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Abstract: 

 

Global financial crises like the one recently experienced, affected both large and 

small institutions. Today, when there is heightened need for enhanced risk 

management tools, there are entities that are unable to employ sophisticated 

mechanisms due to limited data availability. Moreover, from the Basel II and Basel 

III point of view, Internal Ratings Based Approach requires that institutions have 

some reliable estimates of probabilities of default for each rating grade. Taking the 

work of previous researches a step further, this paper intends to propose a new 

dynamic mechanism to the risk management industry for calculating probabilities 

of default (PD). Through this, we calculate the realized probability of defaults and 

Bayesian estimates in the initial phase and then using these estimates as inputs 

for the core model, we generate Implied Probability of Default (PD) through 

actuarial estimation tools and different probability distributions. This mechanism 

is specialized to work best for Low Default Portfolios (LDPs). Furthermore, scenario 

testing is adopted to validate the model against any model specific bias. 

 

Key Words: Probability of Defaults (PDs), Realized PDs, Bayesian Estimates, 
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1. Introduction: 

 

Today, in this gigantic pasture of Risk Management, improved Credit Risk Management has 

become the need of Financial Institutions all around the world. Specifically speaking, many 

Financial Institutions have either moved or are about to move towards Internal Ratings 

Based Approach. The most important step in switching towards Internal Ratings Based 

Approach; whether Foundation or Advanced, is to determine Probability of Default (PD) for 

each risk grade. Probability of default has much significance as it is one of the core parts 

for better allocation of capital, better pricing, client judgment, regulatory compliance and 

finally better monitoring of high risky customers. Due to these significant reasons, a 

financial institution should be assured that the probability of default determination is 

sophisticated and more importantly shows the true picture of the portfolio in present as 

well as future scenarios. 

 

Many Financial Institutions use long term realized probability of default for calculating 

capital charge but this methodology has its limitations. On the other hand, another issue 

which has been raised in last few years is the estimation of probability of default for Low 

Default Portfolios (LDPs). For LDPs, realized PDs cannot show the true behavior of defaults. 

Less number of defaults or less data always creates hurdle in determining the true 

probability of default. Despite that realized probability of defaults cannot be ignored and 

should be used as an input in determining the final results. 

 

Another important property is to take into account the posterior probability of default of 

each grade. Knowledge of how specific grades perform within the default portfolio or 

alternatively the weight of default of each grade within the portfolio should also be used as 

an input to evaluate this behavior. Bayesian Theorem is widely used criteria to obtain the 

weight of default of each grade within the total number of defaults of the portfolio. This 

paper also uses the Bayesian estimates inputs for the model. 

 

Subprime crisis taught financial institutions several lessons in enhanced risk management. 

For this practical reason we believe that every low grade portfolio should take into account 

the behavior of a higher grade portfolio. Big organizations having better credit ratings start 

to default and simultaneously, organizations having lower ratings follow suit. This paper 

captures this relationship between the grades through specific models and brief cases. 

 

Taking into account all of the above features, we propose a new mechanism to obtain the 

probability of default for every grade. This model is very dynamic; it incorporates all the 

necessary aspects together and returns an implied probability of default for each grade. The 

theme of the model is mainly based on a mechanism called „convolution’. Being over a 

hundred years old with several applications in signal processing, optical, and engineering, 

statistics and actuarial sciences, practitioners must be aware of this mechanism. Also, this 

mechanism had been used in one of the approaches to develop Operational Value at Risk 

(Ops VaR) model through loss distribution. Convolution actually combines two probability 

distributions together to produce a new and modified distribution. We will further explain 

the mechanism in the following section. 

Revisiting LDPs, few practitioners have in last few years developed sophisticated 

mechanisms for probability of default estimations. Pluto & Tasche (2005), Nicholas M. 
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Kiefer (2008) and few more practitioners proposed some refined tools and methodologies for 

the same purpose. Now, stepping forward, through this paper we propose another advance 

mechanism which takes into account the inputs in very different manner. The model is 

incorporates simple inputs from different angles but returns a single result in the form of 

implied Probability of Default (PD) eliminating the problem of  limited number of data. 

  

In short, Implied Probability of Default will be the terminology of our desired results. One of 

the probabilities used will be Bayesian estimates and the other one will be the realized 

probability of default of each grade (number of defaults divided by number of customers). 

 

2. The Model: 

 

This paper presents a new methodology for obtaining Probability of defaults (PD) of the 

rating grades which can be further used in Internal Rating Based (IRB) approach of Credit 

Risk in Basel II. This model specifically caters to the issue of Low Default Portfolios (LDPs) 

for obtaining probability of defaults1. Another specialty of the model is to incorporate the 

relationship between the grades. For instance, a major change in speculative grades will 

result in a change in the investment grades as well and vice versa. This model is suitable 

during times of financial crises where highly-rated institutions defaulted.  

 

The main idea behind presenting this paper is to propose a new dynamic model which can 

be widely used in Credit Risk Management for obtaining Probability of Default. We are 

using an actuarial methodology of „convolution‟ which will be the base of our whole model. 

Mathematically speaking, convolution is basically an operation on two functions f(x) and 

g(x) that returns a third function which is actually the modified version of one of the 

original functions. Here, we are convoluting two probability distributions which return a 

modified new distribution that forms the cross of those distributions. Convolution has also 

been used in developing Ops VaR Model but this is the first time that it is being applied for 

Credit Risk Management. Up till now, many practitioners have used different distributions 

for obtaining Probability of Default of each grade, but here, we are combining two different 

probability distributions to get a new modified probability distribution. The results will 

definitely provide better estimates and the model can be widely used in every kind of 

portfolio, especially in low default portfolios (LDPs). 

 

Our model will utilize simple information from the portfolio. As discussed in the preceding 

section, the model only uses total number of customers and total number of defaults in 

each grade. One of our main concerns is to utilize the weight of default of each grade within 

the defaulted portfolio which will be obtained simply by applying Bayesian‟s Theorem. It will 

produce the probability of default in each grade of the next customer which will be part of 

the portfolio. For example if we have the following portfolio: 

 

 

 

 

 

                                                
1 The use of this model is not restricted and can be applied to a variety of portfolios 
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Grade  Number of Obligors Number of Defaults 

AAA 34 1 

AA 56 1 

A 119 3 

BBB 257 2 

BB 191 2 

B 102 6 

CCC 50 3 

CC 34 1 

C 12 2 

Sum of Defaults                 21 

                             Table 1.1 

 

Now, as Bayesian Theorem says, 

 

 
 

Where ; 
 

A: is percentage of Obligors in a Grade 

B: is an event of Default 

 

Therefore our table will provide results for each grade in this way: 

 

Grade  Number of 

Obligors  

Number of 

Defaults  

Bayesian Estimates 

AAA 34 1 4.76% 

AA 56 1 4.76% 

A 119 3 14.29% 

BBB 257 2 9.52% 

BB 191 2 9.52% 

B 102 6 28.57% 

CCC 50 3 14.29% 

CC 34 1 4.76% 

C 12 2 9.52% 

Sum of Defaults              21  

              Table 1.2 

 

The above derives Bayesian Estimate which provides the weights of default in each grade 

given the total number of defaults of the whole portfolio or simply, the probabilities of each 

grade given the total number of defaults in that grade. This estimate can only answer the 

question that given a default, what is the probability that the obligor has a particular grade. 

 

Therefore, to make this estimate useful, we will develop a probability distribution function 

which will enable us to calculate the probabilities of grades with multiple defaults, given 
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the total number of defaults in that grade. For example, in the above table, for grade BBB, 

Bayesian Estimate generates 0.0952 which shows the probability of the grade BBB if the 

default occurs in the portfolio or we can state that given a default in the portfolio, there is 

9.52% chance that the default belongs to the grade BBB.  

 

Going forward, one of our objective is to determine the probability if the number of defaults 

differ from the number of default in grade BBB. For example, in our portfolio the number of 

defaults in grade BBB is 2 but we want to know the probability if the number of defaults is 

other than 2. For this purpose the binomial distribution is the most suited distribution 

which will provide the desired probability at different number of defaults in a particular 

grade. 

 

Considering the above example, we have a total of 21 defaults in our portfolio and we want 

to know the probability of every possible occurrence of default in grade BBB.  

 

As we know, the Binomial Distribution has the Probability Mass Function (pmf): 

 
Where the parameters are defined as, 

 

n = total number of defaults in the portfolio 

k = number of defaults in particular grade 

p = probability as estimated by Bayesian Theorem 

 

By doing so we are able to get the results for each grade (e. g. BBB in the following table) in 

the form which is shown in Table 1.3. 

     

Grade BBB 

Total Defaults 2 

Bayesian 

estimate 

9.52% 

                                                      Table 1.3 

 

Hence the estimated probabilities of default of different occurrences are generated through 

Binomial Distribution as, 

  

x P ( X=x ) 

0 0.358942365 

1 0.376889483 

2 0.188444741 

3 0.059674168 

4 0.013426688 

5 0.002282537 

6 0.000304338 
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7 3.26077E-05 

8 2.85317E-06 

9 2.06062E-07 

10 1.23637E-08 

11 6.18187E-10 

12 2.57578E-11 

13 8.91616E-13 

14 2.54747E-14 

15 5.94411E-16 

16 1.11452E-17 

17 1.639E-19 

18 1.82111E-21 

19 1.43772E-23 

20 7.1886E-26 

. . 

. . 

                                                             Table 1.4 

 

Similar tables for remaining grades will be illustrated later in the paper.  

 

Up till now, we have generated probabilities of default by just using the actual and total 

number of defaults in the portfolio. We have not taken into account the number of 

customers in each grade (or the default frequencies). Next we take into account the above 

as well and generate a frequency distribution with Poisson distribution being the most 

suitable one. 

 

Refer to the Table 1.1; we first calculate the parameter of the distribution which is lambda 

„λ‟ which will take the impact of number of obligors and defaults against them in each 

grade. Results are shown in Table 1.5: 

 

Grade  Number of Obligors  Number of Defaults  Lambda ‘λ’ 

AAA 34 1 2.9% 

AA 56 1 1.8% 

A 119 3 2.5% 

BBB 257 2 0.8% 

BB 191 2 1.0% 

B 102 6 5.9% 

CCC 50 3 6.0% 

CC 34 1 2.9% 

C 12 2 16.7% 

   Table 1.5 

 

Once the lambda for each grade has been estimated, we can fit the Poisson distribution, 

results of which will be further included in our next step, convolution. 

 



 

 

Copyright © 2012 Nabil Iqbal & Syed Afraz Ali. No part of this publication may be reproduced, stored in a retrieval system, used in a 

spreadsheet, or transmitted in any form or by any means—electronic, mechanical, photocopying, recording, or otherwise—without the 

permission of the authors. 

As we know the Probability Mass Function (pmf) of the Poisson distribution is: 

 

    
 

where, 

 

λ = frequency of default in each grade 

x = number of incremental default in the specific grade 

 

Poisson distribution will generate the probabilities of incremental default in every grade and 

these results will then be injected to our foundation model, convolution. In our example of 

grade BBB, the results are:   

   

λ 0.0077821 

n P ( N=n ) 

0 0.9922481 

1 0.0077218 

2 0.0000300 

3 0.0000001 

4 0.0000000 

5 0.0000000 

6 0.0000000 

7 0.0000000 

. . 

. . 

                                                                Table 1.6 

 

The results after running convolution model provide a matrix for every grade. Here, in our 

example of BBB grade, the resultant matrix is being provided here under: 
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  f(x) f 1 ( x ) f 2 ( x ) f 3 ( x ) f 4 ( x ) f 5 ( x )  f6(x)   f7(x)    

0 1.00          0.96935110  

1 0.00 0.00186750         0.00005635  

2 0.00 0.00828704 0.00000349        0.00025006  

3 0.00 0.02417052 0.00003095 0.00000001       0.00072934  

4 0.00 0.05211769 0.00015895 0.00000009 0.00000000      0.00157269  

5 0.00 0.08860008 0.00059526 0.00000064 0.00000000 0.00000000     0.00267373  

6 0.00 0.12367094 0.00177894 0.00000336 0.00000000 0.00000000 0.00000000    0.00373253  

7 0.00 0.14575503 0.00444980 0.00001402 0.00000001 0.00000000 0.00000000 0.00000000   0.00440015  

8 0.00 0.14803246 0.00959340 0.00004890 0.00000007 0.00000000 0.00000000 0.00000000   0.00447129  

9 0.00 0.13158441 0.01818230 0.00014723 0.00000033 0.00000000 0.00000000 0.00000000   0.00397901  

10 0.00 0.10362272 0.03073178 0.00039115 0.00000126 0.00000000 0.00000000 0.00000000   0.00314118  

11 0.00 0.07300692 0.04683131 0.00093130 0.00000425 0.00000001 0.00000000 0.00000000   0.00222493  

12 0.00 0.04638981 0.06490359 0.00201058 0.00001285 0.00000003 0.00000000 0.00000000   0.00143027  

13 0.00 0.02676335 0.08239097 0.00397180 0.00003526 0.00000012 0.00000000 0.00000000   0.00084628  

14 0.00 0.01409855 0.09637515 0.00723185 0.00008870 0.00000038 0.00000000 0.00000000   0.00047071  

15 0.00 0.00681430 0.10440992 0.01220961 0.00020614 0.00000116 0.00000000 0.00000000   0.00025471  

16 0.00 0.00303449 0.10522721 0.01920946 0.00044535 0.00000324 0.00000001 0.00000000   0.00014108  

17 0.00 0.00124950 0.09903804 0.02828389 0.00089914 0.00000843 0.00000004 0.00000000   0.00008435  

18 0.00 0.00047724 0.08734631 0.03911759 0.00170386 0.00002055 0.00000011 0.00000000   0.00005561  

19 0.00 0.00016955 0.07240559 0.05098156 0.00304198 0.00004707 0.00000030 0.00000000   0.00003937  

20 0.00 0.00005616 0.05115924 0.06279133 0.00513337 0.00010174 0.00000080 0.00000000   0.00002603  

21 0.00 0.00001738 0.04175177 0.07326154 0.00821128 0.00020818 0.00000144 0.00000001   0.00002049  

22 0.00 0.00000504 0.02917880 0.08114747 0.01248175 0.00040447 0.00000483 0.00000003   0.00001425  

23 0.00 0.00000137 0.01934681 0.08548131 0.01807050 0.00074806 0.00001096 0.00000007   0.00000954  

24 0.00 0.00000035 0.01219252 0.08578059 0.02496707 0.00132003 0.00002467 0.00000018   0.00000616  

25 0.00 0.00000008 0.01387388 0.08214354 0.03298016 0.00222698 0.00004895 0.00000046   0.00000692  

26 0.00 0.00000002 0.00418532 0.07521490 0.04158442 0.00359855 0.00009674 0.00000111   0.00000233  

27 0.00 0.00000000 0.00228642 0.06600578 0.05061230 0.00557856 0.00018333 0.00000254   0.00000140  

28 0.00 0.00000000 0.00119425 0.05567002 0.05896651 0.00830911 0.00033366 0.00000556   0.00000083  

29 0.00 0.00000000 0.00059712 0.04526262 0.06605829 0.01190756 0.00058429 0.00001164   0.00000050  

30 0.00 0.00000000 0.00028612 0.03557606 0.07124197 0.01643955 0.00098555 0.00002333   0.00000031  

31 0.00 0.00000000 0.00013152 0.02708284 0.07405044 0.02189192 0.00160344 0.00004501   0.00000020  

32 0.00 0.00000000 0.00005806 0.01997583 0.07998445 0.02815056 0.00251916 0.00008376   0.00000013  

33 0.00 0.00000000 0.00002017 0.01425728 0.07194993 0.03500002 0.00382616 0.00015067   0.00000008  

34 0.00 0.00000000 0.00001005 0.00982314 0.06741280 0.04212260 0.00562359 0.00026229   0.00000006  

35 0.00 0.00000000 0.00000395 0.00646835 0.05242444 0.04913030 0.00800613 0.00044228   0.00000004  

36 0.00 0.00000000 0.00000149 0.00415373 0.05378246 0.05556377 0.01013803 0.00072307   0.00000002  

37 0.00 0.00000000 0.00000055 0.00254205 0.04590126 0.06093202 0.01480040 0.00114534   0.00000001  

38 0.00 0.00000000 0.00000036 0.00149432 0.03805710 0.06475348 0.01925087 0.00175947   0.00000001  

39 0.00 0.00000000 0.00000007 0.00084508 0.03067917 0.06667035 0.02433588 0.00262346   0.00000001  

40 0.00 0.00000000 0.00000002 0.00056379 0.02406176 0.06655026 0.02991997 0.00380444   0.00000000  

41 0.00 0.00000000 0.00000001 0.00024296 0.01836844 0.06451775 0.03579687 0.00537768   0.00000000  

42 0.00 0.00000000 0.00000000 0.00012416 0.01365145 0.06089151 0.04169667 0.00741047   0.00000000  

43 0.00 0.00000000 0.00000000 0.00006164 0.00987867 0.05607366 0.04730336 0.00999722   0.00000000  

44 0.00 0.00000000 0.00000000 0.00002978 0.00696097 0.05045905 0.05228268 0.01048966   0.00000000  

45 0.00 0.00000000 0.00000000 0.00001403 0.01105983 0.04439653 0.05631805 0.01477617   0.00000000  
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Similarly, matrices for each grade have been generated which provided us with the final 

results of the model. The values in the last column give the convoluted probabilities for 

BBB grade. The number of defaults was 2 in BBB in our example; hence we are interested 

to pick the value which has been calculated in front of number 2, i.e. 0.00025006. Be sure, 

this is not the probability of default for grade BBB. To obtain the final probability of default, 

we must calculate the convoluted probability against the original number of defaults in a 

specific grade and then the resulting cumulated probabilities will be the desired 

probabilities of default for that grade. Results are given in the table below:  

 

Grade PDs 

AAA 1.08% 

AA 1.74% 

A 2.33% 

BBB 2.55% 

BB 2.85% 

B 3.90% 

CCC 5.28% 

CC 6.36% 

C 10.46% 

                                                                      Table 1.7 

   

3. Scenarios: 

 

In this section we intend to develop various scenarios and evaluate the model. We appraise 

the behavior of the model in different circumstances along with the behavior of the 

probability of default in a specific grade and its impact on the whole portfolio. For instance, 

increasing the number of customers, make the first probability distribution active, changes 

the realized probability of default and will then convolute with the second probability 

distribution providing modified probability distribution to produce the implied probability of 

default for each grade. On the other hand when we will change the number of defaults in 

any grade then the first probability distribution and second probability distribution both 

become active, the realized probability of default and the Bayesian estimates, both change 

and then convolute with each other to produce modified probability distribution. Finally, 

the implied probability of defaults for each grade will be produced. Let‟s take different 

scenarios and see the results. 
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3.1. Actual Portfolio: 

 

Firstly, we gathered all the inputs and results of the actual portfolio2 as tabulated below.  

 

Grades No. of 

Customers 

No. of 

Defaults 

Realized 

PDs 

Bayesian 

Estimates 

Implied PDs 

of Actual 

Portfolio 

AAA 34 1 2.94% 4.76% 1.08% 

AA 56 1 1.79% 4.76% 1.74% 

A 119 3 2.52% 14.29% 2.33% 

BBB 257 2 0.78% 9.52% 2.55% 

BB 191 2 1.05% 9.52% 2.85% 

B 102 6 5.88% 28.57% 3.90% 

CCC 50 3 6.00% 14.29% 5.28% 

CC 34 1 2.94% 4.76% 6.36% 

C 12 2 16.67% 9.52% 10.46% 

Total 855 21       

    Table 2.1 

 

3.2. Scenario 1 

 

In our first scenario we simply study the model behavior by increasing the number of 

customers in the portfolio. The details of the inputs, implied probabilities of default from 

the actual portfolio and the implied probability of default under the given scenario are as: 

 

Grades No. of 

Customers 

No. of 

Defaults 

Realized 

PDs 

Bayesian 

Estimates 

Implied 

PDs of 

Actual 

Portfolio 

Implied 

PDs in 

Current 

Scenario 

AAA 68 1 1.47% 4.76% 1.08% 0.55% 

AA 112 1 0.89% 4.76% 1.74% 0.88% 

A 238 3 1.26% 14.29% 2.33% 1.18% 

BBB 514 2 0.39% 9.52% 2.55% 1.29% 

BB 382 2 0.52% 9.52% 2.85% 1.44% 

B 204 6 2.94% 28.57% 3.90% 1.98% 

CCC 100 3 3.00% 14.29% 5.28% 2.69% 

CC 68 1 1.47% 4.76% 6.36% 3.24% 

C 24 2 8.33% 9.52% 10.46% 5.44% 

Total 1,710 21         

   Table 2.2 

 

                                                
2For the purpose of comparison we show the final results from the actual portfolio under all scenarios. 
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We see that the number of customers have doubled in each grade. Realized probabilities of 

default change and become less for each grade, Bayesian estimates are unchanged and 

finally the implied probabilities of default also decrease with the realized probabilities of 

default. 

 

3.3. Scenario 2 

 

In second scenario, we have increased the number of defaults, in fact, doubled the 

numbers of defaults in each grade. Table below shows the complete details: 

 

Grades No. of 

Customers 

No. of 

Defaults 

Realized 

PDs 

Bayesian 

Estimates 

Implied PDs 

of Actual 

Portfolio 

Implied PDs 

in Current 

Scenario 

AAA 34 2 5.88% 4.76% 1.08% 1.55% 

AA 56 2 3.57% 4.76% 1.74% 2.51% 

A 119 6 5.04% 14.29% 2.33% 3.34% 

BBB 257 4 1.56% 9.52% 2.55% 3.66% 

BB 191 4 2.09% 9.52% 2.85% 4.08% 

B 102 12 11.76% 28.57% 3.90% 5.50% 

CCC 50 6 12.00% 14.29% 5.28% 7.36% 

CC 34 2 5.88% 4.76% 6.36% 8.91% 

C 12 4 33.33% 9.52% 10.46% 14.00% 

Total 855 42         

Table 2.3 

 

Table 2.3 shows that as the number of defaults increase, the probabilities of default also 

increase. However, it is the results of Bayesian estimates that are noteworthy. If we 

compare the Bayesian estimates of Table 2.2 with Table 2.3 we will find no change in any 

grade. This is because the defaults increase with the same weightage in all the grades. 

Therefore, in convoluted probabilities, the process only takes effect of the increment in 

defaults from the realized probabilities of default, while the Bayesian estimates show the 

same properties in both cases. 

 

3.4. Scenario 3 

 

Under this scenario, we try to find the relationship between implied probabilities of default 

and all the other inputs if both the number of defaults and number of customers increase. 

Applying this scenario to the realized probabilities of default would not change values since 

the number of customers and the number of defaults are both doubled. Here are the details 

after running the model: 
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Grades No. of 

Customers 

No. of 

Defaults 

Realized 

PDs 

Bayesian 

Estimates 

Implied PDs 

of Actual 

Portfolio 

Implied PDs 

in Current 

Scenario 

AAA 68 2 2.94% 4.76% 1.08% 0.80% 

AA 112 2 1.79% 4.76% 1.74% 1.28% 

A 238 6 2.52% 14.29% 2.33% 1.71% 

BBB 514 4 0.78% 9.52% 2.55% 1.87% 

BB 382 4 1.05% 9.52% 2.85% 2.08% 

B 204 12 5.88% 28.57% 3.90% 2.83% 

CCC 100 6 6.00% 14.29% 5.28% 3.81% 

CC 68 2 2.94% 4.76% 6.36% 4.61% 

C 24 4 16.67% 9.52% 10.46% 7.56% 

Total 1,710 42         

 Table 2.4 

 

The above table illustrates that the implied probabilities of default under this scenario 

change compared to the implied probabilities of default of the actual portfolio. It is 

interesting to note that although, inputs in both scenarios were same, the probabilities of 

default have decreased. This proves the practicality and uniqueness of the model. 

 

3.5. Scenario 4 

 

In this scenario we observe the behavior of the model if the defaults occur only in the 

higher-level grades. Let‟s see the results first: 

 

Grades No. of 

Customers 

No. of 

Defaults 

Realized 

PDs 

Bayesian 

Estimates 

Implied 

PDs of 

Actual 

Portfolio 

Implied 

PDs in 

Current 

Scenario 

AAA 34 3 8.82% 8.57% 1.08% 1.92% 

AA 56 7 10.71% 20.00% 1.74% 3.65% 

A 119 9 5.88% 25.71% 2.33% 4.58% 

BBB 257 2 0.78% 5.71% 2.55% 4.80% 

BB 191 2 1.05% 5.71% 2.85% 5.09% 

B 102 6 5.88% 17.14% 3.90% 6.08% 

CCC 50 3 6.00% 8.57% 5.28% 7.42% 

CC 34 1 2.94% 2.86% 6.36% 8.49% 

C 12 2 16.67% 5.71% 10.46% 12.52% 

Total 855 35         

       Table 2.5 

 

It‟s evident that as the number of defaults increase in the higher grades, the implied 

probabilities of default also increase and as per our model, it creates an impact on the 

lower grades as well; hence, the implied probabilities for lower grades. This behavior 
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happens due to higher realized probabilities of default as well as the higher Bayesian 

estimates for the upper grades. 

 

3.6. Scenario 5 

 

We want to see the behavior if the number of defaults increase only in the lower grades. 

Definitely, by doing so, realized probabilities of default and the Bayesian estimates both will 

increase in the lower grades. Lets check the behavior of these changes on the whole 

portfolio: 

Grades No. of 

Customers 

No. of 

Defaults 

Realized 

PDs 

Bayesian 

Estimates 

Implied 

PDs of 

Actual 

Portfolio 

Implied 

PDs in 

Current 

Scenario 

AAA 34 1 2.94% 3.70% 1.08% 1.07% 

AA 56 1 1.79% 3.70% 1.74% 1.73% 

A 119 3 2.52% 11.11% 2.33% 2.31% 

BBB 257 2 0.78% 7.41% 2.55% 2.53% 

BB 191 2 1.05% 7.41% 2.85% 2.82% 

B 102 6 5.88% 22.22% 3.90% 3.84% 

CCC 50 6 12.00% 22.22% 5.28% 5.78% 

CC 34 2 5.88% 7.41% 6.36% 7.35% 

C 12 4 33.33% 14.81% 10.46% 12.59% 

Total 855 27         

  Table 2.6 

 

This scenario produces some interesting results. The implied probabilities of default of the 

lower grades increased as expected but amazingly, the implied probabilities of default in the 

upper grades slightly decreased. This happens due the decreasing Bayesian estimates in 

the upper grades. If only realized probabilities of default are considered or only Bayesian 

estimates are considered then this dynamic nature of the model could not be observed.  

 

3.7. Scenario 6 

 

In this scenario, we will determine the impact on implied probabilities of default if only the 

customers in the middle grade i.e. from BBB to B default. The results are shown below:  

 

Grades No. of 

Customers 

No. of 

Defaults 

Realized 

PDs 

Bayesian 

Estimates 

Implied PDs 

of Actual 

Portfolio 

Implied PDs 

in Current 

Scenario 

AAA 34 1 2.94% 3.03% 1.08% 1.07% 

AA 56 1 1.79% 3.03% 1.74% 1.72% 

A 119 3 2.52% 9.09% 2.33% 2.30% 

BBB 257 4 1.56% 12.12% 2.55% 2.62% 

BB 191 7 3.66% 21.21% 2.85% 3.21% 

B 102 11 10.78% 33.33% 3.90% 4.63% 
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CCC 50 3 6.00% 9.09% 5.28% 5.97% 

CC 34 1 2.94% 3.03% 6.36% 7.03% 

C 12 2 16.67% 6.06% 10.46% 11.06% 

Total 855 33         

   Table 2.7 

 

The realized probabilities of default as well as the Bayesian estimates of the middle grades 

increased. Due to this reason the lower grades i.e. from CCC to C received a negative 

impact and slightly increased. Actually, the decreasing Bayesian estimates in the lower 

grades is netting off the implied probabilities of default in these grades, thus the implied 

probabilities of default increased but not as much as in the middle grades. Higher grades 

showed interesting behavior too as the implied probabilities of default decreased with a 

minimal margin. This is because the activeness of defaults in these grades decreased due to 

the decreasing Bayesian estimates. 

 

3.8. Scenario 7 

 

In this scenario, we ignore the increase or decrease in the number of defaults. However, we 

will see the behavior of the portfolio if the number of customers increases instead. 

Therefore, we doubled the number of customers in the upper grade i.e. from AAA to A. Here 

are the results in the below table: 

 

Grades No. of 

Customers 

No. of 

Defaults 

Realized 

PDs 

Bayesian 

Estimates 

Implied 

PDs of 

Actual 

Portfolio 

Implied 

PDs in 

Current 

Scenario 

AAA 68 1 1.47% 4.76% 1.08% 0.55% 

AA 112 1 0.89% 4.76% 1.74% 0.88% 

A 238 3 1.26% 14.29% 2.33% 1.18% 

BBB 257 2 0.78% 9.52% 2.55% 1.40% 

BB 191 2 1.05% 9.52% 2.85% 1.70% 

B 102 6 5.88% 28.57% 3.90% 2.75% 

CCC 50 3 6.00% 14.29% 5.28% 4.13% 

CC 34 1 2.94% 4.76% 6.36% 5.20% 

C 12 2 16.67% 9.52% 10.46% 9.30% 

Total 1,064 21         

  Table 2.8 

 

The results show that realized probabilities of default only decreased in the upper grades, 

while Bayesian estimates remained same in the whole portfolio. In this case the model is 

only taking the effect of decreasing realized probabilities of default in the upper grades 

while running the convolution mechanism. All other inputs are same for the process. In the 

end the implied probabilities of default show the decreasing behavior in the whole portfolio. 

It started with a major fall in the upper grades impacting middle and lower grades too. 
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3.9. Scenario 8 

 

Similarly, in this scenario we will increase the number of customers in the middle grades 

i.e. from BBB to B given that the number of defaults remain same. Results are given below: 

 

Grades No. of 

Customers 

No. of 

Defaults 

Realized 

PDs 

Bayesian 

Estimates 

Implied PDs 

of Actual 

Portfolio 

Implied 

PDs in 

Current 

Scenario 

AAA 34 1 2.94% 4.76% 1.08% 1.08% 

AA 56 1 1.79% 4.76% 1.74% 1.74% 

A 119 3 2.52% 14.29% 2.33% 2.33% 

BBB 514 2 0.39% 9.52% 2.55% 2.44% 

BB 382 2 0.52% 9.52% 2.85% 2.59% 

B 204 6 2.94% 28.57% 3.90% 3.14% 

CCC 50 3 6.00% 14.29% 5.28% 4.51% 

CC 34 1 2.94% 4.76% 6.36% 5.59% 

C 12 2 16.67% 9.52% 10.46% 9.69% 

Total 1,405 21         

 Table 2.9 

 

Interestingly, implied probabilities of default of the middle grades decreased due to the 

decrement in the realized probabilities of default, while Bayesian estimates remained same 

for the entire portfolio. This is the main reason that the higher grades i.e. from AAA to A 

faced no impact in their implied probabilities of default. However, the implied probabilities 

of default of the lower grades decreased as per the mechanism of the model taking the 

decreasing effect from middle grades. 

 

3.10. Scenario 9 

 

Similarly as in Scenario 7 and 8, in the final Scenario, we increase the number of 

customers. However, this time we will observe the behavior of the model by showing the 

increase in the lower grades i.e. from CCC to C. Results are shown below: 

 

Grades No. of 

Customers 

No of 

Defaults 

Realized 

PDs 

Bayesian 

Estimates 

Implied 

PDs of 

Actual 

Portfolio 

Implied 

PDs in 

Current 

Scenario 

AAA 34 1 2.94% 4.76% 1.08% 1.08% 

AA 56 1 1.79% 4.76% 1.74% 1.74% 

A 119 3 2.52% 14.29% 2.33% 2.33% 

BBB 257 2 0.78% 9.52% 2.55% 2.55% 

BB 191 2 1.05% 9.52% 2.85% 2.85% 

B 102 6 5.88% 28.57% 3.90% 3.90% 

CCC 100 3 3.00% 14.29% 5.28% 4.61% 
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CC 68 1 1.47% 4.76% 6.36% 5.16% 

C 24 2 8.33% 9.52% 10.46% 7.36% 

 Total 951 21         

   Table 2.10 

 

We can see that the implied probabilities of default from the grades AAA to B remained 

unchanged from the actual portfolio. Bayesian estimates and realized probabilities of 

default both remained unchanged from the previous scenario. That is the reason that there 

was no change in that range. In contrast, the lower grades i.e. from CCC to C possess 

decreasing implied probabilities of default. 

 

4. Open Issues 

 

As this is a very new mechanism for calculating Probability of Default (PD), therefore there 

are few limitations which need to be discussed below. In our next version we will come up 

with further workings including overcoming these: 

 

The first shortcoming is the decision to select the distributions. As per our decision, 

binomial and Poisson distributions were very sophisticated as per the portfolio and the 

mechanism. However, we can use other distributions as well. It should purely be the 

practitioner‟s choice.  

 

The second shortcoming is the practice to cumulate the PDs of upper grades with the 

specific grade‟s PD. According to our mechanism, every grade should have a relation with 

the performance of other grade / grades. It means, if the PD of a better grade increases 

then it should impact its comparative lower grade in such a way that the PD / PDs for 

lower grade / grades are increased as well. However, in this case PD PDs of the higher 

grade / grades should remain same.   

 

5. Conclusion  

 
In this paper, we introduced a new model to estimate the Probability of Default (PD) for low 

defaults portfolio. The methodology is based on an actuarial mechanism named 

convolution. We calculated Bayesian Probability and Realized PD for each scenario by using 

these two estimates. We generated an implied distribution of each scenario by convolution 

technique. Besides that, we have developed different scenarios to see the behavior of the 

model. The model justified its performance very well. This model is very practical and 

related organizations can use this model accordingly. 
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