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Abstract

Some multi-period insurance risk economic capitableis that include the effects of heavy-tail
claims and random returns are considered. Theypased on the Sparre Andersen risk model
with geometric Lévy stochastic returns. The randmoumulated surplus over an arbitrary finite
time horizon is decomposed into insurance risk,ketarisk and future profit components. A
protection against the solvency risk of the polmigers is obtained by applying the VaR (CVaR)
measure to the insurance risk component and dedimaslti-period insurance risk VaR (CVaR)
economic capital. A classical asymptotic resultRgsnick and Willekens (1991) on the talil
probability of moving averages with random coeéitis is applied to the accumulated aggregate
claims random variable for claim size distributiomsth regularly varying tail to derive
asymptotic formulas for these multi-period insuendsk economic capitals. Numerical
examples with a Pareto claim size distribution adwateresting features and differences between
these two solvency rules. Since the preceding tesutlude the log-normal and the heavy-tailed
Weibull claim size distributions, we consider atsoextension to sub-exponential claim sizes for
the compound Poisson model with constant forcentdrést, which is based on Hao and Tang
(2008). The obtained results are compared witlsthedard Solvency Il specification of the non-
life insurance risk.
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1. Introduction

An insurance company needs capital in orddyet@ble to take risks from its policyholders.
According to the standard Solvency Il specificatiba Solvency Capital Requirement (SCR) is
the proxy for risk capital under normal circumstsclts calculation is based on the value-at-
risk (VaR) measure over a one-year insurance pé¢aioeh at the confidence level 99.5%. Other
solvency systems like the Swiss Solvency Test (§8d@&3cribe similarly a one-year Economic
Capital (EC), which is based on the conditionalueaht-risk (CVaR) measure to the reduced
confidence level 99%. However, in the Solvency il &SST projects multi-period economic
capital models have scarcely been discussed, anéftbcts of heavy-tail claims and random
returns have not been treated so far. The presentilcution offers new insight into these open
issues and is organized as follows.

Section 2 recalls first the Sparre Anderserdehavith geometric Lévy stochastic returns.
Then, the random accumulated surplus over an arpifmite time horizon is decomposed into
insurance risk, market risk and future profit comgats. A protection against the solvency risk
of the policyholders is obtained by applying theRV&CVaR) measure to the insurance risk
component and defines a multi-period insuranceVasR (CVaR) economic capital. In Section 3
we use a well-known asymptotic result by Resnictt Willekens (1991) on the tail probability
of moving averages with random coefficients to wkerasymptotic formulas for these multi-
period insurance risk VaR and CVaR economic capiial case the accumulated aggregate
claims random variable has a claim size distributwith regularly varying tail. Numerical
examples with a Pareto claim size distribution adwateresting features and differences between
these two solvency rules. Since the preceding tesitlude the log-normal and the heavy-tailed
Weibull claim size distributions, we consider incBen 4 an extension to sub-exponential claim
sizes for the compound Poisson model with congtané of interest, which is based on Hao and
Tang (2008). The obtained results are compared thidhstandard Solvency Il specification of
the non-life insurance risk. We argue that the nemdj claims is a main driving factor of the
risk process. Indeed, due to the law of large numtiee larger this number the less risk capital is
actually required. A comparison of the asymptotaR/formula with the current standard VaR
specification shows that the effect of this risktéa is underestimated in the following sense.
Measured in units of the standard deviation of eggte claims, the relative reduction of the
asymptotic VaR economic capital factor with respgedhe standard SCR one increases with the
number of claims. Section 5 summarizes and consludti open issues for further investigation.



2. Sparre Andersen model with geometric Lévy rettns and solvency risk capital

We assume that claim flows can be describethéylassicaSparre Andersen modelhere
inter-claim times are assumed to form a renewatgs® (e.g. Rolski et al. (1999)). We suppose
that the insurer makes risk-free and risky investsiavhose accumulated returns follow a
geometric Lévy procegs.g. Cont and Tankov (2004)).

Consider the stochastic sequenteT,,... of theinter-claim timegT, is the moment when

the first claim occurs). If X,, X,,... is the sequence of correspondiolgim sizes and
N, =maxk:T,+..+T, <t}, for t=0, is the number of claimsup to timet, then the
aggregate claimsver that time period is

S =XX, t20 (2.1)

with S =0 if N, =0. The moment when the k-th claim occurs, caliedval time, is given

by
M =T, +T,+..+T,, k=12,.. (2.2)

For later convenience seM, = . Theaccumulated return process the investment portfolio

is described by a geometric stochastic procée\’s,t 20} and {Yt,t 20} is the associated

logarithmic return process
The described claim flow model with stochasgtiestment return is calledSparre Andersen
model with geometric Lévy retupmovided the following assumptions are fulfilled:

(A1) The sources of randomnefX,, X,,..}, {N,,t=0} and {Y,,t=0} are mutually
independent.

(A2) For k=12,... the random variableX, and T, are both identically distributed with
finite means and variances (in reinsurance it metones assumed that the variance Xf
does not exist, see e.g. Theorem 3.2) and havgbdisdn functions F, and G, respectively.
(A3) The number of claimgN,,t =0} is an ordinary renewal counting process.

(A4) The logarithmic return proces{é{t > O} is a Lévy process, which starts at time zero, has
independent and stationary increments, and is asticlally continuous. The stochastic process
{R 1= O} defined by R =e" is calledgeometric Lévy return process

The geometric Lévy return prototype is a geomdrimwnian process with drift, which is related
to the so-called Black-Scholes-Merton return madsd in option pricing theory. However, the
empirical evidence of non-normality of returns @&siéy confirmed using the Bera-Jarque(1987)
statistic (e.g. Sheikh and Qiao (2010)). In fatie empirical observations exhibit fat tails,
skewness and excess kurtosis. Additional dynanaitufes include time-varying volatility, short-
and long-range dependence. There exist three naseas of general (competing) distributions,
which are able to capture in a “realistic” way thelevant features, namely the stable
distributions, the extreme value distributions dhd generalized hyperbolic distributions (see



Harlimann (2009a) for a recent empirical study tedflato financial returns). Since the latter
distributions are known to be infinitely divisibleyery member of this class generates a Lévy
process and henceforth a geometric Lévy returngzo¢see Eberlein (2001) for an excellent
paper on the application of generalized hyperbbkwy motions in finance). The class of
generalized hyperbolic distributions has been duoed by Barndorff-Nielsen (1977) in
connection with the “sand project” (investigatiohtbe physics of wind-blown sand). In the
context of finance, it includes many attractive fiees, namely the hyperbolic distributions
introduced by Eberlein and Keller (1995), the ndrimgerse Gaussian distributions introduced
by Barndorff-Nielsen (1998), and the normal inveggamma distribution, first suggested by
Praetz (1972), and studied by the author (e.g.iéarin (2004)).

Thecompound Poisson model with geometric Lévy retsirtine special case for which the

inter-claim times are exponentially distributed witG, (t)=1-e™ . The number of claims
{N,,t=0} is then Poisson distributed with meait.

Consider now the solvency risk. Lét=n> e a variable integer time horizon over which
the insurance risk is an on-going concern. Besitisn flows the risk capital process over the
time horizon [0,n] depends upon the premium flows. We assume teatatimed premiunover

a time period [M 'M,), k=1...,N,, has a random valuéR, attime M, defined by
ER =E[X,]+©,, k=1...N,, (2.3)

with ©, >0 thepremium loadingncluded in the earned premium. The latter celyadepends

upon the return on investments in each period antth® aggregate claims amount and should be
viewed as a random quantity. Concerning investmenassume that earned premiums are fully
invested on the financial market in a pool of assethose logarithmic rate of return follows a
Lévy process. This supposes that the asset migrnignziously rebalanced. Such an investment
strategy is not reasonable in practice. For examplie insurer’s surplus is low, the insurer
does not want to “gamble” any of its money withkyisassets. In case the required solvency
capital is invested at the risk-free rate, it iwajs available to protect the insurance business,
which partially resolves the preceding concern. T¢wnsideration of more appropriate
investment strategies is left open to further ssdifor a dampened alternative consult for

example Lechkar and Van Welie (2008)). L€}, denote thevailable capital(=market value

of assets minus market value of liabilities) atiatitime zero. We assume that it is invested at
the risk-free rate of return. Letr, denote the annual accumulation factor for rigefreturn on

investment, and v, =r;* the risk-free discount rate To simplify notation, consider the
stochastic procesR,, =e"™,0<s<t<n, which represents the randamscumulation factor

over the time period[s,t). A calculation shows that the random surplusraetin, denoted by
U,, is given by
U,=C, 0/ +P’-S], (2.4)

N, N,
with P* =% R, ER being the accumulatezhrned premium incomend S; = ZRM“]Xk
k=1 k=1

being the accumulateaiggregate claimsboth taken over the time horizol®, n]. Rewrite (2.4)



asU, =C, I/ -TL,, where TL, represents thotal accumulated underwriting losséy the
end of the time period0, n]. This quantity can be decomposed as follows:

TL, = (s* - E[s?))+ (E[s?]- P?). (2.5)

The first component, abbreviate@lL, = S° - E[S,?J, represents the increase of the accumulated

aggregate claims with respect to the mean ovepéhied [O, n] and is called totahsurance

risk at time n. The second component in (2.5), which is equah®difference between the
expected accumulated value of the insurance clamasthe random accumulated value of the
earned premiums, can be rewritten as

dis]-e =l me el -sil-El)-7)- SR 0] o

N,
As a justification it is easy to see that E[S§]=E{ZRMK’,]}EE[XK] as well as
k=1

E[P?] = ELNz"lRMk,n} E[X, |+ EL%ZRMW @k] which implies (2.6). The difference of the first
two terms in (2.6) represents the decrease in ranohvested accumulated premiums with
respect to the mean over the peric[ﬂ n], while the third term is the expected accumulated
future profitat timen, denoted by FP,. The difference TL) = (E[PnaJ— Pn"")— FP, is called
total market riskat time n. The total loss decompositiofiL, =TL, +TL" is meaningful from

an economic point of view. If one supposes thatftitere profit belongs to the stakeholders of
the insurance company, then the latter have toestia® market risk componentTL) .
Consequently, the insurance risk compondiif, represents the solvency risk related to the
policyholders. To protect both components separat#le considers besides the overall initial
available capital C, the initial insurance riskrelatedavailable capital C, (allocated to the
insurance risk) and the initiaharket riskrelatedavailable capital C)' (allocated to the market
risk) such thatC, =C; +C/'. Again, we assume that these initial amounts ravested at the

risk-free rate. It follows that the random valuedime n of the insurance risk surplus, resp.
market risk surplus, denoted Wy, resp.U, are given by

u'=c,o-TL, uM=cla-TL". 2.7)

The (total) requirednitial solvency capitalover the time horizon[O, n], also called (total)
economic capitaind denotedEC, , is defined to be the minimum amount of capitagjuieed at
initial time in order to satisfy the probabilityimrion PrU,h <0)<¢& that avoids financial
bankruptcy at thd00[la =100l (L-¢ )confidence level.



Lemma 2.1 Assume that the available capital and the reduindtial solvency capital are
invested at the risk-free rate. Then, the init@l/ency capital is necessarily given by

EC,=C,-v"VaR[U,|=v vaR [TL,], (2.8)
and satisfies the solvency conditidirU, <0) < & .

Remarks 2.1 The quantity defined byIC, =-v{ W/aR[Un], readinjected capital can be

interpreted as the amount of capital to be injedieieased) at the initial time in order to
guarantee the solvency conditioArU, <0) < £ (see e.g. Devineau and Loisel (2009), p.192-

193). On the other hand, the use of the multi-gesimvency capital formula (2.8) reduces in the
Solvency Il situation, i.e. a one-year time horizam=1 and a confidence levelr =995 %o
the so-called Solvency Capital Requirement (SCR).

Proof. The assumption implies that the injected capit@l, is invested (disinvested) at the

risk-free rate. Let Un =U, +IC, I =U, —VaR[Un] denote the surplus at timen that
results from adding at time zero the injected @did the initial available capital. One has
Pr@jn <0)=Pry, <Va|1[Un]) = &, hence the probability criterion for the surplasfulfilled.
From U, =C, I, -TL,, one obtainsVaFi[Un]:C0 [ —VaR,[TLn], which shows the last
equality in (2.8).¢

In the same way we define thrsurance risk economic capital EC! and themarket risk
economic capital EC" by requiring that the insurance and market rigiplsis in (2.7) satisfy
the conditionsPrU! <0) <& and PrU) <0) < &. Lemma 2.1 implies the formulas

EC™ =v; WaR[TL ] EC™ =viVaR[TL ]| ECY™ =vivaR[TLY]  (29)

The chosen notation emphasizes the fact that tbeoetic capital quantities depend upon the
value-at-risk (VaR) measure. It is common to ushkeotrisk measures like the popular
conditional value-at-risk (CVaR) measure to somegiconfidence levela . Similarly to (2.9)
one defines theotal CvVaR economic capitaheinsurance risk CVaR economic capjtahd the
market risk CVaReconomic capital:

ECS™® =v! [CVaR[TL,], EC/®*® =v! [TvaR[TL,] ECY** =v!cvaR[TLY] (2.10)

One notes that the two sources of risk, namelyrthigrance and market risk, depend on the same
random rates of return and are therefore not sgtidadly independent. This is in alignment with
Geman (2005) stating that “as a general rule, @mesafely state that two sources of risk in the

economy are never independent”. Let us recall gmoohposition TL, =TL, +TLY . From the
sub-additive property of the VaR and CVaR measanesgets the relationships



VaR [TL,]<VaR [TL,|+VaR [T | cvaR[TL ]<cvaR [Tl |+CcvaR [TLY]|. (2.11)

It is therefore possible to measure the tdiaersificationeffect at time n  between these two
risk categories through the non-negative differestefned and denoted by

DIV, =EC!" +EC)" -EC;

n*

(2.12)

The placeholders stands for the VaR or CVaR measure and distihgsidetweevaR and
CVaR diversification effects

3. Heavy-tail claims and geometric Lévy return pocess

We use an asymptotic result by Resnick andelkéhs (1991) on the tail probability of
moving averages with random coefficients to deaggmptotic formulas for the multi-period
insurance risk VaR and CVaR measures in (2.9) arid}.

Assume that the Lévy procesfY,,t =20} is right continuous with left limit andévy-

Khintchine triplet (J,JZ,U), where —o<Jd<ow,g=> 0 are two constants (the drift and
diffusion component) andv is the Lévy measureon (—oo,oo) satisfying the properties

u({O}) =0 and j_imin{y2 ,1} B}(dy)< oo (the jump component). LeE[Yl] >0 sothaty, drifts

to o almost surely as t - o . The Lévy exponentis the function defined by
@(2) =InEle”], 20 (-~ w,®). If w(2) is finite one has theévy-Khintchine representation

W@ =102 + &+ [ (€7 -1- 2y, () w(dly), (3.1)
and by Hammel’'s theorem one has
Ele?| = expftw(2)} <0, t20. (3.2)

On the other hand, thenewal functiorof the counting proces$N, ,t = 0} is defined by
A== P, <), a3
k=1

Denote by A the set of allt> O for which 0< A, <o . Furthermore, we assume that the
claim size distributionF, (x) =1-F, (X)OR_, . This means that the right tail is regularly
varying in the sense that there exist a consgapt and a slowly varying functionL(x )such
that F, (X)=x"L(x),x>0. The class O ZVEJOR_V of all regularly varying claim size

distributions contains popular heavy-tail distribus like the Pareto, Burr, log-gamma and t-



distributions. The survival distribution of the aoculated aggregate claims satisfies the
following analytical asymptotic approximation

Theorem 3.1 Given is the Sparre Andersen risk model with geomé.évy return process.
Suppose that the right tail of the distributionirdividual claimsF, LJR_, is regularly varying

with index y> 0, and assume/(z) <o, z[(-,). Then the survival probability of the
N,

random accumulated aggregate clair@s = Z Ru, (X« satisfies the asymptotic equivalence as
k=1

X — oo for any fixed tOA:
P(S" > )~ F (09 exdsy ()} A, (3.4)

Recall that for two positive functiong(x and b(x ) the relationshipa(x) ~b(x )in (3.4)
means that these functions asymptotically equivalenh the sense thatim a(x)/b(x) =1.

Proof. To show this we need the following one-dimensiaesision of Theorem 2.1 in Resnick
and Willekens (1991).

Lemma 3.1 Given is the random weighted sunS:iWka , Where {Xl, X2,...} is a
k=1

sequence of i.i.d. non-negative random variablesth weommon distribution function

F.()OR,,,y>0, and let {W,,W,,..} be another sequence of non-negative random Vesiab

independent of{X,, X,,..}. Then one hasP(S > x)~ F, (x)DiEBNkV] provided one of the
k=1

following conditions hold:
(Cl) Oneha0<y< dnd 3 EBNKV“] < for some 0<e&<min{yl-y}.
k=1

Li(y+e)

(C2) Onehasy= land i EBNKV“] <o forsomeO<e<y.
k=1

We apply this result to the su®® = iWka s W =Ly« @™ . Using that the laws of
k=1

Y, Yy, andY_, areequal, i.e.the time homogeneous propert¥ey processes, one gets

B(l—M|,<

éEh"’ky] = élE[]wkst} [ |= 0}_BXIG{(t ~u) @(p)}EA, = 0}_exp[sw(y)} [,

which proves formula (3.4) provided (C1) or (C2)dw But the latter is true for a finite Lévy
exponenty(z ) ¢



Remarks 3.1 Theorem 3.1 is very similar to Theorem 2.1 in Jast al. (2010), which is
formulated for a Sparre Andersen risk model witbrgetric Lévy discounting. Nevertheless, the
results must be distinguished. To do so, consitier geometric Lévy discounting process

N,
D,=e™,and let S’ =Y Dy, X, be the corresponding discounted aggregate clpmoess
k=1

Now, with the different Lévy exponeni(z) =In E[e‘“], zD(—oo,oo), one has the asymptotic
equivalence asx - o« (uniformly for all tJA)

P(s® > x)~ F, () Texd{se(y)} @A, | (3.4)

provided there existg* >y such that ¢(y*) < 0 We note three differences:

(i) Besides finiteness no other condition on tiéey exponenty/(z )is required for the validity
of (3.4). The conditiong/(y*) < Otranslates the fact that the impact of the insceaclaims
dominates that of the financial uncertainty, whgheflected in formula (3.4"). Indeed, the claim

size survival distribution determines the exactagyet@te of the tail aggregate claims probability
while the claim frequency and the financial undettainfluence this through the scaling factor.

(i) Unlike (3.4) the asymptotic equivalence (3.Ablds uniformly. This additional property has
been derived in Tang et al. (2010).

(iii) In contrast to §?, the stochastic present valu§® does not have a straightforward
economic interpretation. To get a meaningful cohoepe should replaces” by a random sum

~ N, ~ ~
s’ => Dy, X, , where D, is some appropriate (state price) deflator assedito the
k=1

geometric Lévy return process. Then, the deflaigld process §f’ might be used for market-

consistent actuarial valuation (see Wauthrich et(2010) for a thorough introduction to this
topic).

In solvency applications of Theorem 3.1 oneshamsure that for a given confidence level
the true VaR and CVaR risk measures are closedsetlvalues obtained from the asymptotic
approximation (3.4). So far, the author did not maky attempt to quantify the accuracy of the
obtained approximations (neither through numetcalnds nor using Monte Carlo simulation).
This important problem is one of the numerous ofssunes in this area (see Section 5). For
illustration, consider the special Sparre Anderseadel with compound Poisson Pareto
aggregate claims and random return following a gedmLévy process, called hecempound
Poisson Pareto Lévy modéDne obtains the followingsymptotic analytical formulafor the
required initial multi-period insurance risk econoroapitals.

Theorem 3.2 Given is the compound Poisson Pareto Lévy modeh Wbisson renewal
function A, = A, Pareto survival claimsF, (x) = (%)_y, x>[>0, y>1, and random return
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described by the finite Lévy exponent(z . Then the multi-period insurance risfaR and
CVaR economic capitals to the confidence lewel over the time horizor{O, n] are determined
by the following asymptotic formulasag - : 1

ECI% ~v7 T, (A, B, vy @) D02 (A, vy,

35
EC, "% ~vi O, (4, B, vy ) oo (A, ) &)
where the parametric functions are defined by
A, )
Ay 8) = B L5 (0), ()= (-a)y ) AR
’ | WSy )
) (3.6)
2w )
VRN ) =1-a ot L -1
Pt A yp)=Q-a)y ,Un(/l,y7,y,¢/(1))
and
1e® -1
s@=1 s 270 (3.7)
1 0=0,

describes the average value of the accumulatioctium exp@[s) over the time periO({O,t].

Proof. First of all, one notes that the CVaR measurengefiif and only if the mean of the
Pareto distribution exists, that iE[X] =pB/5<w or y>1 as assumed. Set=n and solve

for x (the asymptotic value-at-risk) in the equation
F,(X)[C, =1-a, C, =4 Df exdsy(y)} s,
0_

which is taken from the right-hand side of (3.4) &s» « or equivalentlya - 1 On gets the
asymptotic VaR formula

x=pi-a)y ©) =E[x]Edi-a)y [©) ~var [s?]. (3.8)

On the other hand, a calculation of the Pareto-ktep transform yields the expression
y-1

E[(X—d)+]=;flfx (2dz= E[X][—t[lfx (d)T . Making use of (3.4) and lettingx — « one

obtains the asymptotic stop-loss transform apprakion of the accumulated aggregate claims
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ells? - x).]=TP(s? > 2oz~ ¢, OF, (9dz= E[(x -d).]rc, = E[X]Z F (¥) [T,. (3.9)

Inserting (3.8) into (3.9) one gets further

it
= -1

El(s: -var [s2]),]- E[X][—t[ﬁ(l—a)_i B[:nq ", = E[X][—t[(l—a)yy_l T, 7.

It follows that

CvaR [s?|= VaR,lSa]Jf - Ellst -var [s7]) (3.10)

y-1 y-1

~ E[X]G/;—l[ﬂl—a)_} B[:n? +E[X|Gt-a) ¥ . ¥ =g[x]tl-a) EC,;.

Now, let us calculate the expected accumulatedeagde claims of the compound Poisson

Pareto Lévy model. FromS? =ZJW <) e ™ X, and the time homogeneous property of a

Levy process (the laws of -V, and _u, are equal) one gets

E[Sa] - E[X]Ej;e“-sﬂ”(l)d)ls =t Eﬁﬁﬁﬁ(l//(l)) =1 (A B yy®). (3.11)

Noting that C, = An[5, (t//(y)) and inserting (3.8) and (3.11) into the definingltirperiod VaR
economic capital formula (2.9) one obtains

EC!“*% =v" VaR [s? - E[s?] - V" EE[X]E{V‘ f-a)y nE, W) -AnTE, (w(l))}

o oo o Bk )

AnGE,(p o)

which yields the upper part of (3.5) by the defons in (3.6). Similarly, inserting (3.10) and
(3.11) into (2.10) one obtains

EC! %% =v" [CVaR [S? - E[s? ]~ v E[X] E{(l— a) s hns, ) -5, (1))}

=v! B4 5, (0@ ]E{( a)y ' ins )G —1},

Ans, (@)
which yields the lower part of (3.5) by the definits in (3.6).¢
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Remarks 3.2 Concerning (3.11) one notes th,m;(/l,,é’, v 5) = At EB%E(J) is the mean of

the accumulated compound Poisson Pareto modelcaitetant force of interesd (e.g. Taylor
(1979), formula (16), Willmot (1989), Ross (2008xample 5.19). More generally, recursive
formulas for the moments and the moment generdtingtion of the corresponding discounted
model with constant and stochastic forces of isterare found in Léveillé and Garrido
(2001a/b), Ren (2008), Léveillé et al. (2009) adddillé and Adékambi (2010a/b).

Examples 3.1 For a geometric Brownian process with drift and vyéexponent
w(2) =10%z° + &, the model can be calletbmpound Poisson Pareto Black-Scholes model

The formulas (3.5)-(3.6) are functions of the rekusted rateso, =¢/(y) = y[ﬁ5+%yaz) and

o, =y@= 5+%02. By absence of return randomness, thavis , th@se formulas coincide

with the ones from an accumulated compound Pois%meto model with constant force of
interest &, which are derived similarly. Finally, without veh, that is Jd, =¢/(y)= O

o, =¢@ =0, the formulas simplify to

ECY™ ~v] (1, (A, B.y) Doy (A y),  ECySY™ ~vi [, (A, B, y) DpSR(A, p),
1A, B.y)= InCB, (3.12)

PeR(y)=-a) (2an) S -1 o2 ()= (-a) s (n) Y -1

A brief analysis of the short and long ternogerties of the derived asymptotic solvency
capital formulas follows. Table 3.1 compares (&) the Black-Scholes return model with

(3.12). The parameter set i6, 8,y,d,0) = (50 1/3154%]15%), the risk-free discount rate is
v, = (+0-10%)™" =102875", and the confidence level iz =995 fbr the VaR criterion

and a =99% for the CVaR criterion over the first 20 year@nCerning time dependence the
required VaR economic capital first increases fgpéoshd importantly in the first 10 years and
then remains at a relatively stable level. The ddpace upon the return process increases over
time and yields an important penalty over the lorigee horizons. Similarly, the required CVaR
economic capital increases steadily over time beggat more than double the VaR level and
reaches more than 5 times the initial level afteryars. The return effect is similar, but in
contrast to VaR the differences remain relativédyoke over the longer time horizons.

On can question whether a constant confiddeeel over all time horizons is adequate.
Alternatively, one might specify a constant initetonomic capital independently of the time
horizon, the so-calledtability criterion for which we refer to Hurlimann (2010a) for a mor
detailed analysis. According to this criterion, thenfidence levelsa(n),n=123 ,.,. are

determined by the conditions

(M EC %0 = ¢, [ECY*¥o (M [EC! "0 =r [EC,“**®, n=23... (3.13)

Table 3.2 is based on the parameters of Table i®dlreveals almost stable VaR confidence
levels. The CVaR confidence level decreases ivéing first years and then remains quite stable.
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Table 3.1 Compound Poisson Pareto Black-Scholes versus aamap@oisson Pareto

VaR CVaR
n (3.5) (3.10) (3.5) (3.10)
1 104.9 101.8 242.6 235.6
2 146.3 137.6 365.1 344.1
3 173.6 157.8 460.6 420.9
4 193.1 169.5 541.3 479.3
5 207.6 175.7 612.4 525.0
6 218.6 177.9 676.8 561.4
7 226.9 177.3 736.1 590.4
8 233.2 174.5 791.5 613.5
9 238.0 170.0 844.0 631.6
10 241.5 164.3 894.1 645.6
11 244.0 157.6 942.4 656.2
12 245.7 150.1 989.3 663.7
13 246.8 142.1 1035.2 668.7
14 247.5 133.6 1080.2 671.4
15 247.7 124.9 1124.8 672.3
16 247.7 115.9 1169.1 671.4
17 247.6 106.8 1213.2 669.0
18 247.4 97.7 1257.5 665.4
19 247.1 88.5 1301.9 660.6
20 246.9 79.4 1346.8 654.9

Table 3.2 Comparison of confidence levels under the statxlitterion

a(n) for VaR a(n) for CVaR
n (3.5) (3.10) (3.5) (3.10)
1 99.5% 99.5% 97.4% 99.0%
2 99.3% 99.3% 96.5% 98.4%
3 99.3% 99.3% 96.1% 98.1%
4 99.2% 99.3% 96.0% 97.9%
5 99.2% 99.3% 96.0% 97.7%
6 99.2% 99.3% 96.0% 97.6%
7 99.2% 99.3% 96.1% 97.6%
8 99.3% 99.3% 96.1% 97.5%
9 99.3% 99.3% 96.2% 97.5%
10 99.3% 99.4% 96.2% 97.5%
11 99.3% 99.4% 96.3% 97.5%
12 99.3% 99.4% 96.4% 97.5%
13 99.3% 99.4% 96.4% 97.6%
14 99.3% 99.4% 96.5% 97.6%
15 99.3% 99.4% 96.5% 97.6%
16 99.3% 99.4% 96.5% 97.6%
17 99.3% 99.4% 96.6% 97.6%
18 99.3% 99.5% 96.6% 97.7%
19 99.4% 99.5% 96.7% 97.7%
20 99.4% 99.5% 96.7% 97.7%
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4. Sub-exponential tail claims and constant forcef interest

The class 0 in Section 3 excludes some important common idigions like the log-
normal and the heavy-tailed Weibull. Fortunatelyeasion of the asymptotic tail equivalence
(3.4) has been proved by Hao and Tang (2008) todisicounted compound Poisson model with
sub-exponential claim size distribution and conisfarce of interest. The accumulated return
version of this result is re-used here in the candé solvency risk calculations.

Recall that a non-negative claim size distidiu is sub-exponentialdenoted byF, OIS, if
F,(X)=1-F,(X)>0 forall x>0 and the limiting relationship

lim F"()/ Fy () = n (4.1)

holds for all (or, equivalently, for some)n=23 ,.where F," denotes the n -fold
convolution of F, . Recall that every sub-exponential distributioifoisg-tailed, that isF, L,
in the sense that

lim F, (x-y)/F (x)=1 (4.2)

for all (or, equivalently, for some)y # .0The classS contains the clasBRV of distributions

with extended-regularly-varying tails, for whichetle exist some constan@<a<b< o, such
that

v® < Iiminst lim supwsv‘a (4.3)
e By () e R (X)

holds for all v> 1 In the casea=Db relation (4.3) defines the clasR_, [ I of regularly

varying distributions with index—a. Another useful class is the sub-cla&s!S introduced by
Konstantinides et al. (2002). Note that A provided F, (IS and for somev > Jlone has

lim supw <1. (4.4)
X Fy (X)

It has been noted that (4.4) is satisfied by almtisiseful distributions with unbounded supports,
which implies thatA almost coincides witls. To summarize, one has the set inclusions

0 OERVOADSOL. (4.5)

For further details on heavy-tailed distributiohge reader is referred to Embrechts et al. (1997).
As a technical condition we need thguilibrium distribution F; of F, defined by

Fe() =+ Fo(9ds gy =E[X]>0, x=0. (4.6)
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Theorem 4.1 Given is the accumulated compound Poisson modél suib-exponential claim
size distributionF, O0S and constant force of interest. If F, OA the asymptotic equivalence

as X - o
t

P(s® > x)~ A Fy (x (&) ds 4.7)

0

holds uniformly for all t (0, ] .

Proof. One notes thatS® = e’ [§, where S =>'1,, .,e™™ X, represents the discounted
k=1
aggregate claims. The results follows from Theo&&in Hao and Tang (2008), which shows

t
the asymptotic equivalencé’(std > x) ~A Ej F, (x[@&™)ds. ¢
0

As simple illustration let us derive the correspiogdasymptotic analytical solvency capital
formulas for a log-normal claim size distributiceé e.g. Zuanetti et al. (2006) for motivation).

Theorem 4.2 Given is the accumulated compound Poisson modél g-normal claim size
distribution F, :dJ('”f;"), x20, 4,0>0, and constant force of interesd . Then the multi-

period insurance riskaR and CVaR economic capitals to the confidenceller over the time
horizon [O, n] are determined by the following asymptotic forasuasa - 1

EC'™ ~vi O, (A, 1y ) 3R (A v, 0). ECYE™ ~vi T, (A, 11y ) TPSYR(A v, ),
(A gt )= ATl gty =expu+10®), vi =expE?®)-1

pﬁR()l, X’d)_eXF{JHCD_l( La )E{/In(1+v ) - In(/‘n)}—i(é')

, (4.8)
\/1+ Vs
Pan(A.vx. 6) = exp@) D:L_¢(¢_1(l_fia )a_ fo ) -5,(0).

Proof. Rewrite the integral in (4.7) asl,(x) :}5('”7‘” +§(s—t))ds. Making the change of
0

variables u ="%# + 2 (s—t) one obtains

3,00=50 | D= ez -0 - reza),
Inx,u_ét

with 77(2) = T@(u)du the stop-loss transform of a standard normaloandariable. Using that

71(2) = ¢(2) - z[(2), ¢(2) = P'(2), this can be rewritten as
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3,09 =t (e = g)+ ¢ gl - 21) - gl - e (e - 2t)- o).

This implies that asymptotically as — « and uniformly for all t D(O, oo] one has
P(S* > x) ~ At [ (- ) (4.9)

Now, set t=n and solve for x (the asymptotic value-at-risk) in the equation
Bt ) =1 g | which yields x=u, Eexgd+o @ (1-52)-10%} . Noting that

o =4/In(l+v%) and letting x - o, or equivalently a — 1one obtains the asymptotic VaR
formula

VaR [s2]~ 4 exelan+ o 7(1-5)- 10} = g q’(jl_ )4 CEKEZ) S
+v2

On the other side one has the mean forme}s? | = An s, [5,(5) (see the Remarks 3.2). By
definition of the economic capital formula (2.9)eohas EC“*® =v! GvaR |s?|-E|s?].

Letting a - 1, inserting the obtained expressions and rearrgngire asymptotic VaR formula
(4.8) follows without difficulty. For the CVaR onmotes that (4.9) is the tail distribution of a
scaled log-normal distribution with parametefg + &, siich that asymptotically ag — o

one gets

lls - x).]- E{e @(M ; a—j “x @(Mj} BRED

g g

Inserting the asymptotic value-at-risk expression= exp{,u td+o Bb‘l(l— 1;—;’)} ~ VaFg[S{”‘J
into (4.11) one gets further

El(s -var [s¢)). |~ At @ oolo - 071 -50)- of- 0 (- 5p)) war |5

=ty (& (- 0(07(1-5¢) - o} - (1-a) vaR 5]
hence

cvaR |si]=vaR |si|+ 2 (E[(S: -VaR [si. |~ Aty (87 - 0@~ (1- 5¢) - o).
Inserting into (2.10) one gets the desired econaaital CVaR expression in (4.8).
Examples 4.1 Let us compare the obtained asymptotic resultk thie standard Solvency I
SCR specification of the non-life insurance riske \&ktgue that the number of claims is a main

driving factor of the risk process. Indeed, du¢hi law of large numbers the larger this number
the less economic capital is actually needed. Apaomon of the asymptotic VaR formula with
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the current standard VaR specification in Table ghbws that the effect of this risk factor is
underestimated in the following sense. Measured uimits of the standard deviation
=1/Var|Sl| of aggregate claims, the relative reduction @& #symptotic VaR economic
capital factor with respect to the standard SCRinoeases with the expected number of claims.
Of course, this qualitative result holds in a stquantitative sense provided the asymptotic VaR
formula is sufficiently accurate to validate thisatement. Unfortunately, the question of
accuracy is one of the main open issues (see 8€egtissue (11)). For the practical evaluation,
recall the QIS5 (2010) standard SCR specificatibrthe non-life insurance risk, which is
obtained under the assumptions of a log-normalribligton of the one-year aggregate claims
random variableS, with vanishing constant force of interegt=  for the confidence level

a, =99.5% (e.g. Hurlimann (2010b), formula (3.4)):

1,S2VaR,,

r, [EC,***% =vaR, [s]-E[S] = p3"*(vs) E[S],

pSZVaR( ) eXF{(D_ (ao)[{/ln(l‘kvs }_l 2 Var[Sl] 1+v} (4.12)
: i+ CTESE T

For the sake of comparison, the one-year asympWaR formula in (4.8) withd = 0Ocan be
rewritten as

r, EECI asvaRr, _ p;sVaR(A v, EE[Sl]
v exr{m Qfin@+v2) -In /1}_1 (4.13)

Py 'x M

A standard CVaR SCR is obtained under the samergdmns as for the VaR SCR but with a
reduced confidence levedr, =98.675 iurlimann (2009b), formula (13.9)):

1,.S2,CVaR,, _

r, (EC" =CVaR [s]-E[S]] = 03> (vs) E[S ],

sz(:VaR( ) 1_¢(¢_ (0’0)—\¢In(1+|/s))_1 (4.14)

Pa, 1-an

For the sake of comparison, the one-year asymp®fi@R formula in (4.8) withd = Ocan be
rewritten as

r, EECll,as,(:VaR7 pschaR(/]’V )EE[Sl],

asCVaR(A’VX) 1- (D((D_l(l 1_) \/|n(l+l/>2<))_ll (415)

Pa 1-a
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In the Tables below we satr, =99.5%, a =99.5%,99.75%,99.8%,v, =9 in (4.12)-(4.13) and
a, =986730,a =98.6736,99.1236,99.3%,v, =9 in (4.14)-(4.15) and compare the ratios
P2V R(vs) v versuspi R (A,v, ) vs, resp. p3? < (vs)ivs versusp®*(Av, )Ivs. The
different parameters satisfy the relationsbhip? =1+v% introduced in (4.12). The made

comparisons identify the expected number of claams main driving factor in solvency capital
requirement, which has been neglected so far ilstteency Il standard approach.

Table 4.1 One-year asymptotic VaR (4.13) versus standaf al2)

reduction /

conficence level penalty penalty penalty
A vX o0X

50 9 2.099 0.

100 9 2.099

200 9 2.099

300 9 2.099

400 9 2.099

500 9 2.099

600 9 2.099

700 9 2.099

800 9 2.099

900 9 2.099

1000 9 2.099

reduction /

conficence level penalty
A vX  oX

50 9 2.099

100 9 2.099

200 9 2.099

300 9 2.099

400 9 2.099

500 9 2.099

600 9 2.099

700 9 2.099

800 9 2.099

900 9 2.099

1000 9 2.099

The obtained results reveal that by increasing toafidence level, there is a better

discrimination of these formulas with respect teurers with small and large expected number
of claims. In this respect, another open quessowhether the accuracy of the asymptotic VaR
and CVaR formulas increases by increasing the denée level. In the examples, it seems that
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the choices a =998 % for VaR and a =993 % for CVaR provide a more balanced
discrimination of the solvency requirements. Howeue virtue of the unsolved accuracy
guestion, it is not clear how to set in generaldappropriate confidence levels of the asymptotic
formulas in order to fulfill the Solvency Il calistion test. According to the latter, the calculated
SCR should be a fair, unbiased estimate of the asskneasured by the common SCR target
criterion (e.g. Doff (2007), p.131).

5. Conclusions and outlook

A summary of what has been obtained and a shulook of possible further investigations
might be helpful. Our starting point has been tipar8 Andersen risk model with geometric
Lévy stochastic returns. Besides a classical mogdedf the aggregate claims it allows for a
flexible modeling of the investment returns (e.ga the class of generalized hyperbolic
distributions). We have decomposed the random aglaied surplus over any finite time
horizon into insurance risk, market risk and futprefit related components. By assuming that
the initial available capital and the required soley capital are invested at the risk-free rats, th
decomposition has led to various natural multi-getreconomic capital amounts for both the
VaR and CVaR measures. Besides the required tooaloenic capital, we have justified notions
of insurance risk and market risk economic capitde have observed that in a dual
environment of random aggregate claims and ranaxuomns, the insurance risk and market risk
components are dependent and lead to the measurefrtbe diversification effect between the
associated economic capital measures.

We have focused our approach on the studyhe@fnbulti-period insurance risk economic
capital for claim size distributions with regulastgrying tail (Section 3) and sub-exponential tail
(Section 4). In particular, we have obtained sosyargtotic economic capital formulas for the
compound Poisson Pareto Lévy model (Theorem 3.@)the compound Poisson model with
log-normal claim size and constant force of inter€Bheorem 4.2). Through numerical
examples, we have documented interesting featumesh& compound Poisson Pareto Black-
Scholes model (Examples 3.1). Moreover, a comparigath the standard Solvency Il
specification of the non-life insurance SCR hashawdertaken (Examples 4.1).

Finally, the present approach suggests maawg gsues for further investigations:

(1) Error bounds for the asymptotic formulas alneirt speed of convergence are not known to
the author. Moreover, no attempt to quantify theuaacy of them through Monte-Carlo
simulation has been undertaken.

(2) The inflation of the claims has not been tak#n account and will obviously reduce the
premium loading defined in (2.3).

(3) Is it possible to use the available similasules for the Sparre Andersen risk model with
geometric Lévy stochastic discounting in the fouggested in Remarks 3.1, point (iii)? For this
purpose, it might be interesting to construct aylLétate price) deflator.
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(4) The calculation of the total and market rislomomic capital measures along the line of
Section 2 has not been touched upon so far. Thisfigreat interest and allows for a
qguantification of the diversification effect defohen (2.12).

(5) The possible stochastic dependence betweenscind number of claims introduces further
uncertainties in the evaluation of economic capit@asures. Is it possible to make use of the
many diverse asymptotic approximations in this #eeg. Embrechts et al. (2009))?
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