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Abstract

Assessing the probability of rare and extreme events is an important issue in the
risk management of financial portfolios. Extreme value theory provides the solid
fundamentals needed for the statistical modelling of such events and the computa-
tion of extreme risk measures. The focus of the paper is on the use of extreme value
theory to compute tail risk measures and the related confidence intervals, applying
it to several major stock market indices.
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1 Introduction

The last years have been characterized by significant instabilities in financial
markets worldwide. This has led to numerous criticisms about the existing risk
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management systems and motivated the search for more appropriate metho-
dologies able to cope with rare events that have heavy consequences.

The typical question one would like to answer is: “If things go wrong, how
wrong can they go? ” The problem is then how to model the rare phenomena
that lie outside the range of available observations. In such a situation it seems
essential to rely on a well founded methodology. Extreme value theory (EVT)
provides a firm theoretical foundation on which we can build statistical models
describing extreme events.

In many fields of modern science, engineering and insurance, extreme value
theory is well established (see e.g. Embrechts et al. (1999), Reiss and Thomas
(1997)). Recently, numerous research studies have analyzed the extreme vari-
ations that financial markets are subject to, mostly because of currency crises,
stock market crashes and large credit defaults. The tail behaviour of finan-
cial series has, among others, been discussed in Koedijk et al. (1990), Da-
corogna et al. (1995), Loretan and Phillips (1994), Longin (1996), Daniels-
son and de Vries (2000), Kuan and Webber (1998), Straetmans (1998), Mc-
Neil (1999), Jondeau and Rockinger (1999), Rootzèn and Klüppelberg (1999),
Neftci (2000), McNeil and Frey (2000) and Gençay et al. (2003b). An interest-
ing discussion about the potential of extreme value theory in risk management
is given in Diebold et al. (1998).

This paper deals with the behavior of the tails of financial series. More specif-
ically, the focus is on the use of extreme value theory to compute tail risk
measures and the related confidence intervals.

Section 2 presents the definitions of the risk measures we consider in this pa-
per. Section 3 reviews the fundamental results of extreme value theory used
to model the distributions underlying the risk measures. In Section 4, a prac-
tical application is presented where six major developed market indices are
analyzed. In particular, point and interval estimates of the tail risk measures
are computed. Section 5 concludes.

2 Risk Measures

Some of the most frequent questions concerning risk management in finance
involve extreme quantile estimation. This corresponds to the determination
of the value a given variable exceeds with a given (low) probability. A typical
example of such measures is the Value-at-Risk (VaR). Other less frequently
used measures are the expected shortfall (ES) and the return level. Hereafter
we define the risk measures we focus on in the following chapters.
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Value-at-Risk

Value-at-Risk is generally defined as the capital sufficient to cover, in most
instances, losses from a portfolio over a holding period of a fixed number
of days. Suppose a random variable X with continuous distribution function
F models losses or negative returns on a certain financial instrument over a
certain time horizon. VaRp can then be defined as the p-th quantile of the
distribution F

VaRp = F−1(1− p), (1)

where F−1 is the so called quantile function 3 defined as the inverse of the
distribution function F .

For internal risk control purposes, most of the financial firms compute a 5%
VaR over a one-day holding period. The Basle accord proposed that VaR for the
next 10 days and p = 1%, based on a historical observation period of at least
1 year of daily data, should be computed and then multiplied by the ‘safety
factor’ 3. The safety factor was introduced because the normal hypothesis for
the profit and loss distribution is widely recognized as unrealistic.

Expected Shortfall

Another informative measure of risk is the expected shortfall (ES) or the tail
conditional expectation which estimates the potential size of the loss exceeding
VaR. The expected shortfall is defined as the expected size of a loss that exceeds
VaRp

ESp = E(X | X > VaRp). (2)

Artzner et al. (1999) argue that expected shortfall, as opposed to Value-at-
Risk, is a coherent risk measure.

Return Level

If H is the distribution of the maxima observed over successive non overlapping
periods of equal length, the return level Rk

n = H−1(1− 1
k
) is the level expected

to be exceeded in one out of k periods of length n. The return level can be used
as a measure of the maximum loss of a portfolio, a rather more conservative
measure than the Value-at-Risk.

3 More generally a quantile function is defined as the generalized inverse of F :
F←(p) = inf{x ∈ R : F (x) ≥ p}, 0 < p < 1.
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3 Extreme Value Theory

When modelling the maxima of a random variable, extreme value theory plays
the same fundamental role as the central limit theorem plays when modelling
sums of random variables. In both cases, the theory tells us what the limiting
distributions are.

Generally there are two related ways of identifying extremes in real data. Let
us consider a random variable representing daily losses or returns. The first
approach considers the maximum the variable takes in successive periods, for
example months or years. These selected observations constitute the extreme
events, also called block (or per period) maxima. In the left panel of Figure 1,
the observations X2, X5, X7 and X11 represent the block maxima for four
periods of three observations each.
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Fig. 1. Block-maxima (left panel) and excesses over a threshold u (right panel).

The second approach focuses on the realizations exceeding a given (high)
threshold. The observations X1, X2, X7, X8, X9 and X11 in the right panel of
Figure 1, all exceed the threshold u and constitute extreme events.

The block maxima method is the traditional method used to analyze data with
seasonality as for instance hydrological data. However, the threshold method
uses data more efficiently and, for that reason, seems to become the method
of choice in recent applications.

In the following subsections, the fundamental theoretical results underlying
the block maxima and the threshold method are presented.

3.1 Distribution of Maxima

The limit law for the block maxima, which we denote by Mn, with n the size
of the subsample (block), is given by the following theorem:

Theorem 1 (Fisher and Tippett (1928), Gnedenko (1943)) Let (Xn) be a
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sequence of i.i.d. random variables. If there exist constants cn > 0, dn ∈ R
and some non-degenerate distribution function H such that

Mn − dn

cn

d→ H,

then H belongs to one of the three standard extreme value distributions:

Fréchet: Φα(x) =





0, x ≤ 0

e−x−α
, x > 0

α > 0,

Weibull: Ψα(x) =





e−(−x)α
, x ≤ 0

1, x > 0
α > 0,

Gumbel: Λ(x) = e−e−x
, x ∈ R.

The shape of the probability density functions for the standard Fréchet, Weibull
and Gumbel distributions is given in Figure 2.
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Fig. 2. Densities for the Fréchet, Weibull and Gumbel functions.

We observe that the Fréchet distribution has a polynomially decaying tail and
therefore suits well heavy tailed distributions. The exponentially decaying tails
of the Gumbel distribution characterize thin tailed distributions. Finally, the
Weibull distribution is the asymptotic distribution of finite endpoint distrib-
utions.

Jenkinson (1955) and von Mises (1954) suggested the following one-parameter
representation

Hξ(x) =





e−(1+ξx)−1/ξ
if ξ 6= 0

e−e−x
if ξ = 0

(3)

of these three standard distributions, with x such that 1 + ξx > 0. This
generalization, known as the generalized extreme value (GEV) distribution, is
obtained by setting ξ = α−1 for the Fréchet distribution, ξ = −α−1 for the
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Weibull distribution and by interpreting the Gumbel distribution as the limit
case for ξ = 0.

As in general we do not know in advance the type of limiting distribution of
the sample maxima, the generalized representation is particularly useful when
maximum likelihood estimates have to be computed. Moreover the standard
GEV defined in (3) is the limiting distribution of normalized extrema. Given
that in practice we do not know the true distribution of the returns and, as
a result, we do not have any idea about the norming constants cn and dn, we
use the three parameter specification

Hξ,σ,µ(x) = Hξ

(
x− µ

σ

)
x ∈ D, D =





]−∞, µ− σ
ξ [ ξ < 0

]−∞, ∞[ ξ = 0

]µ− σ
ξ , ∞[ ξ > 0

(4)

of the GEV, which is the limiting distribution of the unnormalized maxima.
The two additional parameters µ and σ are the location and the scale para-
meters representing the unknown norming constants.

The quantities of interest are not the parameters themselves, but the quantiles,
also called return levels, of the estimated GEV:

Rk = H−1
ξ,σ,µ(1− 1

k
) .

Substituting the parameters ξ, σ and µ by their estimates ξ̂, σ̂ and µ̂, we get

R̂k =





µ̂− σ̂
ξ̂

(
1−

(
− log(1− 1

k
)
)−ξ̂

)
ξ̂ 6= 0

µ̂− σ̂ log
(
− log(1− 1

k
)
)

ξ̂ = 0

. (5)

A value of R̂10 of 7 means that the maximum loss observed during a period
of one year will exceed 7% once in ten years on average.

3.2 Distribution of Exceedances

An alternative approach, called the peak over threshold (POT) method, is to
consider the distribution of exceedances over a certain threshold. Our problem
is illustrated in Figure 3 where we consider an (unknown) distribution function
F of a random variable X. We are interested in estimating the distribution
function Fu of values of x above a certain threshold u.
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Fig. 3. Distribution function F and conditional distribution function Fu.

The distribution function Fu is called the conditional excess distribution func-
tion and is defined as

Fu(y) = P (X − u ≤ y | X > u), 0 ≤ y ≤ xF − u (6)

where X is a random variable, u is a given threshold, y = x−u are the excesses
and xF ≤ ∞ is the right endpoint of F . We verify that Fu can be written in
terms of F , i.e.

Fu(y) =
F (u + y)− F (u)

1− F (u)
=

F (x)− F (u)

1− F (u)
. (7)

The realizations of the random variable X lie mainly between 0 and u and
therefore the estimation of F in this interval generally poses no problems. The
estimation of the portion Fu however might be difficult as we have in general
very little observations in this area.

At this point EVT can prove very helpful as it provides us with a powerful
result about the conditional excess distribution function which is stated in the
following theorem:

Theorem 2 (Pickands (1975), Balkema and de Haan (1974)) For a large
class of underlying distribution functions F the conditional excess distribution
function Fu(y), for u large, is well approximated by

Fu(y) ≈ Gξ,σ(y), u →∞,

where

Gξ,σ(y) =





1−
(
1 + ξ

σ
y
)−1/ξ

if ξ 6= 0

1− e−y/σ if ξ = 0
(8)

for y ∈ [0, (xF − u)] if ξ ≥ 0 and y ∈ [0, −σ
ξ
] if ξ < 0. Gξ,σ is the so called

generalized Pareto distribution (GPD).
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If x is defined as x = u + y, the GPD can also be expressed as a function of
x, i.e. Gξ,σ(x) = 1− (1 + ξ(x− u)/σ)−1/ξ.

Figure 4 illustrates the shape of the generalized Pareto distribution Gξ,σ(x)
when ξ, called the shape parameter or tail index, takes a negative, a positive
and a zero value. The scaling parameter σ is kept equal to one.
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Fig. 4. Shape of the generalized Pareto distribution Gξ,σ for σ = 1.

The tail index ξ gives an indication of the heaviness of the tail, the larger ξ, the
heavier the tail. As, in general, one cannot fix an upper bound for financial
losses, only distributions with shape parameter ξ ≥ 0 are suited to model
financial return distributions.

Assuming a GPD function for the tail distribution, analytical expressions for
VaRp and ESp can be defined as a function of GPD parameters. Isolating F (x)
from (7)

F (x) = (1− F (u)) Fu(y) + F (u)

and replacing Fu by the GPD and F (u) by the estimate (n−Nu)/n, where n
is the total number of observations and Nu the number of observations above
the threshold u, we obtain

F̂ (x) = Nu

n

(
1−

(
1 + ξ̂

σ̂
(x− u)

)−1/ξ̂
)

+
(
1− Nu

n

)

which simplifies to

F̂ (x) = 1− Nu

n

(
1 + ξ̂

σ̂
(x− u)

)−1/ξ̂
. (9)

Inverting (9) for a given probability p gives

V̂aRp = u + σ̂
ξ̂

((
n

Nu
p
)−ξ̂ − 1

)
. (10)

Let us rewrite the expected shortfall as

ÊSp = V̂aRp + E(X − V̂aRp | X > V̂aRp)
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where the second term on the right is the expected value of the exceedances
over the threshold VaRp. It is known that the mean excess function for the
GPD with parameter ξ < 1 is

e(z) = E(X − z | X > z) =
σ + ξz

1− ξ
, σ + ξz > 0 . (11)

This function gives the average of the excesses of X over varying values of a
threshold z. Another important result concerning the existence of moments is
that if X follows a GPD then, for all integers r such that r < 1/ξ, the r first
moments exist. 4

Similarly, given the definition (2) for the expected shortfall and using expres-
sion (11), for z = VaRp − u and X representing the excesses y over u we
obtain

ÊSp = V̂aRp +
σ̂ + ξ̂(V̂aRp − u)

1− ξ̂
=

V̂aRp

1− ξ̂
+

σ̂ − ξ̂u

1− ξ̂
. (12)

4 Application

Our aim is to illustrate the tail distribution estimation of a set of financial
series of daily returns and use the results to quantify the market risk. Table 1
gives the list of the financial series considered in our analysis. The illustra-
tion focuses mainly on the S&P500 index, providing confidence intervals and
graphical visualization of the estimates, whereas for the other series only point
estimates are reported.

Table 1
Data analyzed.
Symbol Index name Start End Observations
ES50 Dow Jones Euro Stoxx 50 2–01–87 17–08–04 4555
FTSE100 FTSE 100 5–01–84 17–08–04 5215
HS Hang Seng 9–01–81 17–08–04 5836
Nikkei Nikkei 225 7–01–70 17–08–04 8567
SMI Swiss Market Index 5–07–88 17–08–04 4050
S&P500 S&P 500 5–01–60 16–08–04 11270

The application has been executed in a Matlab 7.x programming environ-
ment. 5 The files with the data and the code can be downloaded from www.

4 See Embrechts et al. (1999), page 165.
5 Other software for extreme value analysis can be found at www.math.ethz.ch/
∼mcneil/software.html or in Gençay et al. (2003a). Standard numerical or statis-
tical software, like for example Matlab, now also provide functions or routines that
can be used for EVT applications.
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unige.ch/ses/metri/gilli/evtrm/. Figure 5 shows the plot of the n =
11270 observed daily returns of the S&P500 index.

1960 1965 1971 1976 1982 1987 1993 1998 2004

−20

−10

0

10

Fig. 5. Daily returns of the S&P500 index.

We consider both the left and the right tail of the return distribution. The
reason is that the left tail represents losses for an investor with a long position
on the index, whereas the right tail represents losses for an investor being
short on the index.

As it can be seen from Figure 5, returns exhibit dependence in the second
moment. McNeil and Frey (2000) propose a two stage method consisting in
modelling the conditional distribution of asset returns against the current
volatility and then fitting the GPD on the tails of residuals. On the other
side, Danielsson and de Vries (2000) argue that for long time horizons an un-
conditional approach is better suited. Indeed, as Christoffersen and Diebold
(2000) notice, conditional volatility forecasting is not indicated for multiple
day predictions. For a detailed discussion on these issues, including the i.i.d.
assumptions, we refer the reader to the above mentioned references, believing
that the choice between conditional and unconditional approaches depends on
the final use of the risk measures and the time horizon considered. For short
time horizons of the order of several hours or days, and if an automatic up-
dating of the parameters is feasible, a conditional approach may be indicated.
For longer horizons, a non conditional approach might be justified by the fact
that it provides stable estimates through time requiring less frequent updates.

The methodology applying to right tails, in the left tail case we change the
sign of the returns so that positive values correspond to losses.

First, we consider the distribution of the block maxima, which allows the
determination of the return level. Second, we model the exceedances over
a given threshold which enables us to estimate high quantiles of the return
distribution and the corresponding expected shortfall.

In both cases we use maximum likelihood estimation, which is one of the most
common estimation procedures used in practice. We also compute likelihood-
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based interval estimates of the parameters and the quantities of interest which
provide additional information related to the accuracy of the point estimates.
These intervals, contrarily to those based on standard errors, do not rely on
asymptotic theory results and restrictive assumptions. We expect them to
be more accurate in the case of small sample size. Another advantage of the
likelihood-based approach is the possibility to construct joint confidence inter-
vals. The greater computational complexity of the likelihood-based approach
is nowadays no longer an obstacle for its use.

4.1 Method of Block Maxima

The application of the method of block maxima goes through the following
steps: divide the sample in n blocks of equal length, collect the maximum
value in each block, fit the GEV distribution to the set of maxima and, finally,
compute point and interval estimates for Rk

n.

The delicate point of this method is the appropriate choice of the periods defin-
ing the blocks. The calendar naturally suggests periods like months, quarters,
etc. In order to avoid seasonal effects, we choose yearly periods which are likely
to be sufficiently large for Theorem 1 to hold. The S&P500 data sample has
been divided into 45 non-overlapping sub-samples, each of them containing
the daily returns of the successive calendar years. Therefore not all our blocks
are of exactly the same length. The maximum return in each of the blocks
constitute the data points for the sample of maxima M which is used to es-
timate the generalized extreme value distribution (GEV). Figure 6 plots the
yearly maxima for the left and right tails of the S&P500.
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Fig. 6. Yearly minima and maxima of the daily returns of the S&P500.

The log-likelihood function that we maximize with respect to the three un-
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known parameters is

L(ξ, µ, σ; x) =
∑

i

log
(
h(xi)

)
, xi ∈ M (13)

where

h(ξ, µ, σ; x) =
1

σ

(
1 + ξ

x− µ

σ

)−1/ξ−1

exp

(
−

(
1 + ξ

x− µ

σ

)−1/ξ
)

is the probability density function if ξ 6= 0 and 1 + ξ x−µ
σ

> 0. If ξ = 0 the
function h is

h(ξ, µ, σ; x) =
1

σ
exp

(
−x− µ

σ

)
exp

(
− exp

(
−x− µ

σ

))
.

In Figure 7, we give the plot of the sample distribution function 6 and the
corresponding fitted GEV distribution. Point and interval estimates for the
parameters are given in Table 2.
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Fig. 7. Sample distribution (dots) of yearly minima (left panel) and maxima (right
panel) and corresponding fitted GEV distribution for S&P500.

Interval Estimates

In order to be able to compute interval estimates, 7 it is useful to approach
the quantile estimation problem by directly reparameterizing the GEV dis-
tribution as a function of the unknown return level Rk. To achieve this, we
isolate µ from equation (5) and substitute it into Hξ,σ,µ defined in (4). The

6 The sample distribution function F̂n(xn
i ) for a set of n observations given in

increasing order xn
1 ≤ · · · ≤ xn

n, is defined as F̂n(xn
i ) = i

n , i = 1, . . . , n.
7 For a good introduction to likelihood-based statistical inference, see Azzalini
(1996).
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GEV distribution function then becomes

Hξ,σ,Rk(x) =





exp
(
−

(
ξ
σ (x−Rk) +

(− log(1− 1
k )

)−ξ
)−1/ξ

)
ξ 6= 0

(1− 1
k )

exp

(
−x−Rk

σ

)
ξ = 0

for x ∈ D defined as

D =





]−∞,
(
Rk − ξ

σ

(− log(1− 1
k )

)−ξ
)

[ ξ < 0

]−∞, ∞[ ξ = 0

]
(
Rk − ξ

σ

(− log(1− 1
k )

)−ξ
)

, ∞[ ξ > 0

and we can directly obtain maximum likelihood estimates for Rk. The profile
log-likelihood function can then be used to compute separate or joint confi-
dence intervals for each of the parameters. For example, in the case where the
parameter of interest is Rk, the profile log-likelihood function will be defined
as

L∗(Rk) = max
ξ, σ

L(ξ, σ,Rk) .

The confidence interval we then derive includes all values of Rk satisfying the
condition

L∗(Rk)− L(ξ̂, σ̂, R̂k) > −1
2
χ2

α, 1

where χ2
α, 1 refers to the (1−α)–level quantile of the χ2 distribution with 1 de-

gree of freedom. The function L∗(Rk)−L∗(ξ̂, σ̂, R̂k) is called the relative profile
log-likelihood function and is plotted in the left panel of Figure 8. The point
estimate of 6.41% of R10 is included in the rather large interval (4.74, 11). As
less observations are available for higher quantiles, the interval is asymmetric,
indicating more uncertainty for the upper bound of maximum losses.

Sometimes we are also interested in the value of ξ, which characterizes the
tail heaviness of the underlying distribution. In this case, a joint confidence
region on both ξ and R10 is needed. The profile log-likelihood function is then
defined as

L∗(ξ, Rk) = max
σ

L(ξ, σ,Rk),

with the confidence region defined as the contour at the level −1
2
χ2

α, 2 of the
relative profile log-likelihood function

L∗(ξ, Rk)− L(ξ̂, σ̂, R̂k).

In the right panel of Figure 8, we reproduce single and joint confidence re-
gions at level 95% for ξ̂ and R̂10 of the S&P500. In the same graph we also plot
the pairs (R̂10, ξ̂) estimated on 1000 bootstrap samples. The joint confidence
region covers approximately 95% of the bootstrap pairs, indicating that com-
puting the joint interval region gives a good idea about the likely values of the
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parameters. Moreover, we notice that the joint region is significantly different
from the one defined by the single confidence intervals.

In order to account for the small sample size, single confidence intervals are also
computed with a bias-corrected and accelerated (BCa) bootstrap method. 8 As
a result, for R̂10, the BCa interval narrows to (5.01, 9.19). Regarding the shape
parameter ξ, the difference is less pronounced. However, in both cases, the
intervals clearly indicate a positive value for ξ, which implies that the limiting
distribution of maxima belongs to the Fréchet family.

4.74 6.41 11

−1.92

0

R10 R10

ξ

5.01 6.41 9.19 11

0.217

0.53

0.849

ML

BCa

Fig. 8. Left panel: Relative profile log-likelihood and 95% confidence interval for
R̂10 of the left tail. Right panel: Single and joint confidence regions for ξ̂ and R̂10

at level 95%. Maximum likelihood estimates are marked with the symbol ∗.

The point estimates and the single confidence intervals for the reparameterized
GEV distribution for S&P500 are summarized in Table 2.

Table 2
Point estimates and 95% maximum likelihood (ML) and bootstrap (BCa) confidence
intervals for the GEV method applied to S&P500.

Lower bound Point estimate Upper bound
BCa ML ML ML BCa

Left tail
ξ̂ 0.217 0.256 0.530 0.771 0.849
σ̂ 0.802 0.815 0.964 1.213 1.188

R̂10 5.006 4.741 6.411 11.001 9.190
Right tail

ξ̂ −.288 −.076 0.100 0.341 0.392
σ̂ 0.815 0.836 1.024 1.302 1.312

R̂10 4.368 4.230 4.981 6.485 5.869

8 For an introduction to bootstrap methods see Efron and Tibshirani (1993) or
Shao and Tu (1995).
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For k = 10, we obtain for our data R̂10 = 6.41, meaning that the maximum
loss observed during a period of one year exceeds 6.41% in one out of ten years
on average. In the same way we can derive that a loss of R100 = 21.27 % is
exceeded on average only once in a century. Notice that this is very close to
the 87 crash daily loss of 22.90 %.

Table 3 summarizes point estimates for GEV for all six indices. Because of
the low number of observations for ES50 and SMI the corresponding point
estimates are less reliable. We notice the high value of R10 for the left tail of
Hang Seng (HS), twice as big as the next riskiest index.

Table 3
Point estimates for the GEV method for six market indices.

ES50 FTSE100 HS Nikkei SMI S&P500

# maxima 18 21 24 35 17 45
Left tail

ξ̂ −.301 0.679 0.512 0.251 0.172 0.530
σ̂ 1.773 0.705 2.707 1.616 1.563 0.964

R̂10 7.217 6.323 16.950 8.243 8.341 6.411
Right tail

ξ̂ 0.185 0.309 0.179 0.096 −.032 0.100
σ̂ 1.252 0.919 1.754 1.518 1.773 1.024

R̂10 6.366 5.501 8.439 7.159 7.611 4.981

One way to better exploit information about extremes in the data sample is
to use the POT method. Coles (2001, p. 81) suggests the estimation of return
levels using GPD. However, if the data set is large enough, GEV may still
prove useful as it can avoid dealing with data clustering issues, provided that
blocks are sufficiently large. Furthermore, the estimation is simplified as the
selection of a threshold u is not needed.

4.2 The Peak Over Threshold Method

The implementation of the peak over threshold method involves the following
steps: select the threshold u, fit the GPD function to the exceedances over
u and then compute point and interval estimates for Value-at-Risk and the
expected shortfall.

Selection of the threshold u

Theory tells us that u should be high in order to satisfy Theorem 2, but the
higher the threshold the less observations are left for the estimation of the
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parameters of the tail distribution function.

So far, no automatic algorithm with satisfactory performance for the selection
of the threshold u is available. The issue of determining the fraction of data
belonging to the tail is treated by Danielsson et al. (2001), Danielsson and
de Vries (1997) and Dupuis (1998) among others. However these references do
not provide a clear answer to the question of which method should be used.

A graphical tool that is very helpful for the selection of the threshold u is the
sample mean excess plot defined by the points

(
u, en(u)

)
, xn

1 < u < xn
n , (14)

where en(u) is the sample mean excess function defined as

en(u) =

∑n
i=k(x

n
i − u)

n− k + 1
, k = min{i | xn

i > u},

and n− k + 1 is the number of observations exceeding the threshold u.

The sample mean excess function, which is an estimate of the mean excess
function e(u) defined in (11), should be linear. This property can be used
as a criterion for the selection of u. Figure 9 shows the sample mean excess
plots corresponding to the S&P500 data. From a closer inspection of the plots
we suggest the values u = 2.2 for the threshold of the left tail and u = 1.4
for the threshold of the right tail. These values are located at the beginning
of a portion of the sample mean excess plot that is roughly linear, leaving
respectively 158 and 614 observations in the tails (see Figure 10).
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Fig. 9. Sample mean excess plot for the left and right tail determination for S&P500
data.
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Fig. 10. Exceedances of daily returns of the S&P500 index.

Maximum Likelihood Estimation

Given the theoretical results presented in the previous section, we know that
the distribution of the observations above the threshold in the tail should
be a generalized Pareto distribution (GPD). Different methods can be used
to estimate the parameters of the GPD. 9 In the following we describe the
maximum likelihood estimation method.

For a sample y = {y1, . . . , yn} the log-likelihood function L(ξ, σ|y) for the
GPD is the logarithm of the joint density of the n observations

L(ξ, σ | y) =




−n log σ −

(
1
ξ

+ 1
) ∑n

i=1 log
(
1 + ξ

σ
yi

)
if ξ 6= 0

−n log σ − 1
σ

∑n
i=1 yi if ξ = 0.

We compute the values ξ̂ and σ̂ that maximize the log-likelihood function
for the sample defined by the observations exceeding the threshold u. We
obtain the estimates ξ̂ = 0.388 and σ̂ = 0.545 for the left tail exceedances and
ξ̂ = 0.137 and σ̂ = 0.579 for the right tail. Figure 11 shows how GPD fits to
exceedances of the left and right tails of the S&P500. Clearly the left tail is
heavier than the right one. This can also be seen from the estimated value of
the shape parameter ξ which is positive in both cases, but higher in the left
tail case.

High quantiles and expected shortfall may be directly read in the plot or
computed from equations (10) and (12) where we replace the parameters by
their estimates. For instance, for p = 0.01 we can compute V̂aR 0.01 = 2.397 and

9 These are the maximum likelihood estimation, the method of moments, the
method of probability-weighted moments and the elemental percentile method. For
comparisons and detailed discussions about their use for fitting the GPD to data,
see Hosking and Wallis (1987), Grimshaw (1993), Tajvidi (1996a), Tajvidi (1996b)
and Castillo and Hadi (1997).
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Fig. 11. Left panel: GPD fitted to the 158 left tail exceedances above the thresh-
old u = 2.2. Right panel: GPD fitted to the 614 right tail exceedances above the
threshold u = 1.4.

ÊS 0.01 = 3.412 (V̂aR 0.01 = 2.505, ÊS 0.01 = 3.351 for the right tail). We observe
that, with respect to the right tail, the left tail has a lower VaR but a higher
ES which illustrates the importance to go beyond a simple VaR calculation.

Interval Estimates

Again, we consider single and joint confidence intervals, based on the profile
log-likelihood functions. Log-likelihood based confidence intervals for VaRp can
be obtained by using a reparameterized version of GPD defined as a function
of ξ and VaRp:

Gξ,VaRp(y) =





1−
(

1 +
(

n
Nu

p
)−ξ −1

VaRp−u y

)− 1
ξ

ξ 6= 0

1− n
Nu

p exp( y
VaRp−u) ξ = 0

.

The corresponding probability density function is

gξ,VaRp(y) =





(
n

Nu
p
)−ξ−1

ξ(VaRp−u)

(
1 +

(
n

Nu
p
)−ξ −1

VaRp−u y

)− 1
ξ
−1

ξ 6= 0

−
n

Nu
p exp( y

VaRp−u
)

VaRp−u ξ = 0

.

Similarly, using the following reparameterization for ξ 6= 0

Gξ,ESp = 1−

1 +

ξ +
(

n
Nu

p

)−ξ − 1

(ESp − u)(1− ξ)
y




− 1
ξ

,

gξ,ESp =
ξ +

(
n

Nu
p

)−ξ − 1

ξ(1− ξ)(ESp − u)


1 +

ξ +
(

n
Nu

p

)−ξ − 1

(ESp − u)(1− ξ)
y




− 1
ξ
−1

,
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we compute a log-likelihood based confidence interval for the expected shortfall
ESp. Figures 12–13 show the likelihood based confidence regions for the left
tail VaR and ES of S&P500 obtained by using these reparameterized versions
of GPD.
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0.216
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Fig. 12. Left panel: Relative profile log-likelihood function and confidence interval
for VaR0.01. Right panel: Single and joint confidence intervals at level 95% for ξ̂ and
VaR0.01. Dots represent 1000 bootstrap estimates from S&P500 data.
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Fig. 13. Left panel: Relative profile log-likelihood function and confidence interval
for ES0.01. Right panel: Single and joint confidence intervals at level 95% for ξ̂ and
ES0.01. Dots represent 1000 bootstrap estimates from S&P500 data.

In the same figures we show the single bias-corrected and accelerated boot-
strap confidence intervals. We also plot the pairs (ξ̂i, V̂aR0.01,i), (ξ̂i, ÊS0.01,i),
i = 1, . . . , 1000 estimated from 1000 resampled data sets. We observe that
about 5% lie outside the 95% joint confidence region based on likelihood
(which is not the case for the single intervals). Again this shows the inter-
est of considering joint confidence intervals.

The maximum likelihood (ML) point estimates, the maximum likelihood and
the BCa bootstrap confidence intervals for ξ̂, σ̂, V̂aR0.01 and ÊS0.01 for both tails

19



of the S&P500 are summarized in Table 4.

Table 4
Point estimates and 95% maximum likelihood (ML) and bootstrap (BCa) confidence
intervals for the S&P500.

Lower bound Point estimate Upper bound
BCa ML ML ML BCa

Left tail
ξ̂ 0.221 0.245 0.388 0.585 0.588
σ̂ 0.442 0.444 0.545 0.671 0.651

V̂aR 0.01 2.361 2.356 2.397 2.447 2.432
ÊS 0.01 3.140 3.147 3.412 4.017 3.852

Right tail
ξ̂ 0.068 0.075 0.137 0.212 0.220
σ̂ 0.520 0.530 0.579 0.634 0.638

V̂aR 0.01 2.427 2.411 2.505 2.609 2.591
ÊS 0.01 3.182 3.151 3.351 3.634 3.569

The results in Table 4 indicate that, with probability 0.01, the tomorrow’s loss
on a long position will exceed the value 2.397% and that the corresponding
expected loss, that is the average loss in situations where the losses exceed
2.397%, is 3.412%.

It is interesting to note that the upper bound of the confidence interval for
the parameter ξ is such that the first order moment is finite (1/0.671 > 1).
This guarantees that the estimated expected shortfall, which is a conditional
first moment, exists for both tails.

The point estimates for all the six market indices are reported in Table 5.
Similarly to the S&P500 case the left tail is heavier than the right one for all
indices. Looking at estimated VaR and ES values, we observe that Hang Seng
(HS) and DJ Euro Stoxx 50 (ES50) are the most exposed to extreme losses,
followed by Nikkei and the Swiss Market Index (SMI). The less exposed indices
are S&P500 and FTSE 100.

Regarding the right tail Hang Seng is again the most exposed to daily extreme
moves and S&P500 and FTSE100 are the least exposed.
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Table 5
Point estimates for the POT method for six market indices.

ES50 FTSE100 HS Nikkei SMI S&P500

Left tail
ξ̂ 0.045 0.232 0.298 0.181 0.264 0.388
σ̂ 1.102 0.656 1.395 0.810 0.772 0.545

V̂aR 0.01 3.819 2.862 5.146 3.435 3.347 2.397
ÊS 0.01 5.057 4.103 8.046 4.697 4.880 3.412

Right tail
ξ̂ 0.113 0.093 0.156 0.165 0.185 0.137
σ̂ 0.953 0.711 1.102 0.912 0.764 0.579

V̂aR 0.01 3.517 2.707 4.581 3.316 3.078 2.505
ÊS 0.01 4.785 3.562 6.258 4.470 4.259 3.351

5 Concluding Remarks

We have illustrated how extreme value theory can be used to model tail-
related risk measures such as Value-at-Risk, expected shortfall and return
level, applying it to daily log-returns on six market indices.

Our conclusion is that EVT can be useful for assessing the size of extreme
events. From a practical point of view this problem can be approached in
different ways, depending on data availability and frequency, the desired time
horizon and the level of complexity one is willing to introduce in the model.
One can choose to use a conditional or an unconditional approach, the BMM
or the POT method, and finally rely on point or interval estimates.

In our application, the POT method proved superior as it better exploits
the information in the data sample. Being interested in long term behavior
rather than in short term forecasting, we favored an unconditional approach.
Finally, we find it is worthwhile computing interval estimates as they provide
additional information about the quality of the model fit.
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Gençay, R., Selçuk, F., and Ulugülyaǧci, A. (2003a). EVIM: a software package
for extreme value analysis in Matlab. Studies in Nonlinear Dynamics and
Econometrics, 5:213–239.
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