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Abstract

Insurance companies measure and manage capital
across a broad range of diverse business products.
Thus there is a need for the aggregation of the losses
from the various business lines whose risk distribu-
tions vary. Risk dependencies between losses from
different business lines have long been recognised in
the insurance industry as integral factors driving the
insurer’s aggregate loss process. However, in the past,
there has been limited attempt at adequately mod-
elling the dependence structure to be factored in the
aggregation process for capital determination pur-
poses. The current industry standard is to solely use
linear correlations to describe the dependence struc-
ture. While being computationally convenient and
straightforward to understand, linear correlations fail
to capture all the dependence structure that exist be-
tween losses from multiple business lines. Other more
general dependence modelling techniques such as cop-
ulas have become popular recently. In this paper, we
address the issue of the aggregation of risks using cop-
ula models. Copulas can be used to construct joint
multivariate distributions of the losses and provide a
rather flexible and realistic model of allowing for the
dependence structure, while separating the effects of
peculiar characteristics of the marginal distributions
such as thickness of tails. This modelling structure al-
lows us to explore the impact of dependencies of risks
on the total required economic capital. Using numer-
ical illustrations based on Australian general insur-
ance data, the sensitivities of the capital requirement
to the choice of the copula and other modelling as-
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sumptions are investigated. The related issue of the
diversification benefit from operating multiple busi-
ness lines in the context of aggregation of risks by
copulas is also explored. The key conclusion is that
there is a large variation in the capital requirement as
well as diversification benefit under different copula
assumptions. The results of this paper serve as a re-
minder to actuaries and other industry practitioners
of the significance of choosing an appropriate aggre-
gation model for capital purposes.

1 Introduction

Using the method of copulas, this paper examines the
impact of aggregating risks for purposes of comput-
ing economic capital for a multi-line insurance com-
pany. Insurance companies measure and manage cap-
ital across a broad range of diverse business products.
This usually requires the companies to aggregate var-
ious business products whose risk distributions vary,
that is, the loss distributions of the product lines are
different. In recent years, we find that modelling de-
pendencies using copulas have become popular in the
actuarial, insurance, and finance literature. As we
note in this paper, copulas may be used to construct
joint multivariate distribution of losses and are rather
flexible and realistic in terms of allowing a wide range
of dependence structure. At the same time, they pro-
vide the flexibility of separating the effects of peculiar
characteristics of the marginal distributions such as
thickness of tails. This modelling structure allows the
exploration of the impact of dependencies between
risks on the total required economic capital.

The setting of this paper will be for a general in-
surance company writing multiple lines of business.
In developing the analysis, we reasonably assume the
Australian market to be representative of the indus-
try in general due to its mature nature. Therefore,
many aspects of the paper relate to specific Aus-
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tralian market conditions.

From the insurer’s perspective, the purpose of cap-
ital is to provide a financial cushion for adverse sit-
uations when its insurance losses exceed or asset re-
turns fall below the levels expected. This cushion
further enhances the insurer’s ability to continue pay-
ing claims and in most instances, to continue writing
new business even under unfavourable financial cir-
cumstances. As well put by the International Actu-
arial Association (IAA) Insurer Solvency Assessment
Working Party (2004) which has been primarily re-
sponsible for developing solvency standards suitable
for global applications, capital is supposed to be a
“rainy day fund, so when bad things happen, there is
money to cover it.” There is no denying therefore that
the management of capital forms an integral part of
any insurance company’s risk management.

While there are many forms of capital such as cap-
ital required by regulatory authorities and capital re-
quired by rating agencies, this paper focuses on the
form of capital, namely economic capital, that pro-
vides a measure of the amount that the insurance
company should have at the minimum, to be able
to withstand both expected and unexpected future
losses. Economic capital is increasingly becoming a
significant area of interest for the internal reporting
and management of insurance companies. Mueller
(2004) emphasises the distinction between economic
and regulatory capital. Economic capital is the buffer
set aside against potential losses that reflect risks spe-
cific to the insurer while regulatory capital often in-
volve formulae based on industry averages and are
designed for market wide application. Therefore, eco-
nomic capital represents a far better measure of an
insurer’s true capital requirements. Giese (2003) also
gives a good overview of this concept and provides a
discussion on recent developments of models for its
calculation. Precise specification for the calculation
of economic capital varies from company to company.
However, it is generally accepted as the difference
between the expected value of a risk portfolio and
a worst tolerable value at a predetermined tolerable
level. This paper focuses on a fundamentally equiv-
alent definition which is the full amount of a worst
tolerable value of a risk portfolio.

This paper addresses the issue of determining the
aggregated economic capital of a multi-line insurance
company when the losses from the several lines of
business are dependent in some sense. We consider an
insurance company with n different lines of business,
each of which faces the risk of losing X1, Xo, ..., X,
at the end of a single period. The total company loss

is the random variable
Z=X1+Xo+ -+ X,

where the loss random vector X?' = (X1, X, ..., X,,)
has a dependency structure characterized by its joint
distribution using a copula function. It is well-known
that for a given joint distribution function, say F,
having marginal distributions Fi, ..., F},, there will al-
ways be a copula function C that links these mar-
ginals to their joint distribution as

F(z1,...,2,) =C(F1 (21),..., Fr (z)) .

This result is known as the Sklar’s Theorem (Sklar,
1959). For a proof, see Nelsen (1999).

For technical completeness, we shall assume that
X, is a random variable on a well-defined probability
space (2, F, P). Suppose further that these random
claims have a dependency structure characterised by
the joint distribution of the vector X”. Clearly, the
total capital required for the company, denoted by K,
can be determined by the risk measure

p:Z—R

which maps the risk Z to the set of real numbers R.
In short, K = p(Z) € R. Subsequently, we may also
be interested in the contribution to the total capital
of each line of business although this is beyond the
scope of this paper. For a thorough discussion of risk
measures such as the requirements of a coherent risk
measure, see Artzner et al. (1999).

Risk measures are meant to provide a degree of
magnitude of the severity of a potential loss in a port-
folio and are therefore meaningful amounts to hold to
cover for the risk exposure. Premium principles are
clear examples of risk measures, and these have been
extensively explored in Goovaerts et al. (1984). A
further reference is the chapter on premium princi-
ples in Kaas et al. (2001). Risk measures should not
only serve as a way to learn of the magnitude of risks,
but could also be used to compare different risks.

Risk measures must be simple to apply and easily
understood. It is for these purposes that we tended
to focus on two widely known and used risk measures:
the quantile risk measure, or fondly called the Value-
at-Risk (VaR) in financial economics, and the tail
conditional expectation (TCE) in this paper. Con-
sider a loss random variable whose distribution func-
tion we shall denote by Fx (+) and survivorship func-
tion by Fx (). The random loss X may refer to the
total claims for an insurance company or to the total
loss in a portfolio of investment for an individual or
institution.
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For 0 < ¢ < 1, the ¢-th quantile risk measure is
defined to be

VaR, (X) =inf (z |Fx (z) > q). (1)
The TCE is defined to be
TCE,(X)=E(X|X >zq) (2)

and is interpreted as the expected worst possible
loss. Given the loss will exceed a particular value
x4, generally referred to as the g-th quantile with
Fx (v4) = 1 — q, the TCE defined in (2) gives the
expected loss that can potentially be experienced.

To make a meaningful comparison of numerical val-
ues of the risk measures for sums of dependent ran-
dom variables, we draw on results of comonotonicity
which provides an indication of the strongest possible
positive dependence structure between random vari-
ables. See the papers of Dhaene et al. (2000a, 2000b)
on the concept of comonotonicity and their relation-
ships to various risk measures. We note the results
that the VaR and TCE risk measures for sums of
comonotonic random variables are in fact additive are
essential to the analysis in this paper.

Consider a comonotonic random vector, say
XOT = (X§, X§,..., X¢) and let the sum of the el-
ements of this vector be Z¢ = X{ + X$+-- -+ X¢.
It has been demonstrated by Dhaene et al. (2002a,
2002b) that VaR, (Z¢) = > i, VaR, (X¢) and that
TCE, (2°) = Y\, TCE, (X?).

As a matter of fact, one can therefore view this as
that each business line is a stand alone business hav-
ing to establish its own capital requirement. These
results therefore imply that in terms of economic cap-
ital, if the losses from each business line were per-
fectly dependent with one another, then the aggregate
economic capital required will simply be the sum of
the economic capital required for each business line.
However, there are diversification effects from writ-
ing several business lines that are less than perfectly
dependent. In this case, the dependence structure is
best specified using copulas.

If we then consider the VaR and TCE risk mea-
sures resulting from a particular copula structure, say
VaR, (Z) and TCE, (Z) respectively, then the differ-
ences resulting from these measures

VaR,(Z¢) —VaR,(Z) and TCE,(Z°) — TCE, (Z)

provide a measure of the degree of diversification
benefit derived from constructing the entire portfo-
lio. Note that we assume the same marginal dis-
tributions hold for the comonotonic copula as well
as the other non-comonotonic copula under consid-
eration. This difference will always be non-negative

for any risk measures that do indeed preserve stop-
loss order and that are additive for comonotonic risks.
Technically, the following result holds: any risk mea-
sure p that preserves stop-loss order and is additive
for comonotonic random variables is considered sub-
additive. That is,

n n

p(Z)<p(Z) = p(X)=> p(Xi).

i=1 i=1

For a proof, we suggest consultation of Vanduffel
(2004).

In other words, from the insurer’s perspective, the
diversification benefit is the difference in the risk
measure resulting from assuming comonotonic depen-
dence to something less than comonotonic. This dif-
ference represents the savings in economic capital re-
quired due to the diversification of adding business
lines to the portfolio.

It is well recognised in the insurance industry that
there is some form of dependence between losses or
claims occurring across the various business lines.
Some intuitive explanation to these dependencies has
been pointed out in Isaacs (2003). In the industry,
catastrophic events such as major storms and earth-
quakes usually simultaneously affect more than a sin-
gle line of business. Earthquake, for example, can
clearly damage both building or housing structures
and at the same time, other insured properties such
as automobiles. It is also believed that general in-
flation can cause simultaneous repercussions on sev-
eral lines of business, particularly long tail lines. Fur-
thermore, in some sense, a single insurance company
typically shares its company philosophy and strategy
across the various business lines. There is, as a conse-
quence, some common consistency in the implemen-
tation of underwriting rules and guidelines as well as
in the establishment of reserves and capital. These
consistencies may explain the possible dependencies
that may exist across the business lines.

Dependencies have yet to be accurately factored
into the capital calculations. The theoretical basis of
incorporating the correlation structure is sometimes
not well understood. Some argue that the calcula-
tions may be based on the multivariate Normal as-
sumption, but even so, this assumption typically re-
stricts dependencies of the business lines in the linear
sense. This is because correlation explains only lin-
ear dependence, but in insurance as well as in some
other financial products, other types of dependencies
may exist. Embrechts et al. (1999) and Priest (2003)
both provide such an argument that correlation can
be a source of confusion in modelling dependencies.
In an example illustrated by Embrechts et al. (1999),

Page 3



it is possible to have two different probability mod-
els that can result from having equal marginals and
equal correlation structure. It is for this reason that
the authors are proponents for modelling a wide de-
pendence structure by specifying the structure of the
multivariate distribution function with copulas. As a
matter of fact, the dependence of a multivariate ran-
dom vector is entirely contained in its copula, and
as noted by earlier researchers, copulas describe the
“scale invariant” dependencies that exist between the
elements of the random vector.

The rest of the paper has been structured as fol-
lows. Section 2 provides the necessary technical back-
ground on copulas. Section 3 discusses the methodol-
ogy and assumptions used in developing the numer-
ical simulation produced in Section 4 where the nu-
merical results of the simulation and their discussion
are presented. We conclude this paper in Section 5
with a few remarks on the findings, their limitations
and potential direction for future research on the sub-
ject of aggregating risks for the purpose of setting
capital requirements.

2 Aggregating Risks using

Copulas

Today, there are several ongoing discussions about
the implementation of copula models to account for
possible dependencies between insurance risks. These
are part of wider analyses into capital requirements
that have been initiated by various professional bod-
ies. First, there is the recent report, that is being
circulated globally, by the International Actuarial As-
sociation (IAA), and assembled by TAA’s Insurer Sol-
vency Assessment Working Party (IAA, 2004). Sim-
ilarly, a British version of such an assessment titled
“Risk and Capital Assessment and Supervision in Fi-
nancial Firms” (Creedon et al., 2003) and a Euro-
pean Union version titled “Solvency II” is also being
circulated. We note that these reports generally ad-
vocates the importance of recognising and modelling
dependencies of multiple risks using copulas. In this
section, we provide some introductory technical back-
ground on the subject of copulas.

As a mathematical tool to model dependencies,
copulas are not a new invention but is a borrowed
concept from statistics. Used as a tool for under-
standing relationships among multivariate outcomes,
a copula is a function that links, or couples univariate
marginals to their full multivariate distribution. Cop-
ulas were introduced by Sklar (1959) in the context of
probabilistic metric spaces, a branch of mathematics

that deals with measures. Carriere (2003) provides a
short history and the basic concepts of copulas. There
is a rapidly developing literature on the statistical
properties and applications of copulas. As pointed
out in Frees and Valdez (1998), there is a variety of
applications of this tool in actuarial science. See also
Genest and MacKay (1986a, 1986b), Joe (1997), and
Nelsen (1999) for further understanding of copulas.

Consider u = (uq, ..., u,) belonging to the n-cube
[0,1]". A copula, C(u), is a function, with sup-
port [0,1]" and range [0, 1], that is a multivariate cu-
mulative distribution function whose univariate mar-
ginals are uniform U (0,1). As a consequence, we
see that C (uq,...,ux_1,0,Ugy1, ..., u,) = 0 and that
C(1,..,1up,1,..,1) =u for all k =1,2,...,n. Any
copula function C' is therefore the distribution of a
multivariate uniform random vector.

The significance of copulas in examining the de-
pendence structure of X7, Xo,..., X, comes from a
result, mainly due to Sklar (1959). It relates the
marginal distribution functions to copulas. Suppose
X = (X1, X, ...,Xn)T is a random vector with joint
distribution function F. According to Sklar (1959),
there exists a copula function C such that

F(:cl, ...,I'H) = C(Fl (1'1) y aFn (xn))

where Fj, is the kth univariate marginal distribution
function, for k£ = 1,2, ...,n. The function C need not
be unique, but it is unique if the univariate marginals
are absolutely continuous. For absolutely continuous
univariate marginals, the unique copula function is
clearly

C (Ugy.eey Up,) :F(Fl_1 (z1), ..., F71 (xn)) (3)

where F ', ..., F;! denote the quantile functions of
the univariate marginals F,..., F,,. From equation
(3), it becomes apparent how the copula “links” or
“couples” the joint distribution to its marginals.

As pointed out and proven by Embrechts et al.
(1999), one interesting and attractive feature of the
copula representation of dependence which is par-
ticularly useful for financial applications, is the in-
variance property of copulas. Suppose the random
vector X has copula representation C and the ran-
dom vector T'(X) be a transformation of X. That
is, T(X) = (T1(X1), T3 (X2), ..., Tn (X))" where
T; are non-decreasing and continuous functions, for
i =1,2,...,mn. Then T (X) also has the same copula
representation C' as X.

In the remainder of this section, we discuss, with
examples, three classes of copulas: copulas of extreme
dependence, Archimedean copulas and elliptical cop-
ulas.
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2.1 Copulas of Extreme Dependence

To begin, an example of a copula is the independence
copula which is given by

C (U, ey Up) = Uy -+ + * Uy, (4)

and is the copula associated with the joint distribu-
tion of independent random variables X7, Xs, ..., X,,.
This copula is often denoted simply by II (u).

The Frechet bounds for copulas are well-known re-
sults in mathematical statistics. The main results are
given below and one is directed to consult Frechet
(1951, 1957) for more details and discussions of these
bounds. Define

M (u) = min (uq, ..., uy)
and
W (u) = max (u; + ... + up, —n+1,0).
Then it is always true that for all uin [0,1]", we have
W) <C(u) <M (u).

For all n > 2, the function M (u) satisfies defini-
tion of a copula. For m > 3, the function W (u) is
not a copula. The copula M (u) is a comonotonic
copula and in fact, describes perfect positive depen-
dence. For any random variable U that is uniform
on [0,1], the random vector (U, U, ...,U)" has distri-
bution function described by the comonotonic cop-
ula. Furthermore, if the random vector X has the
comonotonic copula representation, then we say that
its elements X7, Xo, ..., X;, are comonotonic random
variables. Sometimes, it is convenient to place a su-
perscript ¢ on the random variables to denote they
are comonotonic, i.e., X7, X§,...,X:. The concept
of comonotonicity has had tremendous applications
in actuarial science, particularly in obtaining bounds
for distribution functions of random variables. See
Dhaene et al. (2002a, 2002b) for many interesting ex-
amples and illustrative applications of comonotonic-

ity.

2.2 Archimedean Copulas

The use of Lapace transforms can lead us to construct
a special type of copulas known as Archimedean cop-
ulas. This class of copulas is well discussed in Nelsen
(1999). More formally, we say that a copula function
C is Archimedean if it can be written in the form

C (1, uz, ooy tin) = 7 [0 (wr) + -+ 4 (un)] - (5)

for all 0 < wuq,...,up, < 1 and for some continuous
function v (often called the generator) satisfying:

(i) ¢ (1) =0;
(ii) v is strictly decreasing and convex. That is, for
allt € (0,1), n (t) < 0 and s (t) > 0; and

(iif) ¢! is completely monotonic on [0, o).

The “completely monotonic” requirement is a nec-
essary and sufficient condition to extend Archimedean
copulas into higher than two dimensions. See Nelsen
(1999), for example, for an interesting proof of this
proposition. A function g (t) is said to be completely
monotonic on a specific interval I if it is continuous
on the interval and has derivatives of all orders that
alternate in signs. This alternating signs requirement
implies that we must have (—1)F %g(t) > 0, for
k=1,2,...,n.

This class of copulas has also been extensively stud-
ied by Genest and Mackay (1986) who further demon-
strate that this class of copulas possess several desir-
able and interesting properties that make them at-
tractive for statistical inference and simulation. In
addition, they are useful for extending copulas to
higher dimensions. Since the copula is completely
specified once the Archimedean generator is known,
another advantage of this Archimedean representa-
tion is that when searching for a copula suitable to de-
scribe random variables, we reduce the task to search-
ing for a single univariate function.

Example 1: Gumbel-Hougaard Copula

Using the generator defined by 1 (t) = (—logt)®,
this family has members with the following copula
representation:

n 1/
C(Ul,Ug,...,Un) =exp4§ — lz (1Ogul)a]
i=1

(6)
It is easy to show that in this case, the inverse of the
generator is ¢! (s) = exp (—sl/a) and is completely
monotonic for o > 1 making the representation in (6)
a valid multivariate copula function.

Example 2: Frank Copula
The Frank copula has the generator v (t) =

e*OL —
resentation is:

—at __ 1
—log (%) so that its multivariate copula rep-

[T, (e 1)
(e_a _ 1)7L—1
(7)
The inverse of the generator can be expressed as

P (s) = —Llog[l+ e (e7® —1)] and is com-
pletely monotonic for & > 0. See Frank (1979) and

1
C(u1,ug, ..., tly) = —Elog 1+
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Genest (1987) for details of the characteristics of this
copula.

Example 3: Cook-Johnson Copula

Another important example of an Archimedean
copula is the Cook-Johnson copula whose generator
is defined by v (t) = t~* — 1 so that its multivariate
copula representation is:

-1/«

C(u17u27"'7un): lzu:an+1 (8)
i=1

The inverse of the generator can be expressed as
Yl (s) = (t+ 1)_1/a and is completely monotonic
for o > 0. These are sometimes called Clayton copu-
las and this family has been shown to be important in
multivariate extreme value theory. See, for example,
Juri and Wiithrich (2002) for some useful asymptotic
results leading to Clayton copulas.

2.3 Elliptical Copulas

Another very important class of copulas that has
been receiving attention in financial applications is
the class of Elliptical copulas. Elliptical copulas are
generally defined as copulas of elliptical distributions.
There are a number of equivalent ways to define ran-
dom vectors that belong to the class of elliptical dis-
tributions.

The n-dimensional vector X 1is said to have
a multivariate elliptical distribution, written as
X E, (1, X,9), if its characteristic function has the
form

px (t) = exp(it’ 1) - ¢ (5t7 St)

for some column-vector w, n X n positive-definite ma-
trix X, and some function ¢(t) called the character-
istic generator. Members of the elliptical class has a
special stochastic representation as follows. Assum-
ing X « E,, (i, 3,0) with rank (3) = r < n, we can
write the elliptical random vector as

X = p+RVZU

where U is a uniformly distributed random vector
on {u€ [—1,1]"||ul| =1}, the unit sphere, and R
is a non-negative random variable independent of U.
The following references, Fang et al. (1987) and Em-
brechts et al. (1999), provide comprehensive discus-
sions on elliptical distributions. Two further refer-
ences for elliptical distributions are Landsman and
Valdez (2003) and Valdez and Chernih (2003). The
reader is encouraged to consult these references for
further study about the interesting properties of this
class of distributions.

We now give some examples of copulas generated
from this class of distributions.

Example 1: Gaussian (Normal) Copula
The copula generated by a multivariate Normal dis-
tribution with linear correlation matrix 3 is given by

C (U, s ttn) = H (@' (1), .., @1 (un))

where H is the joint distribution function of a stan-
dard Normal random vector expressed as

H(x1, . Tn) = /Z/Zl/zm

1
X exp <§ZT21Z)

dz - - dzy, (9)

and ! (+) is the inverse of a standard Normal distri-
bution and ® (z) = [~ —= e~ 2w, Tt is critical
to note that Normal copulas have zero tail depen-
dence. See Embrechts et al. (2001) for a proof of this

result.

Example 2: Student-t Copula

The copula generated by a multivariate Student-t
distribution with linear correlation matrix 3 is given
by

C (uty ey un) = Ty (£ (ur) ooty ! (un))

where T is the joint distribution function of a stan-
dard Student-t random vector expressed as

- T (utn) R A
Ty (21, ey Ty) = r(3) (U’/’T)n/zm/m/m

T 1 —(v+n)/2
. / (1 + —zT21z>
oo v

dz1 -+ - dzy, (10)

and t;!(-) is the inverse of a standard Student-t

. _r* Lt . 1 ;
with t, (2) = [~ NECIRE o= v_;_ldz. Unlike

Gaussian copulas, Student-t copulas have non-zero
tail dependence. Again, a proof can be found in Em-
brechts et al. (2001) for this result.

Example 3: Cauchy Copula

The Cauchy copula is actually a special case of
the Student-t copula where the degrees of freedom is
v = 1. Thus, the copula generated by a multivariate
Cauchy distribution with linear correlation matrix 3
is given by

C(ur, eyun) =T1 (87 (w1) s o t7 " (un))
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where 73 then is the joint distribution function of a
standard Cauchy random vector expressed as

= = el
| w (14275 1) "2

dzy -+ - dzp (11)

T1 (CL‘l,...

and ¢! () is the inverse of a standard Cauchy distri-

2
bution with ¢; (z) = [~ L. (1—|+w) dw. Due to its
relationship with the Student-t copulas, we deduce
that Cauchy copulas also have non-zero tail depen-

dence.

Embrechts et al. (2001) provides overviews of all
three examples of elliptical copulas and the reader is
directed to that paper for further discussion.

3 Numerical Simulation

The primary goal of this paper is to assess the eco-
nomic capital required for a multi-line insurer under
various copula assumptions. Also, we try to quantify
the diversification benefit for the same insurer from
holding capital against the aggregate loss compared
to holding the aggregate capital against losses from
each business line under the different copulas. We
discuss the existence of this diversification benefit in
terms of capital in the Introduction section and have
suggested a reference in Vanduffel (2004) for a proof.

A SAS program written using the Interactive Ma-
trix Language (IML) procedure was developed to sim-
ulate and aggregate the prospective one year loss ratio
distributions for each business line. For each line of
business, 1,000 loss ratio simulations were generated
for each copula to represent the sampling distribu-
tion. Appendix A provides the algorithm used for
this simulation and the SAS program code is docu-
mented in Tang (2004).

The simulation performed in this paper have been
motivated by historical data of losses for the aggre-
gate Australian industry. First, we note that our sim-
ulation is based on loss ratios. The gross loss ratio
(LR) defined as the ratio of the gross incurred claims
and earned premium is a proxy for loss variables to
make the measurement dimension invariant. The loss
ratio for the period t derived from business unit 7 is
defined as
IC;

EP.;

where IC;; and EP;; denote respectively the in-
curred claims and earned premium from line ¢ during

LR;; =

period t. The loss ratio is in essence a standardised
claims measure, in this case by a measure of the expo-
sure to risk - gross earned premium. This standard-
isation allows valid comparison between losses from
business lines with different levels of risk exposure.

For each copula, we calculate the distribution of
the aggregate loss ratios at the company level taking
the weighted average of each line’s loss ratios accord-
ing to pre-specified proportion of earned premium.
The weighted averages are valid representations of the
aggregate loss ratios due to the following argument.
Suppose the following additional notation: LR; de-
notes the aggregate loss ratio; IC; denotes the aggre-
gate incurred claims; and E'P; denotes the aggregate
earned premium; at time ¢, and there are n lines of
business in total.

n IClt
D im1 =5 * EPiy
Zi:lEPiﬂf

EP; S
= LR; LR; i
Z v ; Wiy

i~ 1 Zgzl ICiy _
EP, S ED,

P

where w; ; = Z?‘i P represents the weight of line

i in period t by earned premium. Figure 1 displays
the time series of the observed historical loss ratios.

3.1 Data Supporting Assumptions
Used for Simulation

Historical loss ratios for the aggregate Australian in-
dustry is used to derive the inter business line correla-
tion and marginal distribution required as inputs for
the parameterisation of the various copulas. In other
words, the Australian industry is chosen as a proxy
for all general insurance industries. This is a reason-
able assumption due to three factors. First, the Aus-
tralian industry is mature by global standards and of-
fers a comprehensive, if not exhaustive range of prod-
ucts. Second, despite the country’s relatively small
population, the Australian general insurance market
is disproportionally large on a per capita basis, ac-
counting for several percentage points of the global
market. This leads to Australian practices being rep-
resentative of world standards and in fact, are often at
the forefront of innovations in the industry. Finally,
despite some concern over the degree of concentration
in the current market due to rationalisation across
the industry over the past decade, historically over
the period from which the data was collected, there
has been a reasonable amount of actively operating
issuers, and hence competition, for a market of this
size.
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Figure 2: Distributions of Historical Loss Ratios
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3.1.1 Data Source and Collection Period

All historical data used in this paper are presented in
the various semi-annual issues of APRA and former
Office of the Insurance Commissioner publications as
listed below.

e APRA, Selected Statistics on the General Insur-
ance Industry, December 1996 — June 2002

e Office of the Insurance Commissioner, Selected
Statistics on the General Insurance Industry —
Total Industry In and Outside of Australia, De-
cember 1992 — June 1996

Except where indicated, these publications report
aggregate general insurance industry data that have
been reported during the 12 month period prior to
the publication dates of 30 June and 31 December of
each year.

The Office of the Insurance Commissioner pub-
lished similar industry statistics dating back to the
1970s. However, we find the data format prior to De-
cember 1992 is materially different to all subsequent
periods and hence decided not to include these for
use in this paper. The reason for this difference was
due to a change in reporting procedures by the insur-
ance companies to the regulatory authority and the
details can be found in the June 1992 issue of the
Selected Statistics (Office of the Insurance Commis-
sioner, 1992).

Between December 1992 and June 2002, data for 19
periods, from June and December of each year were
collected. At the time of writing, access to the De-
cember 1995 issue of the Selected Statistics was un-
available and hence there is a discontinuity of the data
at this date. Also worthy of note are the data points
from December 1992 and November 1997 (substitut-
ing December 1997). The data for December 1992
is for the 6 month period ending 31 December 1992
inclusive of 30 June 1992, and the data for November
1997 is for the 11 month period ending 30 Novem-
ber 1997. These are different from all the other data
points in that they did not cover a full 12 month pe-
riod. In particular, the difference is quantitatively
significant for November 1997 due to its exclusion of
the month of December during which numerous com-
panies report. For this period, incurred claims and
earned premium were respectively 42% and 40% lower
than those of the subsequent period (June 1998). We
do not omit either of these anomalies in the data set
as the quantity of interest is ultimately the loss ratio,
which as a ratio between incurred claims and earned

Line of Earned Market
business Category Premium * | Share

Motor Short tail 4,830,180 | 31.1%
Household | Short tail 2,460,770 15.8%
Fire & ISR | Intermed. tail | 1,655,224 10.6%
Liability Long tail 2,429,945 | 15.6%
CTP Long tail 1,975,778 12.7%

Source: APRA (2002); * (A$,000)

Table 1: Business Line Assumptions and their Market
Share

premium, is not materially impacted on by variations
in the length of time coverage.

Since in general, annual data collected semi-
annually has been used, there was some initial con-
cern about the overlapping of the collection period
and that this will distort the dependence structure.
For example, the June 1998 data refers to the period
from 1 July 1997 to 30 June 1998 whereas the De-
cember 1998 data refers to the period from 1 January
1998 to 31 December 1998, hence the period between
1 January 1998 and 30 June 1998 are included in both
of the data points. On further consideration, we de-
cided that this will not impact on the results as only
the characteristics (correlation and distribution) be-
tween lines rather than serially through time are of
concern in this paper.

3.1.2 Mapping to Business Lines

We decided that for the purpose of this paper the
general insurance industry is to consist of a total
of five business lines. This number of lines is large
enough to allow for analysis in adequate depth with-
out causing unnecessary complications in the analysis
process. In order to create a realistic and represen-
tative reflection of the industry, the top five business
lines by earned premium from the June 2002 Selected
Statistics (APRA, 2002) are chosen for analysis. A
broad mix of business lines resulted from this selec-
tion criterion which also fulfils the requirement for
a good representation of the industry. Of the five
business lines chosen, two are short tail, one inter-
mediate tail and two are long tail lines. This selec-
tion criterion is broadly in line with the methodology
of previous studies where similar empirical data by
business lines were used. For an example, see Sherris
and Sutherland-Wong (2004). Table 1 outlines the
business lines assumed and their market share. This
selection represents approximately 86% (excluding in-
wards reinsurance) of the aggregate market activities
as measured by earned premium and hence agrees
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[ToB [ M _H F& L CTP |
M | 100

H 50 100

F&I | 50 75 100

L 54 35 77 100

CTP | 21 -38 -38 -2 100

Legend: M = motor; H=household;
F&I = Fire & ISR; L = liability

Table 2: Inferred Correlation Matrix

with the objective of creating a realistic reflection of
the entire industry.

3.2 Correlation Matrix

We require a linear correlation matrix for specifica-
tion of the copulas . We begin with an empirical
correlation matrix inferred from the historical data
discussed in the previous subsection, we call this the
inferred matrix. The inferred matrix was deemed un-
satisfactory and a second correlation matrix is con-
sidered necessary to give a subjectively more accu-
rate representation of reality. We call this variation
the alternative matrix and it is the correlation ma-
trix we assume in the base scenario. Table 2 displays
the linear correlations between the five business lines
that are implied by the historical data.

The overall levels of correlation between business
lines are generally higher than that can be intuitively
expected. According to practising actuaries from
Trowbridge Consulting, inter-line claims correlations
in excess of 60% are highly unlikely (Collings and
White, 2001). Of the ten pair-wise correlations in-
ferred from the loss ratios data, two were above this
60% threshold while a further three were between 50%
and 60%. While high correlations may be justified for
certain pairs of lines whose businesses are similar in
nature, in general, the high correlation values are in
contrary to common perception.

Further, we note the three negative correlations be-
tween losses from the CTP and household, fire & ISR,
and liability lines. Actuaries at Trowbridge Consult-
ing hold the view that negative correlation between
business lines are unlikely (Collings and White, 2001).
It can be argued that the CTP line, providing cover
for bodily injuries due to motor accidents, should in
theory be uncorrelated with both the household and
fire & ISR lines which covers damage to stationery
property. In the pairing of CTP and liability, one
would reasonably expect a positive relationship to ex-
ist as both of these lines essentially provide liability
cover. We should take particular note of the ampli-

| Pairs | Inferred | Comment
M/H 50% Excessive
M/F&I 50% Excessive
M/L 54% Excessive
M/CTP 21% Reasonable
H/F&I 5% Excessive
H/L 35% Should be uncorrelated
H/CTP -38% | Should be uncorrelated
F&I/L 7% Excessive
F&I/CTP | -38% | Should be uncorrelated
L/CTP -2% Should be positive

Table 3: Individual Pair-wise Inferred Correlation
Commentary

[ToB [ M _H F&l L CTP |
M | 100

H 20 100

F&I | 10 10 100

L 0 0 0 100

CTP |25 0 0 25 100

Table 4: Tillinghast Correlation Matrix

fied diversification implications of the negative cor-
relations. Table 3 provides the commentary for each
individual pair-wise inferred correlation values.

The many counter-intuitive values in the inferred
matrix appears to have been due to the lack of a rea-
sonable amount of data. The inferred matrix is based
on only 19 annual loss ratio data points and this leads
to a higher volatility of each correlation estimate, and
hence lower accuracy of the matrix as a whole in com-
parison to the desired situation. Given its inaccuracy,
we decide to derive an alternative correlation matrix
by including subjective views on what the true pair-
wise correlations should be.

The alternative matrix is derived with reference to
the outstanding claims correlation matrices from the
Tillinghast (Bateup and Reed, 2001) and Trowbridge
(Collings and White, 2001) reports. Collectively, we
call these the industry reports. The original inferred
matrix is also considered as a minor influence of the
final choice of each pair-wise correlation value. Tables
4 and 5 are the Tillinghast and Trowbridge correla-
tion matrices respectively.

Table 6 presents the resultant alternative matrix.
We again emphasise that the pair-wise correlations
are subjectively determined and consequently are all
positive in sign. For a comprehensive discussion of
the justification of this choice of correlation matrix,
we suggest the reader to consult Tang (2004).
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[ToB [ M _H F& L CTP |
M | 100

H 20 100

F&I | 20 40 100

L 0 0 0 100
CTP| 0 0 0 20 100

Table 5: Trowbridge Correlation Matrix

[ToB [ M _H F& L CTP |
M | 100

H 20 100

F&I | 20 50 100

L 10 0 20 100

CTP| 20 0 0 25 100

| Line of Business | Marginal Distribution |

Motor Gamma
Household Gamma
Fire & ISR Log-normal
Liability Pareto
CTP Pareto

Table 7: Marginal Distribution Assumptions Initially

Considered

Table 6: Alternative Correlation Matrix

3.3 DMarginal Distributions and their
Parameterisation

The marginal distributions of each business line’s loss
are essential inputs in the simulation algorithm using
copulas. In this subsection, we detail the choice of
distributions, estimate the required parameters and
discuss the issues that arose out of this process.

The variables of interest are the annual loss ratios
from each business line and we assume they follow
a predetermined distribution. As the loss ratios es-
sentially represent the magnitude of the underwriting
loss from each business line, their distributions are ex-
pected to behave similarly to claim severity distribu-
tions. The effect of the fluctuation in claim frequency
on the distribution is removed by the standardisation
process in the calculation of the loss ratios.

The risks that each line of business covers vary
greatly in general insurance. Therefore, the distri-
butional behaviour of each line’s loss will also differ
to one another. This requires us to select appropri-
ate distributional assumptions on an individual line
basis. In this paper, the main concern is the capi-
tal requirement as measured by two variations of the
quantile risk measure, as outlined in Section 1, and is
largely dependent on the right tail behaviour of the
loss distribution. Therefore, in the selection of the
marginals, it is imperative that the tail behaviour
of the theoretical distributions are matched appro-
priately with that of each business line’s losses. We
consider three commonly used severity distributions:
Pareto which has the heaviest tail weight, followed by
Log-normal and finally Gamma.

Based on the histograms of each business line’s loss
ratio distributions from historical data, shown in Fig-

ure 2, a ranking of the lines in order of increasing tail
weight is determined. We map these to the three
distributions under consideration to arrive at an ini-
tial set of distribution choices. These are displayed
in Table 7. Clearly, both the motor and household
lines display very thin tails so the Gamma distrib-
ution which has the lightest tail weight of the three
candidates is suitable for these lines. Fire & ISR loss
ratios displays a distinctly heavier tail than the first
two lines and hence the heavier tailed Log-normal dis-
tribution is preferred over the Gamma in this case.
The remaining lines of Liability and CTP displays
extremely heavy tail behaviour and noting the com-
ment that Hart et al. (1996) makes about the possible
"inadequacy of fit" of the Log-normal distribution at
extreme high values, the Pareto distribution is chosen
for these classes.

Each of the chosen distributions are fully specified
by two parameters and there are various statistical
techniques that can be used for their estimation. The
two most commonly used methods are the method of
moments and method of maximum liklihood. The
method of moments rely on matching the moments
of the theoretical distribution with those of the sam-
pling distribution represented by the historical loss
ratios. On the other hand, the method of maximum
liklihood entails a theoretical approach where the lik-
lihood of observing the sampling distribution is max-
imised. Theoretically, the method of maximum likli-
hood produces estimates with desirable features such
as being unbiased and efficient. However, the amount
of data that constitutes the sampling distribution in
our present case is very small (19 loss ratio observa-
tions for each business line), hence the difference be-
tween the two methods will not be pronounced. Due
to the simpler numeric evaluation, we decide to use
the method of moments for the purpose of this paper.

Table 8 summarises the key properties of the three
parametric distributions considered as the marginals
for the various business lines. In the table, the func-
tion T (+) refers to the gamma function defined by

F(a):/ e u"du.
0
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Table 8: Summary of Marginal Distributions Used

Family

Density, constraints

Mean E (X) | Variance Var (X)

Bae—ﬁxxa—l
I'(a) 7
a,>0,z>0

Gamma(a, )

_l(lnxq )2
e 2 o
Log-normal(p,0) | ——————,
xo 2w

ab®

(x+b)a—1’
a,b>0,2>0

Pareto(a,b)

peRo>0z>0

a o
g G
o2 2 2
el e2hto (e" —1)

b ab?
a—1 (a—1)*(a—2)

| LoB | Marginal | Estimated Parameters |
M Gamma o = 354.4774, 5 = 366.2363
H Gamma o = 80.3886, § = 138.0149
F&I | Log-normal | = —0.4519, o = 0.3712

L Log-normal | p = 0.0862, c = 0.1882

CTP | Log-normal | p = 0.0097, o0 = 0.2169

Table 9: Final Marginal Distribution and Parameter
Assumptions

3.4 The Choice of Copulas

We propose to analyse the effect on capital require-
ments by aggregating losses using copulas and further
investigate the sensitivity of results to the choice of
copula. Therefore, the selection of copulas we use are
of paramount importance to the results. We limit our
choices for copula within the class of elliptical copu-
las. There are several merits to these choices. Ellip-
tical copulas allow us to specify a variance-covariance
structure which in some sense provides the linear de-
pendence between the random variables. Except for
the Normal copula which gives zero tail dependence,
elliptical copulas allow for non-zero tail dependence.
As capital requirements based on the VaR and TCE
risk measures are concerned with the tails of the loss
distribution, tail dependence plays a significant role
in determining the correct capital. Elliptical copulas
provide also the flexibility of simple simulation pro-
cedures. Isaacs (2003) explored using the Gumbel
copula to model dependence between multiple busi-
ness lines. While the Gumbel copula allows heavy
tail dependence structures which is ideal for capital
considerations, it is not flexible enough to capture dif-

ferences in pair-wise dependence structures. To sim-
ulate variables under a Gumbel copula, only two lines
can be generated at any one time and dependencies
between one of these lines and any other line outside
the pair cannot be explicitly specified. This feature is
in general true for copulas in the Archimedean class,
simply because when specifying higher than two di-
mensional copulas, there is always only a single para-
meter describing the dependence. Since we are con-
cerned with studying a more realistic multi-line op-
eration with five business lines, each with a distinct
dependence structure with one another, we prefer to
use the family of more flexible copulas — elliptical cop-
ulas.

The elliptical copulas we consider in this paper are:

o Gaussian (Normal) Copula

o Student-t Copula (with n = 3 and 10 degrees of
freedom)

e Cauchy Copula

All three elliptical copulas have been discussed in
Section 2 where a discussion on copulas have been
made including an outline of the forms of these cop-
ulas. Simulation procedures from these copulas are
summarised in Appendix A. We choose the Normal
copula as it is a very popular choice in practice due to
the common assumption of normality in many finan-
cial modelling applications. It is also very well under-
stood and tested in a diverse range of applications.
However, it does not allow for tail dependence and
as such becomes a less favourable candidate for cap-
ital applications. We are currently seeing a growing
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Densities

household
liability
fire & ISR

literature on the usefulness of the Student-t copula
as an alternative to the Normal copula for modelling
financial risks.

notority is associated with its ability to incorporate
tail dependence. When describing insurance losses,

0l o 10 15 20
Figure 3: Marginal Densities
[n\p| 0 0.5 0.9 1]
1 0.29 0.5 0.78 1
3 0.12 0.31 0.67 1
The main impetus for the Student-t copula’s rise to 10 0.01 0.08 0.46 1
00 0 0 0 1
Table 10: Coefficients of Tail Dependence for

we are usually concerned with (upper) tail depen-
dence and a common way to define this (upper) tail
dependence is as follows. For any pair of random
variables, say X and Y, the coefficient of (upper) tail
dependence is defined as

A= lim P (Y>F ' (o)X >F () (12)

-

provided this limit exists. See Embrechts et al. (1999)
for details on the expression in (12). If X and Y has
the Student-t copula with a correlation of p, then it
can be shown that

=21, <\/n+ 11— p//1 +p)

where %,, denotes the tail of a univariate Student-t
distribution with n degrees of freedom. It is to be
noted also that the Normal copula is in fact, a limit-
ing case (as n — 00) of the Student-t copula. We also
noted in Chapter 3, that the Cauchy copula is in fact
a special case of the Student-t copula with one degree
of freedom. Therefore, in practice, we have chosen to
aggregate the losses across business lines using four
variations of the Student-t copula with different de-
grees of freedom.

Student-t Copulas

Theoretically, the lower the degree of freedom, the
heavier is the tail dependence for a Student-t copula.
See again, Embrechts et al. (1999). Table 10 presents
the coefficient of tail dependence, A, for a selection of
correlation values, p, and degrees of freedom parame-
ters, n, that are relevant to our paper. Therefore, of
the copulas chosen for this paper, we expect the rank
in terms of increasing tail dependence to be the Nor-
mal, Student-t (3 df), Student-t (10 df) and Cauchy
copula. We expect heavier tail dependence copulas
to lead to heavier, or thicker, tails in the aggregate
loss distribution. This can be explained by the fact
that under heavy tail dependence, extreme losses oc-
cur together more frequently, leading to more extreme
aggregate losses in general. Therefore, we expect the
heavier the tail dependence of the copula, the higher
will be the level of capital requirement.

The risk measures, or amounts therefore of capital
required, are computed based on a specified level of
probability. For our purposes, we have chosen either
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q = 97.5% or ¢ = 99.5%. These arbitrary confidence
levels are chosen to be consistent with the range im-
plied by current industry practice for capital purposes
and are confirmed with practising actuaries. In par-
ticular, ¢ = 99.5% is chosen to facilitate the consis-
tent comparison of our results with that of APRA’s
Prescribed Method (PM) in order to answer research
question 6 of this paper.

Given the distribution of prospective loss ratios
from the output of the SAS program, we can read-
ily calculate the VaR and TCE at the chosen levels of
q in Microsoft Excel. The VaR measure is calculated
as the point on the ranked loss ratios distribution
that corresponds to the particular level of q. That
is, for each output distribution, of the 1000 simulated
loss ratios, VaRgyr 59 corresponds to the 975th value
if the distribution is ranked in increasing magnitude.
Similarly, VaRgg 59 corresponds to the 995th value in
the same ranked distribution. To calculate the TCE,
we simply take the arithmetic average, or expected
value, of the values subsequent to the value corre-
sponding to the VaR measure. Therefore, TC FEg7 59
is calculated as the average of the 976th to 1000th
value of the ranked loss ratios distribution and sim-
ilarly, TC Eg7 59, is calculated as the average of the
996th to 1000th value of teh ranked loss ratios distri-
bution. The respective VaR and TCE measures can
be calculated for the distribution of loss ratios for
each business line as well as for the insurer’s portfolio
in aggregate. Since the SAS program automatically
aggregates the loss ratios from each business line, the
procedure for calculating the VaR and TCE measure
does not change for the aggregate portfolio case. That
is, the procedure is simply applied to the distribution
of loss ratios for the aggregate portfolio rather than
the distribution for each business line.

4 Results of Simulation

Using the procedure as outlined in the previous sec-
tion, for each of the five chosen copula models, we
generated 1,000 observations of the loss ratios for each
business line. These represent the loss, per unit of
premium, distribution for each business line under
the different copula assumptions.

4.1 The Simulated Loss Ratios

First, let us examine the resulting loss ratios, for each
copula model, in the case where we assume the alter-
native correlation matrix as described in section 3.2.
On their own, each line of business do not lead to
any meaningful results in terms of the present inter-

est of capital requirements. However, as this paper is
concerned with the dependence structure of the losses
arising from the various lines of business, it is worth-
while to observe the implied dependence level in each
case. As a visual guide, we present Figures 4 to 8 for
which each provide a scatter plot of the loss ratios
of the business lines for each of the copula models
considered. These scatter plots provide a much bet-
ter idea of the reasonableness of the simulated losses
arising from the various dependence structures being
considered. We outline the key observations from vi-
sually inspecting these plots for each copula below.
Overall, the simulated loss ratios under all copulas
conform to our expectations in terms of dependence
structure, in particular, in respect of the level of tail
dependence.

4.1.1 Normal Copula

Figure 4 clearly demonstrates that the dependence
across losses in each business line is of a linear na-
ture. For example, in pairs of lines that were as-
signed a high linear correlation value such as house-
hold/fire & ISR (50%), the scatter plot results in a
positively sloping linear pattern. This is reasonable
given that the Normal copula theoretically captures
linear dependence. We further observe that for each
pair, the observations tend to bunch up around the
centre of the distribution, indicating strongest depen-
dence around the mean and there is little evidence to
suggest any form of tail dependence. This is also valid
as in fact, the tail dependence measure for the Nor-
mal copula is zero if the pair-wise linear correlations
are less than 1.

4.1.2 Student-t Copula (3 df)

Compared to the Normal copula case, Figure 5 lacks
the overall linearity in the pair-wise associations be-
cause the Student-t copula also captures other forms
of dependence as we have noted earlier. For the ma-
jority of the pairs, the observations are scattered ran-
domly around the centre of the distribution. How-
ever in this case, we observe stronger evidence of tail
dependence especially in the upper tail of the distrib-
ution where a large loss for one line results in a simi-
larly large loss for the other line. This is expected as
the Student-t copula allows for tail dependence. See
for example, the pair-wise plots for the motor/CTP
(20%) and CTP/liability (25%) business lines.

4.1.3 Student-t Copula (10 df)

Although also generated from a Student-t copula, the
observations in Figure 6 appears more akin to the
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Figure 8: Scatter Plot of Simulated Loss Ratios - Independence Copula

Normal case than the previous Student-t case with
more evidence of linear dependence for some pairs of
business lines. This is attributable to the asymptotic
behaviour of the Student-t copula, again as we noted
earlier, that as the degree of freedom becomes large,
the copula behaves more like that of a Normal copula.
Therefore, although 10 degrees of freedom is not quite
large enough for strict asymptotic behaviour, but it is
larger than the 3 degrees of freedom, and we can still
reasonably justify its similarity to the Normal case.

4.1.4 Cauchy Copula

Now inspecting Figure 7 for the Cauchy copula, it
becomes more difficult to see the presence of the lin-
ear dependence between the losses from the differ-
ent business lines. Other forms of dependencies are
being captured in the Cauchy copula including pos-
sible strong dependence on the tails. For example,
the household/fire & ISR losses appear to capture a
quadratic dependence structure, one where it would
not have been possible to capture using a Normal
copula alone. Again as expected for this type of cop-
ula, there is stronger visual evidence of tail dependen-
cies with many more pairs of simultaneously extreme
value observations produced than those by the other
forms of copulas.

4.1.5 Independence Copula

In the case of the independence copula, we would ex-
pect the pairs of observed loss ratios between the busi-
ness lines to capture no discernible patterns because
each line of business has been modelled independently
of each other. These are evident from the random
nature of the patterns in Figure 8 and therefore, this
figure re-affirms our assumption.

4.2 The Aggregate Loss

Continuing with the procedure outlined earlier, the
simulated loss ratios for each business line is then ag-
gregated using the industry weights, by earned pre-
mium, to produce a distribution of the aggregate loss
under each copula. The purpose of this aggregation is
to enable us to examine the loss ratios for an insurer
whose composition of business lines mimic that of the
industry which represents the base scenario assumed
in this paper. In Figure 9, we provide the histograms
of the resulting aggregated loss ratio for this industry
insurer for each copula model. As is observed from
this figure, there are differences in the resulting distri-
butions for the different copulas and this is therefore
an initial indication that there will be differences in
the level of capital requirements for different depen-
dence structures. To further assess these differences,
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Figure 9: Aggregated Loss Ratio Distribution - Base Scenario

Table 11 provides some important summary statistics
of these loss ratio distributions.

From Table 11 together with reference to Figure 9,
we make the following key observations:

respectively. In contrast, the latter two copulas
are much more widely dispersed with standard
deviations 83.3% and 115.3% above that of the
independence case. We also see these differences
in dispersion from Figure 9 where the histograms

1. Measures of central tendency indicate a high de- for the Student-t (3 df) and Cauchy copulas both

gree of coherence between the aggregate loss un-
der different copulas. In particular, the means
are all within 0.1% of the mean of the indepen-
dence case while the mode vary from -1.0% to
+1.2% of that for the independence case. The
near perfect match of the medians further affirms
the similarity of each distribution in the centre
portion of the range of aggregate losses.

. As a measure of dispersion, the standard devi-
ation indicates a large variety in the aggregate
loss distributions. All of the copula models re-
sulted in a more disperse distribution than the
independence case. This result is expected as
it conforms to risk pooling theory, which states
that sums of positively correlated random vari-
ables will always be more variable than sums
of independent random variables. There is also
a vast difference in variability across the differ-
ent copulas.The Normal and Student-t (10 df)
copulas are less variable than the Student-t (3
df) and Cauchy copulas, being only 17.6% and
29.7% more volatile than the independence case

require a larger range of values on the x-axis.
Similarly, observing the minimum and maximum
values of each distribution in Tables 11 leads to
the same conclusion regarding the comparative
dispersion of the aggregate distributions.

. Clearly from Figure 9, all of the aggregate loss

distributions are asymmetric with a heavier tail
extending in the positive direction. This is a key
feature of insurance losses as earlier discussed.
Skewness measures the degree of this asymme-
try around the mean where positive skewness
indicates a positive tail. The positive skewness
values from Table 11 confirm the existence and
direction of the asymmetry for all copulas as-
sumptions. Depending on the copula used, we
observe levels of skewness that varies dramati-
cally. The independence case is the most sym-
metric while the Student-t (3 df) and Cauchy
copulas are many times more skewed than the
Normal and Student-t (10 df) copulas. This is
reasonable as the copulas that have higher tail
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Table 11: Summary Statistics of Aggregate Loss Distributions
| Statistic | Normal | t (3df) [t (10 df) [ Cauchy | Indep
Mean 0.888269 | 0.888164 | 0.887526 | 0.889139 | 0.888527
SD 0.015541 | 0.024229 | 0.017150 | 0.028464 | 0.013218
Mode 0.868592 | 0.879274 | 0.868738 | 0.887653 | 0.877046
Skewness 0.222202 | 2.076989 | 0.288427 | 1.316450 | 0.057899
Kurtosis -0.054722 | 20.194530 | 0.942778 | 12.844188 | -0.259823
Minimum 0.844456 | 0.799064 | 0.837854 | 0.719465 | 0.847441
1st Quantile | 0.877388 | 0.877184 | 0.876068 | 0.881241 | 0.879448
Median 0.888053 | 0.887899 | 0.887781 | 0.887573 | 0.887905
3rd Quantile | 0.898136 | 0.897899 | 0.897883 | 0.894247 | 0.897487
Maximum 0.942946 | 1.156190 | 0.964726 | 1.094490 | 0.926259

dependence theoretically induces a heavier tail
and hence a more skewed aggregate loss distrib-
ution.

4. Kurtosis measures the relative peakedness or
flatness of a distribution compared with the Nor-
mal distribution. Positive kurtosis indicates a
relatively peaked distribution whereas negative
kurtosis indicates a relatively flat distribution.
We also clearly observe that the rank of the cop-
ulas, in the decreasing order of the peakedness
of their aggregate loss distributions is indepen-
dence, Normal, Student-t (10 df), Student-t (3
df) and Cauchy. This observation is supportive
of the conclusion drawn in point 2 above regard-
ing the different dispersion of the distributions as
in general, a more peaked distribution will lead
to a lower dispersion.

In general, we conclude from examining the aggre-
gate loss distributions that despite coherence around
the central portion of the range of losses, different
copulas lead to drastically different loss ratio distri-
butions. These differences indicate different tail be-
haviour which ultimately leads to different capital re-
quirements, as will be discussed in the following sub-
section.

4.3 Capital Requirements, Diversifi-
cation Benefit, and the Depen-
dence Structure

We previously observe that, for the base scenario,
there are differences in the loss ratio distributions for
the different copula models. We now translate these
differences in terms of the capital requirements as well
as the diversification benefit. In the following sub-
sections, we discuss these capital requirements and

diversification benefit for the base scenario, and we
also examine the resulting impact of assuming differ-
ent copula forms.

4.3.1 Capital Requirements (CRs)

Capital requirements, hereafter denoted by CRs,
resulting from the aggregate loss distributions in
the previous section are calculated using both the
Value-at-Risk (VaR) and Tail Conditional Expecta-
tion (TCE) risk measures at the 97.5% and 99.5%
levels. For the rest of this chapter, these risk mea-
sures are empirically estimated from the simulated
loss ratios in a fairly straightforward manner. For
the VaR measure, we simply computed the sample
quantiles and for the TCE, we computed the sample
mean for the observed values above the correspond-
ing quantile. Unless otherwise stated, we present the
CRs hereafter in terms of loss ratios which represent
an amount per unit of earned premium. To make the
assessment, Table 12 presents the CRs for the base
scenario for each copula model.

We recognise from Table 12 that the CRs under
different risk measures and copulas vary widely be-
tween a range of 0.92 to 1.07 times earned premium.
However, we leave discussion on these effects for the
next two sections.

4.3.2 Diversification Benefits (DBs)

By themselves, the values in Table 12 merely indicate
the absolute level of CR per unit of earned premium.
However, one of our primary concern is to assess the
diversification benefit derived from writing multiple
lines of business. This benefit, hereafter denoted by
DB, has been defined in Section 1 as the difference
(savings) between the CR on the aggregate loss and
the weighted sum, by each lines proportion of total
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Table 12: Capital Requirements on the Aggregate Loss

| Risk Measure | Normal | t (3 df) | t (10 df) | Cauchy | Indep | Average ]

VaR 97.5 0.919556 | 0.937313 | 0.922053 | 0.963311 | 0.914818 | 0.931410
VaR 99.5 0.931090 | 0.982005 | 0.943131 | 1.026140 | 0.921855 | 0.960844
TCE 97.5 0.926698 | 0.974546 | 0.933319 | 1.000353 | 0.918941 | 0.950771
TCE 99.5 0.936560 | 1.047614 | 0.954881 | 1.066644 | 0.923883 | 0.985916
Average 0.928476 | 0.985369 | 0.938346 | 1.014112 | 0.919874

earned premiums, of the CRs for each business line as
if each was a stand alone business. The weighted sum
of the CRs for each line is presented in Table 13 and
the DBs expressed as percentage of earned premium,
being the difference between each element of Table 12
and Table 13, are presented in Table 14.

We immediately observe from Table 14 that for
all risk measures and copulas, there exists a positive
DB. This confirms the theoretical result, first intro-
duced in Section 1, that there will always be a positive
DB by aggregating business lines under a multi-line
business set up rather than running individual stand
alone businesses. It is also immediately recognisable
that the choice of risk measure and copula drasti-
cally affect the level of DB which ranges from 1.78%
to 13.16% of earned premium. There appears to be
a positive relationship between the absolute level of
CR and the resulting DB as copulas that give rise to a
high CR tends to be associated with a high DB. From
Tables 13 and 14, we see that the Cauchy copula case
is a good example of this phenomenon. To put these
results into perspective, assuming the case of the “av-
erage” insurer ', the capital savings in Table 14 are
converted to monetary terms in Table 15.

The range of capital savings for the “average” in-
surer is therefore from $23.8 million to $175.6 mil-
lion. This range is large and the amount of savings
concerned is significant by any measure. Therefore,
it is imperative that we conduct further analyses to
understand the key drivers of these DBs in the fol-
lowing sections. In conclusion, the results presented
so far demonstrate the existence of a DB in operating
multiple lines of business in terms capital savings and
illustrates the importance to choose the appropriate
risk measure as well as copula structure to model the
aggregate loss. There also appears to be a positive
relation between the levels of CR and DB across the
copulas.

1'We assume the “average” insurer has a 10% share of
the Australian market as at June 2002, with total earned
premium of $13,351,897, similar to the 6th largest insurer.

4.3.3 The Effect of the Copula Assumption

As we noted previously, Tables 12 and 14 provide the
necessary results to gauge the effect of the various
copula assumptions on both the level of CR and the
implied DB. These effects can be visualised graphi-
cally in Figures 10 and 112 respectively, for the dif-
ferent copula models.

Clearly from Figure 10, there is a consistent ef-
fect due to the choice of copula on the total capital
required regardless of the risk measure used. The
Cauchy copula results in the highest capital require-
ment, followed by the Student-t (3 df) in all cases.
The Normal and Student-t (10 df) copulas produce
relatively similar result for all risk measures with the
latter always resulting in a marginally higher CR.
This observation is expected due to the asymptotic
Normal behaviour of the Student-t copula as the de-
gree of freedom increases. As we expected, due to its
lack of account of the inherent positive dependence of
losses across business lines, the independence copula
results in the lowest capital requirement. On aver-
age across all risk measures, the range of CRs were
from 92% to 101% of earned premium for the differ-
ent copulas. The observed discrepency of the CR be-
tween copulas highlights the importance of correctly
modelling the dependence structure, in particular tail
dependence, between losses across business lines. In
conclusion, we find that copulas allowing for high tail
dependence, i.e., the Cauchy and Student-t (3 df) re-
sults in drastically higher CRs compared to those that
do not allow for it. This difference is significant for
all risk measures with the extreme being the TCE
(99.5%) case where the discrepency between the CRs
under the Cauchy and Normal copulas reaches 14.3%
of total earned premium, or equivalently, a difference
of $191million for the “average” insurer.

The choice of copula also have a profound effect
on the resulting diversification benefit. We make the
following key observations:

2For all figures in this chapter, risk measures 1 to 4
denote the VaR(97.5%), VaR(99.5%), TCE(97.5%) and
TCE(99.5%) measures respectively.
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Table 13: Aggregated Capital Requirements of Individual Business Line Losses

| Risk Measure | Normal | t (3 df) | t (10 df) | Cauchy | Indep | Average |

VaR 97.5 0.937405 | 0.962058 | 0.942277 | 1.004449 | 0.941166 | 0.957471
VaR 99.5 0.951284 | 1.035403 | 0.966556 | 1.110557 | 0.955346 | 1.003829
TCE 97.5 0.946906 | 1.013448 | 0.957959 | 1.082981 | 0.950686 | 0.990396
TCE 99.5 0.959170 | 1.107498 | 0.978780 | 1.198195 | 0.962960 | 1.041320
Average 0.948691 | 1.029602 | 0.961393 | 1.099045 | 0.952540

Table 14: Diversification Benefits

| Risk Measure | Normal | t (3 df) | t (10 df) | Cauchy | Indep | Average |

VaR 97.5 1.78% 2.47% 2.02% 4.11% | 2.63% 2.61%
VaR 99.5 2.02% 5.34% 2.34% 8.44% | 3.35% 4.30%
TCE 97.5 2.02% 3.89% 2.46% 8.26% | 3.17% 3.96%
TCE 99.5 2.26% 5.99% 2.39% 13.16% | 3.91% 5.54%
Average 2.02% 4.42% 2.30% 8.49% | 3.27%

Table 15: Diversification Benefits for the "Average" Insurer (1,000)

Risk Measure | Normal | t (3 df) | t (10 df) | Cauchy | Indep | Average |

VaR 97.5 23831 | 33,039 27,003 | 54,927 | 35,180 34,796
VaR 99.5 26,962 | 71,296 31,277 | 112,712 | 44,717 57,393
TCE 97.5 26,982 | 51,943 32,808 | 110,324 | 42,386 52,907
TCE 99.5 30,180 | 79,956 31,909 | 175645 | 52,175 73,975
Average 26,991 | 59,059 30,772 | 113,402 | 43,615

Table 16: Comparative Diversification Benefit across Copulas

| Risk Measure | Normal | t (3 df) | t (10 df) | Cauchy | Indep

VaR 97.5 68% 94% % 156% 100%
VaR 99.5 60% 159% 70% 252% 100%
TCE 97.5 64% 123% 78% 260% 100%
TCE 99.5 58% 153% 61% 337% 100%
Average 62% 132% 1% 251% | 100%

Page 21



Risk Measures

Risk Measures

TCE-99.5

TCE-97.5

Var-99.5

Var-97.5

TCE-99.5

TCE-97.5

Var-99.5

Var-97.5

o« O *
{ oo *
o« O *
R ® Normal
«© e & swdadf ||
| Stud-10df
& Cauchy
< Indep
T T T T T T
0.90 0.95 1.00 1.05 1.10 1.15 1.20

Capital Requirements

Figure 10: The Effect of Copulas on Capital Requirements

L = *
{ S *
o] <
o ® Normal
o« & swdadf ||
O Stud-10df
& Cauchy
< Indep
T T T T T T T T T T T T T T
0 2 4 6 8 10 12 14

Diversification Benefits (in %)

Figure 11: The Effect of Copulas on the Diversification Benefit

Page 22



1. In Table 14, the average value of the DB ac-
cording under each copula is calculated and this
provides an initial crude measure of the mag-
nitude of the DB resulting from each copula.
In decreasing order, the ranking of the copu-
las is Cauchy (8.5%), Student-t (3df) (4.4%),
independence (3.3%), Student-t (10df) (2.3%)
and Normal (2.0%). For the “average” insurer,
this implies capital savings of between $27mil-
lion and $113million, depending on the copula
used®. Therefore, modelling dependencies be-
tween losses from different business lines with
the Cauchy copula will give by far the highest
level of DB while using the Normal copula will
result in the lowest level of DB.

2. Similar to the analysis on the CRs, we find that
copulas that allow high tail dependence, i.e., the
Cauchy and Student-t (3 df) copula, result in the
highest DB. The range of diversification benefits
for the Cauchy copula is from 4.1% to 13.2% de-
pending on the capital risk measure while the
range is between 2.5% to 6.0% for the Student
t-copula (3 df). On the other hand, the copulas
that allows little or no tail dependence, i.e., the
Normal copula and the Student t-copula (10 df),
result in relatively low DBs of approximately 2%
regardless of the choice of risk measure. For the
Normal copula, the range of DBs is 1.8% to 2.3%.
The Student-t copula (10 df) approximates the
Normal copula, and results in only slightly higher
range of DBs of 2.0% to 2.4%. Despite resulting
in the lowest CRs, the independence copula in-
duces a DB in excess of those induced by the
Normal and Student-t (10 df) copulas. This is
true regardless of the risk measure and in the
case of VaR (97.5%), it is even slightly higher
than the Student-t (3 df) case. The range of the
independence copula’s DBs is 2.6% to 3.9%.

3. For the independence, Normal and Student-t (10
df) copulas, the degree of variation of the DBs
across risk measures is relatively small. This is
consistent with the fact that these copula struc-
tures does not induce much tail dependence and
hence the tail of the aggregate loss distributions
are not affected by them. This contrasts with the
cases of the Cauchy and Student-t (3 df) copulas
where the fluctuations under different risk mea-
sures are very apparent.

4. With reference to Table 16, which illustrates the
comparative level of the DBs standardised by the

3Refer to Table 15 for details on the capital savings for
the "average" insurer.

independence copula values, the above observa-
tions can be put into a different perspective. We
immediately see that the Normal copula provides
consistently low diversification benefits with a
range of DBs between 58% and 68% of the in-
dependence case and an average of 62%. Simi-
larly, the Student-t (10 df) copula also displays
a consistently low range of 61% to 78% with an
average of 71%. The Student-t (3 df) copula
gains on average 32.3% more DB compared to
the independence copula but the DB is in fact
comparatively less than the independence case if
VaR (97.5%) is used as the risk measure. The
Cauchy copula results in a average DB that is
about 2.5 times of the independence case, how-
ever, the advantage is much more profound for
the TCE measure and for the lower level of ruin
tolerance (97.5%).

Overall, we conclude that the choice of copula has
a paramount effect on the CR as well as DB for a
multi-line insurer. This effect is driven mainly by the
amount of tail dependence that the copula allows for
losses between business lines. The more tail depen-
dence allowed by a copula, the higher the CR as well
as the DB if losses are aggregated under that copula.
In terms of the DB, the Normal and Student-t (10 df)
copulas perform worse than the independence copula
while the Student-t (3 df) and Cauchy copulas both
perform better.

4.4 Comparison between the Cop-
ula Approach and a Current Ap-
proach

Currently, APRA requires all Australian insurers that
does not use an internal model* to determine their ap-
propriate CR to use the so-called Prescribed Method
(PM). See Tang (2004). In this section, we compare
the CR resulting from the PM to those assuming dif-
ferent copula models. In doing so, we particularly
pay attention to the CRs based on the VaR at the
99.5% level under each copula as this corresponds to
APRA’s requirements under the PM. Table 17 sum-
marises the comparison between the PM CR and the
copula model CRs for the base scenario of the indus-
try portfolio.

For all copula assumptions except the Cauchy cop-
ula, we see that the PM overestimates the true CR
for the industry portfolio of liabilities. That is to
say, if multi-line insurers are to use a copula based

4 At the time of writing, there has not been any internal
models approved by APRA for capital purposes.
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Table 17: Comparison of PM and Copula Model CRs - Industry Portfolio

| | Normal | t (3 df) | t (10 df) [ Cauchy | Indep |

PM CR 1.010291 | 1.010233 | 1.008857 | 1.002536 | 0.999034
VaR 99.5% CR 0.931090 | 0.982005 | 0.943131 | 1.026140 | 0.921855
Excess Capital 0.079201 | 0.028228 | 0.065726 | -0.023604 | 0.077179
% Savings 7.84% 2.79%% 6.51% -2.35% 7.73%
“Average” Insurer

Savings ($,000) 105,748 37,689 87,757 -31,515 | 103,048

model rather than the PM to aggregate their losse
across business lines for CR purposes, savings of be-
tween 2.8% and 7.8% of the PM capital can be made.
For the “average” insurer, this amounts to savings
of between $37.7million and $105.7million. However,
we must note that the level of savings diminishes as
copulas with a heavier tail dependence structure are
used. For example, the savings on the Normal copula
model which allows zero tail dependence is 7.8% while
it is only 2.8% in the case of the Student-t (3 df) cop-
ula. If an extremely tail dependent copula such as the
Cauchy copula is used, the PM CR in fact represents
a shortfall of 2.4% from its intended level. Therefore,
in making the assertion that copula models lead to
capital savings compared to the PM in general, we
must be aware that this result is extremely sensitive
to the choice of copula and is by no means defini-
tive. Further, it is worthwhile to compare the PM
and copula model CRs for a short tail and a long tail
portfolios. These results are presented in Tables 18
and 19 respectively.

We see that support for the argument of capital
savings under copula models is strong for the short
tail portfolio as all copula assumptions lead to sav-
ings within the range of 1.5% to 19.5%. However,
the results are less clear cut for the long tail portfolio
where shortfalls of up to 17.2% exist under the inde-
pendence copula if the PM is used. This is a signifi-
cant result in monetary terms, representing a capital
shortfall of $197.2 million for the “average” insurer if
the independence copula model is used. Although it
is unimaginable for any insurer to assume indepen-
dence between their business lines and use the inde-
pendence copula, other copula structures also lead to
similar results. In particular, the Cauchy copula leads
to a shortfall of 12.8% which represents $184.4million
for the “average” insurer. This inconsistency in the
results between the short tail and long tail portfolios
highlights the deficiency of the PM as a comprehen-
sive, "one size fits all" solution for calculating capital
for the diverse range of insurers in the industry. The

significant capital savings (shortfalls in some cases)
from using the copula models compared to the PM
discussed in this sections indicates two issues. First,
it highlights the deficiency of the formula driven PM
as the current primary method of capital calculation
for different types of insurers in the industry. Con-
sequently, this leads to the urgent need for more ac-
curate and flexible internal models to be developed
for capital determination purposes where copulas are
incorporated for the aggregation of losses from differ-
ent business lines. However, as the actual CRs are
found to be extremely sensitive to the choice of cop-
ulas, and further this sensitivity varies depending on
the portfolio composition of the particular insurer, it
is imperative that in constructing the internal mod-
els, an appropriate copula assumption is made. The
most important aspect of the choice of copulas is the
tail dependence behaviour and the copula that best
represents the tail behaviour of the particular portfo-
lio’s situation should be chosen.

5 Concluding Remarks

Today, there is a significant number of general in-
surance companies that write insurance contracts in
multiple business lines. To ensure solvency, insurers
are required both for regulatory purposes and as a
going business concern to hold capital to back their
insurance liabilities. In aggregating losses from dif-
ferent business lines for the purpose of capital deter-
mination, insurers have traditionally either ignored
the dependence structure between business lines or
used simple linear correlations to model such depen-
dence. In this paper, we aggregated each business
line’s losses using the independence and four variants
of the Student-t copula, and assessed the capital re-
quirements in each case using the value-at-risk and
tail conditional expectation risk measures. Further,
we proposed the existence of a diversification benefit
from holding capital in aggregate for multi-line insur-
ers rather than on an individual business line basis.
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Table 18: Comparison of PM and Copula Model CRs - Short Tail Portfolio

| | Normal | t (3 df) | t (10 df) [ Cauchy | Indep |

PM CR

Excess Capital

Savings ($,000) | 99,761

0.951609 | 0.952025
VaR 99.5% CR | 0.876892 | 0.911036
0.074717 | 0.040989
% Savings 7.85% 4.31%

54,729

0.951101 | 0.948628 | 1.093202
0.885701 | 0.934066 | 0.880529
0.065490 | 0.014562 | 0.212673
6.80% |  1.54% | 19.45%
87,442

10,443 | 283,959

Table 19: Comparison of PM and Copula Model CRs - Long Tail Portfolio

| | Normal | t (3 df) | t (10 df) | Cauchy | Indep |

PM CR 1.098314 | 1.097543 | 1.095357 | 1.083399 | 0.857781
VaR 99.5% CR 1.021380 | 1.135560 | 1.026240 | 1.221500 | 1.005440
Excess Capital 0.076934 | -0.038017 | 0.069117 | -0.138101 | -0.147659
% Savings 7.00% -3.46% 6.31% | -12.75% -17.21%
“Average” Insurer

Savings ($,000) 102,721 -50,760 92,284 | -184,391 | -197,152

We analysed this diversification benefit for the differ-
ent copula assumptions. The following are the key
findings of this paper.

First, the choice of copula has a dramatic effect on
both the capital requirement and diversification bene-
fit for a multi-line insurer. In particular, the more tail
dependence a copula allows, the higher is the required
capital. The same relationship between the choice of
copula and the diversification benefit also exists. In
the extreme case, this diversification benefit amounts
to $113 million in capital saving for the “average”
insurer writing an industry weight portfolio. There-
fore, because of the potential for massive modelling
errors, it is imperative for insurers to select a depen-
dence structure that is most reflective of their own
unique situation to avoid the risk of mis-calculating
their capital requirement.

Second, there is a positive relationship between the
capital requirement and diversification benefit under
all copulas. In terms of regulatory capital require-
ments, this means that the more stringent a capital
regime is, the higher the incentive is for insurers to
write multiple lines of business. This finding coin-
cides with the presence of many multi-line insurers in
Australia, where the recently enacted capital regime
involved a tightening from the previous one.

Lastly, the adequacy of the current APRA Pre-
scribed Method is assessed against the capital re-
quirements implied by the copula models. While the
Prescribed Method appears to overestimate the cap-

ital requirement for an insurer with a short tail or
industry portfolio, it underestimates the capital re-
quirement for a long tail insurer under certain cop-
ulas. Again, the higher the copula’s allowance for
tail dependence, the higher the resulting capital re-
quirement will be under that model, and hence the
larger the shortfall (or smaller the savings) of holding
the Prescribed Method capital will be. The incon-
sistency between the short and long tail comparisons
highlights the inadequacy of the Prescribed Method
as being a “one size fits all” solution for determining
capital for all types of insurers in the industry. Conse-
quently, this points to the urgent need for insurers to
develop internal models which can account for their
business’ specific dependency structure. Other find-
ings, please see Tang (2004).

The reader of this paper should be aware that there
are simplifying assumptions inherent in our analysis.
In calculating the capital requirements and diversifi-
cation benefits, we have limited our focus on purely
the insurance or underwriting risk of an insurer while
ignoring other sources of risk such as investment and
operational risk. In reality, different sources of risks
interact and they all affect the capital requirement
for an insurer. Further, reinsurance is a common risk
management tool for insurers and hence forms an es-
sential part of their liability portfolios. However, due
to data limitations, amongst other reasons, we have
excluded the effect of reinsurance from our analysis.
Investment of assets was also ignored although this
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would have only had a minor effect due to the short
term nature of general insurers’ investments.

Due to these assumptions, the single most signif-
icant limitation to the results of this paper is that
they merely serve to compare the effect of the depen-
dence structure on the capital requirements and does
not quantify the required capital that a particular in-
surer should hold. In particular, the results cannot
be directly compared with other studies that consider
the total capital requirement for an insurer. The cap-
ital requirements calculated in this paper is not rep-
resentative beyond the amount of assets required to
ensure a specific level of confidence in meeting its in-
surance losses within a one year period. The numeri-
cal results in monetary terms presented in this paper
must also be taken with caution as this is only rep-
resentative of the “average” insurer as defined in this
paper and again, we emphasise that it only accounts
for the insurance risk component of the total capital
requirements. However, the modelling procedure of
aggregating risks using copulas as demonstrated in
this paper can be readily adapted.

Given that our findings in this paper indicate a
pronounced effect of the copula structure on the cap-
ital requirements for insurers, we suggest further re-
search into using other copulas to model the depen-
dence structure of multi-line insurers’ portfolios. In
this paper, we have explored using elliptical copu-
las to model the dependence structure but these are
only a few of the vast pool of copula structures that
one can draw from. Isaacs (2003) explored the same
aggregation process using the Gumbel copula, a rep-
resentative of heavy tail dependence copulas which
appear to be very suitable for capital determination
purposes. However, the specification of a Gumbel
copula only involves pair-wise associations and hence
is not appropriate for application to multi-line insur-
ers with more than two business lines.

We can also apply copula approaches to model
other risk dependencies in the general insurers’ busi-
ness. For example, rather than modelling the depen-
dency at the business line level, one may investigate
dependencies between risk sources such as those be-
tween investment and operational risks.

Catastrophes that affect multiple lines of business
are often modelled as a separate class in a dynamic
model. To this end, we may find interesting results if
the analysis of this paper was performed on a portfolio
with a separate catastrophe business line.

Furthermore, we can relax some of our assumptions
in our modelling to alleviate some of the limitations
previously mentioned. For example, we can perform
the analysis on a net rather than gross basis so that
reinsurance effects on the capital requirements are al-

lowed for. Another suggestion is to factor in expenses
and possibly the effects of investments as these also
influence capital requirements. Sensitivities of the
capital requirement under the copula models to the
size of the insurer and the correlation matrix assump-
tion can also be explored.
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A Generating Multivariate
Random Vectors

The purpose of this appendix is to show how one can
go about generating random vectors. One of the use-
ful applications of copulas is the resulting ease of gen-
erating random vectors. One procedure is described
in Nelsen (1999), by considering the conditional dis-
tribution

c(vlu) = Prob(V<v|U=u)
. Cu+Au,v)-C(u,v) 0
= im, B “auC Y

then the following generates (u,v) pairs:

1. generate two independent U (0, 1), denote them
by v and ¢;

2. set v ==Y (¢t |u), the quasi-inverse of ¢ (t|u);

3. (u,v) is the desired pair with uniform marginals
and copula C.

Recall that the copula defined by
C (U, eosttn) = H (D7 (tr) s oo, &7 (1))

is called the Normal copula. The following algorithm
generates (1,2, ..., Tn) from the normal copula:

1. Construct the lower triangular matrix B so that
the covariance matrix V = BB using Choleski’s
decomposition;

2. Generate a column vector of independent
standard normal random variables Z =

(Z17 Z27 [EES) Zn)T ;
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3. Take the matrix product of B and Z, i.e. Y =
BZ;

4. Set U; =@ (Y;) fori =1,2,...,n;
5. Set X; = F);il (U;) fori=1,2,....,n.

6. (x1,x2,...,x,) is the desired vector with mar-
ginals Fx,, ..., Fx, and normal copula C.

Recall that the copula defined by

Zn Zn—1

Ty (21,0 2n) = / /
—o0 J—o00
21

fo (@1, .y zp) dey - - - day,

—00

is called the t copula. The following algorithm gen-
erates (z1, 22, ..., Ty) from the t copula:

1. Construct the lower triangular matrix B so that
the covariance matrix V = BB” using Choleski’s
decomposition;

2. Generate a column vector of independent
standard normal random variables Z =
T
(Zl,ZQ,-.-,Zn) 5

3. Take the matrix product of B and Z, i.e. Y =
BZ;

4. Generate a chi-squared random variable S ~
X2 (v) with v degrees of freedom, independent
of Z;

5. Set T; = /BY; for i = 1,2,...,n;
Set U; =t, (T;) for i = 1,2,...,n;
Set X; = F);il (U;) fori=1,2,....,n.

® N>

(x1,22,...,x,) is the desired vector with mar-
ginals Fx,, ..., Fx, and t copula C.

To generate from a Cauchy copula, we simply set
the degrees of freedom to be v = 1 and followed the
above procedure for simulating random vectors from
a Student-t copula. We will need the above simula-
tion procedures to simulate claim values with differ-
ent copulas. Programs written in SAS and Splus.
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