias praktines problemas iðspræsti, banke diegiant granuliarumo matà.

Straipsnyje siûloma alternatyva M. B. Gordy ir E. Lütkebohmert nurodytam metodui –
kapitalo poreiká dideliø skolininkø paskolø koncentracijos rizikai vertinti taikant Monte

Carlo metodà. Þinant paskolø portfelio PD, LGD ir EAD rodiklius, galima modeliuoti paskolø
portfelio nuostolá, rasti ðio nuostolio skirstiná, o ið skirstinio – kapitalo poreiká atitinkantá
99,9 procento kvantilá. Palyginus taip apskaièiuotà kapitalo poreiká su kapitalo poreikiu,
apskaièiuotu vidaus reitingais pagrástu metodu, nustatomas kapitalo poreikis dideliø
skolininkø paskolø koncentracijos rizikai padengti. Nors Monte Carlo skaièiavimai
nesudëtingi, taèiau, palyginti su M. B. Gordy ir E. Lütkebohmert pateiktu metodu, jie
pasiþymi keletu trûkumu. Pirma, tokie skaièiavimai ilgai trunka, nes modeliuojamas skirs-
tinio 99,9 procento kvantilis. Antra, jeigu galutinis rezultatas pakinta, neþinoma, kodël
ðis pokytis atsirado, nes Monte Carlo skaièiavimais gaunamas tik galutinis rezultatas, be
tarpiniø skaièiavimø. Treèia, Monte Carlo skaièiavimais negalima ávertinti, kiek reikðmës
galutiniam rezultatui turi vienas ar kitas skolininkas.

Atlikta empirinë skaièiavimo rezultatø analizë parodë, kad egzistuoja stiprus tiesinis
ryðys tarp granuliarumo mato ir Herfindahl-Hirschmann indekso (HHI). Ðis faktas svarbus
dël to, kad ne visi bankai skaièiuoja PD, LGD ir EAD rodiklius, o jø neturëdami jie negali
apskaièiuoti granuliarumo rodiklio. Taèiau visi bankai gali ávertinti paskolø portfelio HHI
rodiklá. Taigi visi bankai kapitalo poreiká dideliø skolininkø koncentracijos rizikai padengti
gali ávertinti, pasinaudodami nustatyta priklausomybe tarp granuliarumo rodiklio ir HHI.

Paskutinëje straipsnio dalyje atskleidþiama, kad apskaièiuotas papildomas kapitalo
poreikis dideliø skolininkø rizikai padengti turi bûti paskirstomas atskiriems skolininkams
ir á tai turi bûti atsiþvelgiama taikant kainodarà, pagrástà rizika, taip pat paskolø pelningumo
analizæ.


