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Abstract 

Negative developments on the capital markets at the beginning of the millennium along with 
the increase in natural catastrophes and terrorist attacks have substantially altered the risk 
situation of the insurance industry. Insurance companies have reacted to the altered prevailing 
conditions with a paradigm shift in corporate strategy developing from classical turnover 
orientation to value- and risk-based management. Companies will only be able to assess the 
level of risk capital and moreover the complete distribution of results according to corporate 
risk structure with the help of high-quality internal models – DFA models – matched as closely 
as possible to the risk situation of the individual company. Measuring and evaluating 
catastrophe risk has come to be a very important issue, as a substantial share of the company’s 
entire risk capital is committed to natural catastrophes. Whether or not internal models can be 
applied depends largely on adequate catastrophe risk modelling. The following study aims to 
present two actual approaches in modelling loss due to natural catastrophes taking storms as 
an example. Both models use results from natural risks models. The first method is based on 
processing complete event loss tables, while the second mathematical statistical approach uses 
information from certain return periods. Both methods will be compared using example data, 
and their advantages and disadvantages will be pointed out as applicable to value- and risk-
based management. Finally, the study will calculate risk capital, and test the impact of 
strategies on risk capital requirement. 
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1 Introduction 

Negative developments on the capital markets at the beginning of the millennium along 
with the increase in natural catastrophes and terrorist attacks have substantially altered the 
risk situation facing the insurance industry. As an example, total corporate capital 
resources decreased by around between 25% from 2000 to 2002 in non-life insurance and 
reinsurance across the world according to SWISS RE.1 Insurance companies have reacted 
to the altered prevailing conditions with a paradigm shift in corporate strategy developing 
from classical turnover orientation to value- and risk-based management in economic 
terms. 
 
This involves measuring success at reaching a risk adjusted return on the risk capital 
provided by the investors. The risk capital should be derived from the actual risks facing 
the company. Companies will only be able to assess the level of risk capital and the 
complete distribution of results according to their individual risk structure with the help of 
high-quality DFA models2 matched as closely as possible to the risk situation they aim to 
represent, thus addressing issues as to risk-bearing ability and profitability of the company 
as a whole as well as in different lines of business. 
 
Adequately assessing the risk situation of a company involves appropriately representing 
the individual risks that the company is exposed to in DFA models. Modelling catastrophe 
events plays a major role in this matter, as natural catastrophes often involve considerable 
loss potential that the company’s risk management must take into account sufficiently. A 
considerable share of risk capital is often committed to insurance divisions affected by 
catastrophe events, which is why risks of natural catastrophes have a major impact on 
selecting a suitable reinsurance policy. This should lead to intensive discussion with 
reinsurance departments on the adequate level of reinsurance protection with regard to 
risk and return. The matter is made worse by the brief experience in catastrophe events – 
the small number of observations in the history – amongst most insurance companies, 
while long return periods such as a hundred, five hundred, thousand or ten thousand-year 
events pose a great challenge to adequate modelling for most companies. 
 
Catastrophe claims refer to loss caused by any single event affecting a large number of 
insured policies within the same time frame. The following natural catastrophes play an 
especially important role:  
 

• Storms, 
• Earthquakes, 
• Hailstorms, 
• Floods. 

 

Apart from the losses resulting form natural catastrophes, accumulative loss can be caused 
by terrorist attacks. Classical examples for accumulative loss in other divisions are 
general accidents and fires with unknown accumulation which should also be modelled. 

                                                 
1 See [Swiss Re 2002]. 
2 Interested readers will find an actual proposal for the development of a stochastic internal model useful as 
a basis for value- and risk-based management in [Diers 2007a]. The necessary steps from initial concept to 
complete preparation and implementation are presented here. The individual modelling approaches are 
shown with reference to data from a model company. 
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This study aims to provide a quantitative analysis for two different approaches in 
catastrophe modelling taking storms as an example, with reference to model data.3 
 
 
2 Modelling catastrophe risk in DFA models 

DFA models are aimed at covering the broadest possible range of all possible profit and 
loss accounts in the next year, or years in models covering several years, in order to 
represent the risk situation of the company adequately and determine the indicators 
relevant to corporate strategy, such as expected company results and risk capital. 
However, insurance-related risks in non-life insurance are subject to serious deviation 
resulting from the high level of volatility by both claim severity and frequency.4 As an 
example, storms may lead to extremely high total claims due to an enormous number of 
more minor claims. This is why both claim and capital market development should be 
stochastically modelled. To this end, a DFA model should be understood as a simulation 
model. Analytical models are unsuitable for non-life insurance, as the total results 
distribution can only be determined by very restrictive assumptions.5 
 
Two main aspects need to be considered modelling catastrophe claims. On the one hand, 
the basic assumptions of the collective model – which are usually valid in the case of non-
catastrophe modelling concerning attritional and large claims – usually fail regarding the 
independence of claim sizes and claim number.6 An example which can be given here is 
flood loss, where the number of claims and severity of each claim rise with flood water 
level. 
 
Moreover, the natural catastrophe may affect different insurance divisions at the same 
time. In catastrophe modelling, diversification only ever applies in risks placed far apart. 
So modelling the adequate dependencies amongst the losses of the different divisions 
which often have a non-linear structure is a very difficult problem. 
 
This means that natural catastrophes should be regarded in terms of events rather than 
individual claims. The assumptions placed by the collective model may be considered as 
satisfied, as the frequency of events and event claim sizes can be assumed to be 
independent of one another.7 The loss should then be distributed amongst the different 
lines of business affected. This division may be based on historical experience or 
according to degree of exposure (number of risks affected by the event as a percentage of 
the number of risks insured) on the current portfolio. Beyond that, modelling theory does 
not always require deterministic division according to a fixed key. Rather, division factors 
can also be stochastic (such as depending on the level of loss arising from the event). 
 
On the other hand, catastrophe modelling should take account of the possibility that far 
more serious events may occur in the future compared to those observed to date. This is 
why companies refer to exposure analyses for modelling types of event loss in which they 

                                                 
3 The remaining storm losses may be modelled as attritional losses that are far less volatile. 
4 Claim severity and claim frequency refer to ultimate loss. 
5 See [Diers 2007a]. 
6 See [Mack 2002]. 
7 See [Mack 2002]. 
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have no previous experience. As an example, what are referred to as event sets8 are 
required as outputs for natural risks models from external suppliers along with a wealth of 
existing data such as exact descriptions of risk locations, ideally in address form; risk 
type, whether private, commercial or industrial; and insurance terms such as deductibles, 
limits, or coinsurance policies. The insurance company is provided with information on 
return periods and the associated PMLs9 or complete event loss tables.10 As a rule such 
natural risks models are developed by external suppliers.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1: Catastrophe modelling 

 
The information must be tested for plausibility with the help of empirical claims data. The 
next step is to fit the underlying distributions of catastrophe claim frequency and claim 
severity for the events.11 This provides a basis for simulating event loss. Figure 1 presents 
the general approach in modelling catastrophe claims. 
 
External data can be used in a number of ways. On the one hand, complete event loss 
tables – the results of natural risks models – can be used for modelling catastrophe claims. 
On the other hand, statistical models can be used as by only including certain outputs 
from natural risks models, that is, those with long return periods including their respective 
PMLs (in addition to adjusted empirical claims data). Both approaches will be presented 
in the following sections and compared using sample data. In the following we restrict to 
model catastrophe losses which result from catastrophe events. The attritional and large 
claims which also play a role in lines of business affected by storm risks are not 
considered here.12  
 
 

                                                 
8 See Section 3. 
9 PML: probable maximum loss 
10 See Section 3. 
11 See Sections 3 and 4. 
12 See [Diers 2007a]. 
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3 Catastrophe risk modelling based on natural risks models 

As previously described, various approaches exist for modelling catastrophe claims in 
DFA models. This section will present the use of complete event loss tables generated as 
outputs of natural risks models. The advantages and disadvantages of this method in the 
context of value- and risk-based management are addressed at the end of section 4. A 
variety of suppliers provide models of this type.  

These geophysical meteorological models are based on representing the physical forces 
causing the loss and their effects on insurance business.13 The effects of climate changes 
can also be adequately applied. These models rest upon assessing many physical 
influences, such as wind speed, geographic alignment of storm zones, wind fields etc., 
with the aim of adequately representing all possible events. Natural risks models result in 
event sets, which serve as a numerical representation of the events. The number of event 
sets varies according to each individual supplier. Event sets can be used to calculate local 
intensity parameters, that is, numerical descriptions of local effects for any event. The 
next step is to calculate loss degree curves for each scenario of the event set as applicable 
to the portfolio of the insurance company.14 These vary according to each risk type such 
as building, household, extended coverage, industrial storm insurance, etc., and are 
heavily dependent on factors such as building type. These calculations are mostly 
performed by reinsurers and brokers, but they can also be prepared by insurance 
companies themselves. The calculations take account of detailed existing information 
such as risk location (such as address15 or postcode), risk types and insurance terms and 
conditions as well as insurance limits. Outputs from natural risks models are usually PML 
curves and return periods that the reinsurers use in calculating the possible recoveries for 
their premium calculations. 
 

 

 

 

 

 

 

 

 

 
 
Figure 2: Part of an event loss table for storm insurance divisions 

                                                 
13 See [Pfeifer 2000]. 
14 The loss degree curves meant here represent an analytical connection between the catastrophe event and 
the loss arising from it.   
15 If the portfolio data is available in address form, the portfolio can be coded – the risks can be matched to 
exact geographic coordinates, representing a significant advantage to the postcode approach. 

Event

number

Event

frequency

Event

mean severity

Standard

deviation

Exposure

value

… … … …
17.980 0,00000221 38.356.270 27.022.031 9.210.798.292

17.295 0,00001687 38.167.747 26.977.425 7.894.969.965

17.853 0,00001646 37.025.203 26.350.968 8.913.675.766

17.368 0,00000392 36.776.847 26.281.579 8.870.752.769
18.001 0,00001261 36.227.882 25.276.448 8.127.174.963

17.463 0,00001151 35.988.900 25.456.216 9.059.801.599

17.891 0,00001650 35.791.078 25.319.642 9.224.327.305

17.851 0,00000524 35.291.528 25.137.023 12.560.179.489
17.982 0,00000184 35.231.846 24.804.156 9.661.676.530

17.406 0,00003356 35.007.636 17.228.653 8.840.103.294

17.985 0,00000046 34.891.374 24.596.462 9.641.786.132

18.004 0,00001485 34.859.180 24.256.934 7.675.665.243
17.893 0,00001171 34.752.674 24.663.413 12.470.617.780

18.006 0,00001539 34.630.376 24.146.792 9.528.412.026

17.462 0,00000430 34.405.417 24.352.597 7.988.781.079

17.645 0,00004261 34.335.089 7.222.209 10.633.160.763
17.975 0,00000079 34.305.860 24.103.868 7.894.969.965

17.386 0,00000113 34.255.982 24.262.113 12.799.293.564

17.887 0,00000695 34.000.040 23.842.394 9.339.685.958

17.984 0,00000346 33.574.772 23.679.793 10.392.415.990
17.981 0,00000042 33.151.588 23.267.874 7.859.333.501

17.983 0,00000015 32.930.112 23.175.486 8.747.473.765
… … … … …

All data in €.
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Event loss tables (ELT) are another output from these geophysical meteorological models. 
They are synthetic catalogues of modelled event loss that refer to a specific risk, portfolio 
and the different lines of business with storm exposure. An event loss table consists of a 
variety of scenarios or events.16 Figure 2 represents a selection of the output from an ELT 
for lines of business affected by storm using sample data. 
 
The event number is set by the supplier to identify the event. The frequency parameters 
represent the mean frequency of storm events. The event mean severity17 represents the 
average claim size of that particular insurance company’s portfolio from this event. In 
addition the associated standard deviation is calculated. The exposure value refers to the 
amount by which the company is exposed to that particular risk – that is, the insurance 
total exposure, which therefore represents the maximum possible loss for each event. 
Return periods of event loss – the expected length of time between recurrences of two 
natural catastrophe events – and return periods of annual loss – defined using annual loss 
exceeding probabilities – can be derived from the ELTs. The results from various models 
vary widely in practice. In individual cases, companies should conduct specialised 
adaptation tests on their own portfolio.18  
 
The ELT can be used for event modelling in DFA models to be discussed in the following 
with reference to storm catastrophes. Let n denote the number of ELT events.19 In the 
geophysical simulation model every single scenario i, 1 ≤ i ≤ n, constitutes a collective 
model. The individual claim sizes 

jiZ , j ∈ IN, of each scenario i are assumed to follow 

the same distribution as iZ . All random variables (claim sizes and frequencies) are 

assumed to be independent. Now we want to use this information for event modelling in 
our internal simulation model (DFA model). 
 
The degrees of loss 

jiX  – individual claim severity 
jiZ  due to the event divided by 

exposure value max i  – follow the same distribution as iX  = 
i

iZ

max
, which in our model 

is assumed to be a Beta-distribution. So for each event i, 1 ≤ i ≤ n, a Beta-distribution is 
fitted using moment fit, where event mean severity m i  and standard deviation σ i  are 

estimated using the corresponding entries of the ELT.20 The expected value and standard 
deviation in random variables iX  for the degrees of loss is calculated according to the 

following equation: 
 

E(X i ) = 
i

im

max
      and      )( iXVar  = 

i

i

max

σ
. 

 

                                                 
16 The number of events depends on supplier and risk. 
17 Refers  to the ultimate loss. 
18 An adjustment test of this type is described in Section 4 (Figure 5).  
19 The number of ELT events represents the number of scenarios or entries. 
20 Note that this causes a parameter risk. Moreover there exists a model risk. If these two kinds of risks are 
already taken into consideration in the geophysical models has to be clarified with the supplier. If this is not 
the case, they additionally have to be modelled. The modelling of theses risks exceeds the purpose of this 
paper.  
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The Beta-distribution Beta( iα , iβ ) with positive real parameters iα  und iβ  has the 

following density: 
 

f(x) =  11)1(
)()(

)( −−−
ΓΓ

+Γ
ii

ii

ii
xx

αβ

βα

βα
 ,      0 ≤ x ≤ 1, 

 

where ∫
∞

−−=Γ

0

1)( dtety ty . 

 
The expected value and variance of Beta( iα , iβ )-distributed random variable iX  possess 

the following theoretical representation: 
 

(*)                     E(X i ) = 
ii

i

βα

α

+
       and       Var(X i ) = 

)1()( 2 +++ iiii

ii

βαβα

βα
. 

 
Parameters iα  and iβ  in the Beta-distribution for degree of loss iX  result from the 

following: 
 

)(1
)(

))(1)((
i

i

ii
i XE

XVar

XEXE








−

−
=α     and     ))(1(1

)(

))(1)((
i

i

ii
i XE

XVar

XEXE
−








−

−
=β . 

 
So we have specified the distribution of X i  for each event i of the ELT. 

 

If MAX_Storm refers to the possible maximum loss in the insurance portfolio caused by 
one single storm event, we obtain the random variable iY  of claim severity from the 

following equation: 
 
(**)                      iY  = MINIMUM( MAX_Storm; iZ ),  

 

where iZ = max i ⋅⋅⋅⋅ iX  and iX  ∼ Beta( iα , iβ ). 

 
One can show that under the assumption that the frequencies iN , 1 ≤ i ≤ n, follow a 

Poisson distribution with parameter iλ  the several independent collective models of the 

single scenarios lead to another equivalent collective model with Poisson frequency with 
parameter λ .21  
 
So the sum of frequency parameters iλ , 1 ≤ i ≤ n, can be used to calculate the mean λ  of 

the annual event frequency: 
 

λ  = ∑
=

n

i

i

1

λ . 

 

                                                 
21 The independent and identically distributed claim sizes of the equivalent model follow a mixture of the 
given claim severity distributions. See [Pfeifer 2004a], [Straßburger 2006] and [Hipp / Michel 1990]. 
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We have selected the Poisson-distribution as the distribution for the annual event 
frequency N with parameter λ . The frequency parameters iλ  can be estimated using the 

corresponding entries of the ELT. 
  
The following approach can be taken in the DFA model for each simulation:22 first, we 

take a sample 'λ  of the Poisson( λ )-distribution, that is, 'λ  storm events are to be realised 

in the simulation in question. The next step will be to take exactly 'λ  event numbers with 
regard to the frequencies iλ  in the ELT (sampling with replacement). Let M refer to the 

set of these sampled event numbers ji , i ∈  {1, ..., n}, j ∈  IN, with |M| = 'λ . We need the 

second index j because according to the frequency one event number can occur twice or 
more in the set. For each ji  we take independent samples 

jiy  for the severity of event 

loss from random variable iY  (as defined above). 

 

The simulated annual storm loss a is calculated from 'λ  events in this simulation 
according to the following equation: 
 

 a   = ∑
∈Mji

ijy . 

 
So using simulation techniques we create 100.000 or more random observations (the 
number of simulations depends on the parameter situation) from the underlying model to 
determine the empirical distribution of annual storm loss A. 
 
Figure 3 shows the distribution of annual storm loss created with the help of Monte Carlo 
simulation. 
  
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3: Annual loss distribution with and without considering variance in single events   

 

                                                 
22 For example using Monte Carlo Simulation 

ELT without 
variance in

single events
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mean 5 5
standard deviation 11 10
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maximum 400 287
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70% percentile 3 3
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99% percentile 49 44

99,5% percentile 67 60
99,9% percentile 116 113
99,99% percentile 267 203
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Variability in event severity should still be modelled as can be seen form figure 3. No 
variance was assumed in the individual event severity on the ELT, eliminating the Beta-
distribution described in the above model. So in (**) we replace the random variable iZ  

by im . The table in Figure 3 shows that no large deviations can be deduced in the lower 

and medium percentiles, whereas remarkable deviations can be recognised in the very 
high percentiles (see maxima etc.), which may have a substantial impact on determining 
risk capital requirement.23 
 
If several lines of business (divisions) are to be modelled, ELTs can be generated for the 
individual lines of business if there is enough data. There are two options for modelling 
several lines of business using ELTs. In the first option, the entries of the division ELTs 
can be aggregated per event number in the first step while the standard deviation can be 
calculated assuming suitable correlation. The second step is to simulate the total event, 
which can then be divided amongst the lines of business affected according to the share of 
the division in the total expected value of the event severity in the third step. In the second 
option, each line of business is modelled separately and finally aggregated by event 
number. Here, suitable dependencies (which have often a non-linear structure) between 
the random variables of event severity need to be selected. We have used both of these 
methods in modelling building storm insurance and industrial storm insurance. These two 
methods yielded almost identical results. 
 
 
4 Mathematical statistical approaches 

In the mathematical statistical model the event frequency is assumed to be independent 
from the claim sizes caused by event which are assumed to be independent and identically 
distributed. So the assumptions of the collective model are fulfilled. The event severity 
and frequency distributions are fitted with the help of the company’s own historical data 
(observations), adding PMLs from events with long return periods with losses that the 
company has not yet experienced. This modelling approach uses only return periods and 
the associated PMLs for the insurance company itself, rather than complete ELTs, as 
output from natural risks models.  
 
The empirical claims data of the company should originate from a time period reaching 
back as long as possible; the event loss should be extrapolated with suitable indexes – 
such as the building cost index – to future years. Changes in portfolio – such as the 
introduction of deductibles – should also be adequately taken into account. Average claim 
sizes and degrees of exposure should be taken into consideration in order to ensure that 
the scale of portfolio remains independent from the number of the insured policies.24 
Historical claims experience will usually be insufficient for the choice of an appropriate 
model since very long return periods (such as 100, 200, 250, 500, 1,000, 10,000-year 
events, etc.) also need to be included. These seldom events determine the tail part of the 
loss distribution, thus playing a major role in determining the risk capital requirement of 
the company. Only using historical data in order to fit the underlying distribution would 

                                                 
23 See also Figure 6. 
24 Natural risks models may also be referred to in fitting empirical (historical) in-house data to the current 
portfolio. These represent storms from the past and evaluate them taking the current portfolio into account.   
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generally only provide an insufficient account of possible losses in the future, leading to a 
serious underestimation in the risk capital requirement of the company. 
 
Empirical claims data is thus enriched with the PMLs from long return periods from the 
natural risks models in order to fit the underlying severity distribution. The external data 
serves to adapt the tail part of the catastrophe loss distribution that cannot be fitted to a 
satisfactory extent by historical data, by adding claims with long return periods. This 
means that several distributions are fitted according to the maximum-likelihood method 
(for estimating the parameters).25 Statistical goodness-of-fit tests can then be used to 
select the best-fitting model from these models.26 
 
Statistical tests can also show whether the external dates are appropriate in relationship to 
historical in-house data. So it can be evaluated if the PMLs are adequate or too high or too 
low for the portfolio. This addresses the problems arising from the wide discrepancy 
between many results from various external studies for the same risk and portfolio. The 
validation of the model is a very important but difficult process because it requires the 
comparison of losses from particular storm events with the losses that the model would 
estimate for occurrences with the same physical characteristics, given the same 
geographical distributions of exposed properties. These data are often unavailable or not 
available in the quantity necessary for statistical testing.27 
 

The loss distributions calculated as a base for current portfolio structure should then be 
subject to continuous review and immediately adjusted for changing conditions. 
  
The approach to catastrophe modelling based on empirical data is often criticised due to 
the lack of basis in historical loss development in estimating seldom return periods. 
However, this objection also applies to geophysical models, as the parameters they use are 
also derived from historical data. As Pohlhausen commented, extrapolating the future 
from the past is not unproblematic. However, it is a sensible activity. There is no other 
possibility for addressing future uncertainty.28     
 
The catastrophe-modelling approach using mathematical statistical models as described 
here will be presented, again taking storm events as an example, in the following. The 
modelling proposal presented here requires the following definitions: 
 
- NumR: number of risks insured, 
- DE: random variable for the degree of exposure per event (number of risks affected 

by the event as a percentage of the number of risks insured), 

                                                 
25 This causes a parameter risk which has additionally to be modelled. An example for modelling the 
parameter risk in internal models is given in [Diers 2007c]. 
26 Examples of mainly quantitative test methods include the 

2χ -test, Kolmogorov-Smirnov test and 

Anderson-Darling test. Apart from the quantitative test methods, more qualitative or intuitive methods such 
as the mean-excess plot, Hill plot, P-P plot and Q-Q plot may be used.   
27 See [Clark 2002]. Clark states further that “The nature of statistics is such that one can never prove that 
the sample is a true representation of the population. Statistical tests of significance merely provide 
confidence intervals for parameter estimates which are based on certain assumptions. These tests are used to 
choose between alternatives or competing hypotheses.” 
28 See [Pohlhausen 1999]. 
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- MAX_DE: maximum degree of exposure = 100%,29 
- AC: random variable for the average claim severity from one event, that is, the claim 

severity from one event divided by the number of risks affected by this event, 
- λ: expected value for the number of events in the year to be modelled, 
- MAX_Storm: maximum loss that can be caused by a storm event. 

 
The random variable of claim severity CS is calculated as follows: 
 

CS  = Accept (NumR ⋅ DE  ⋅ AC; NumR ⋅ DE  ⋅ AC ≤ MAX_Storm), 
 
with distribution function F for random variable DE: 
 

DEF (x) = 
)_(

1

DEMAXFX

XF (x), for x < MAX_DE,       DEF (x) =  1 otherwise. 

 
The Accept-function causes each case where the claim severity simulated exceeds 
MAX_Storm to be simulated again until all of the results fall below MAX_Storm.30 We can 
fit the underlying distributions for random variables X, which represents the degree of 
exposure per event before maximum,

31 and AC by suitable matching between the in-house 
and external data, which represent the observations, according to the statistical approach 
described above. 
 
The next step is to model annual loss due to storm events. Following the collective model 
the random variable of annual storm loss A can be represented as the sum of the 
independent and identically distributed claim severities CSi that follow the same 
distribution as CS and are assumed to be independent of random variable of event 
frequency N:32 
 

A  =  ∑
=

N

i

iCS

1

. 

 
We assume that N follows a Poisson-distribution with parameter λ, which can be 
estimated from historical data. Using Monte Carlo simulations a large number of random 
observations (e.g. 100.000) can be simulated from the model in order to create the 
empirical distribution of the annual storm loss. 
 
 

                                                 
29 The maximum degree of loss can be less than 100% depending on the portfolio. 
30 Using the Accept-function represents the possibility of capping; however, this only applies in cases where 
only a few simulations are lying above the condition. If this is not the case, the selected model should be 
reviewed for validity. An alternative approach in capping is the minimum function CS = MINIMUM(NumR  
⋅ DE  ⋅ AC; MAX_Storm). The two approaches lead to different results, however. 
31 Before maximum means that the degree of exposure per event is limited by MAX_DE, which is omitted 
until this point.  
32 According to the assumptions of the collective model degrees of exposure and average claim sizes are 
assumed to be independent and identically distributed as DE and AC respectively. If these assumptions hold 
in practice has to be verified. We use this modelling approach in order to be able to use this model for 
strategic decisions. 
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This modelling approach using random variables for exposure degree and average claim 
severity is suitable for strategic value- and risk-based management, such as in quantifying 
the effects of portfolio expansion33 or reduction on the risk and return situation of a 
company where NumR and MAX_Storm can be adjusted as appropriate. Here, it is 
absolutely necessary to review how this model fits historically recorded annual loss due to 
storms as well as external PMLs provided for annual loss. Additionally one can directly fit 
the underlying event severity distribution CS using the statistical methods described above 
and compare the results for validation. 
 
The final decision as to whether the distribution assumptions are adequate choices of loss 
distributions, along with a final judgement as to whether the Poisson or the Negative 
Binomial distribution – as example – is the adequate choice of the distribution of claim 
frequencies, should not be made until this point.34 
 
Figure 4b shows the annual storm loss distribution calculated according to this method, 
and compares the results with the empirical distribution (original data: empirical and 
external) for the storm insurance divisions modelled here (Figures 4a, 4b). 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 
Figure 4a: Empirical in-house data for annual storm claims and external data for long return periods (rp) 

 
 
 
 
 
 
 
 
 
 

                                                 
33 This is conditional on the expansion in portfolio with similar average loss severity and degrees of 
exposure as in the existing portfolio. 
34 Refer to [Rosemeyer / Klawa 2006], who studied the number of storms in Germany from 1970 to 1997 
and identified the Negative Binomial distribution as the more valid distribution. 
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Figure 4b: Annual storm loss distribution due to the underlying model vs. empirical distribution (in-house 
and external data) 
 

Figure 5 shows the distribution of annual storm loss according to the mathematical 
statistical model (grey) and according to natural-risk models (black) from Section 3 for 
comparison. Both graphs have a very similar curve, which means that the ELTs used fit 
well to observations for the lower percentile ranges. The agreement in the upper percentile 
range (99% percentile and above) results from our use of long return periods derived from 
the ELTs (as observations) in the mathematical statistical distribution fit. It also shows 
that the long return periods match our historical experience. In practice as described 
above, various sources are available to insurance companies for long return periods whose 
results often widely fluctuate. Comparison with in-house data usually helps solve this 
fluctuation.    
 
 
 
 
 
 
 
 
 
  
 
 
 
 
 
 
 
 
 

Figure 5: Annual storm loss distribution according to the mathematical statistical model (grey) vs. modelling 
based on natural-risk models (black) 
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Modelling certain reinsurance contracts such as frequency cover requires a probability 
distribution for the number of claims arising from storm events. 
 
The random variable number of claims per event – NEi – can be calculated as follows: 

 

NEi  = NumR ⋅ DEi. 
 
The modelling approach presented here is not based on different models for the different 
lines of business, as is usual in non-catastrophe claims modelling.35 So the event losses 
have to be distributed amongst the lines of business affected. Distribution may be applied 
taking fixed keys, which can be derived from the company’s records. Individual portfolio 
structure should be taken into account. If, for example, the company’s records or the use 
of natural risks models reveals that major storms have a greater impact on a specific 
division (such as industrial storm insurance due to the higher PMLs) than on other 
divisions (such as building or household) in comparison to minor events, this effect 
should be given consideration.36 In these cases, the percentage key should not be fixed but 
should be applied dynamically, depending on the claim severity of the event. Modelling 
catastrophe claims results in functional dependencies between the divisions affected.37 
 

Another aspect that needs to be considered when modelling event loss is the extension of 
simulation data with information on the time that the event takes place. This information 
is necessary for adequately calculating cash-flows. An event that occurs early in the year 
will mostly be settled in the same year, leading to a different cash-flow situation that 
would arise for events occurring at the end of the year where the most part of the 
settlement will be paid in the following year. Therefore, it is wise to simulate an indicator 
as to whether the event occurs for example in the first or second six months of the year. 
 
So the probability p of a storm event taking place in the first six months is to be calculated 
on the basis of in-house data to be enriched with external information. This yields the 
following weighting vector: 

 
Weight (first six months; second six months) = (p; 1-p) 

 
This will facilitate simulating the occurrence of an event in the first or second six months 
for each event. 
 
Since catastrophe claims have a major impact on corporate strategy due to the high level 
of risk involved, they must be adequately modelled in DFA models. On the one hand 
modelling based on ELTs from natural risks models can be validated using statistical 
modelling to review PMLs for long return periods. On the other hand the validity of ELTs 
for the shorter return periods can be checked with reference to empirical in-house data. 
 

                                                 
35 See for example [Diers 2007a] for attritional and large claims modelling in internal models. 
36 This assumption must be justified (for example, by internal records). 
37 Additionally, the dependencies between the individual catastrophe risks (storms, earthquakes, hailstorms, 
floods, etc.) must be represented. Modelling dependencies (which have often non-linear structures) in 
internal company models plays an important role in modelling loss. See for example [Diers 2007a]. For the 
copula approach see [Pfeifer / Neslehova 2004]. 
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The following presents the advantages and disadvantages of methods described in 
Sections 3 and 4.  
 
� Modelling based on mathematical statistical methods encompass all of the historical 

events, which are used to fit the underlying distributions. This aids plausibility testing 
on high PMLs, as these have to fit the historical losses. This results in a good basis for 
management acceptance of the model, as the results are highly intuitive (see Figure 
4b). 

� Therefore, mathematical statistical models can and should be used to test the 
plausibility of ELTs as well. 

� Statistical models present another advantage in that the model is based on modelling 
the random variables degree of loss and average claim severity, enabling 
quantification of the exposure of corporate strategy such as expansion in individual 
divisions, withdrawal from various agreements or universal introduction of 
deductibles, on the risk capital requirement of the entire company. This is not directly 
possible using ELTs as a basis, as ELTs only reflect the exposure of individual 
catastrophe events on the current portfolio, meaning that the corporate strategies and 
general strategies affecting gross business (before reinsurance) cannot be directly 
represented. 

� However, modelling based on ELTs presents the distinct advantage of including actual 
events from the natural risks model into the model. Although either approach will lead 
to a very similar curve in the annual loss distribution in our example (see Figure 5), 
the number of events and loss severity may vary substantially. This is unimportant at 
gross level for corporate strategy and risk capital determination, as only the annual 
loss is important here. However, there may be major differences in annual loss 
distributions after reinsurance if excess-of-loss agreements are considered by event 
(event XLs), whose impact depends on the nature of the individual event. 
Mathematical statistical modelling may be not appropriate for reinsurance calculation 
or optimisation. So both models should be applied as necessary depending on the 
actual issue concerned in corporate strategy. This is possible without reservation if the 
results of the different models are as similar as in this example (see Figure 5). 

 
 
5 Risk capital calculation and outlook 

The loss resulting from catastrophe events can take on a very large scale, and therefore tie 
a significant share of the entire risk capital of a company; this is why the loss should be 
modelled to a great degree of accuracy. 
 
The following will explain the effect of the different modelling approaches as described 
here on risk capital requirement. We have taken value-at-risk VaR and tail-value-at-risk 
TVaR as risk measure at a confidence level of 1-α = 0.998. Both risk measures are often 
used in practice. The tail-value-at-risk for a real random variable L is defined as follows:  
 

TVaRα (L ) = E[L | L ≥ VaRα(L)]. 
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TVaR is defined as the expected loss of α⋅⋅⋅⋅100% worst cases, α ∈ (0.1).38 The value-at-
risk is defined as  

VaRα (L ):= [ ]α−≥∈ 1)(:inf xFIRx L , 

 

where FL denotes the distribution function of the loss L. 
 
In the following let A denote the random variable of the annual storm loss. We define risk 
capital using the TVaR and VaR as risk measures with confidence level 99,8% and the 
following random variable L (loss): 

 

L = A – E(A), 
 

where E(A) denotes the expected value. 
 

Figure 6 shows that the risk capital requirements based on TVaR lie much beyond those 
based on VaR because of the extremely high losses with very small probabilities. The risk 
capital calculated using the confidence level of 99,8% is €135 respectively €139 million 
for each of the modelling alternatives shown in Sections 3 and 4 (using TVaR). Note that 
the similar risk capital requirements result from the PMLs for extreme events, which were 
used to fit the underlying distributions in the mathematical statistical model and were 
taken from the ELT, as were applied to the ELT-based model.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6: Value-at-risk and Tail-value-at-risk at a confidence level of 99.8% for annual storm loss 

 
Ignoring the variance of the severity of individual events in the ELT, the result is a 
substantially lower risk capital requirement of €116 million (using TVaR). This 
emphasises the need to include this variability in the model. 

                                                 
38 There exist many publications where the tail-value-at-risk, which is recommended by IAA [IAA 2004], is 
criticised, see for example [Pfeifer 2004b], [Rootzén / Klüppelberg 1999], [McNeil / Embrechts / Frey 
2005]. A further discussion about the use of risk measures is absolutely necessary but exceeds the purpose 
of this paper. 
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Strategic value- and risk-based management often involves discussing alternatives for risk 
reduction in divisions with very high risk capital requirement, such as where the capital 
available is exceeded. In those cases adequate reinsurance protection is an important 
factor. Other concepts are possible in storm risk, such as the introduction of deductibles. 
Since large numbers of claims with low average losses are typical of storm events, even 
low deductibles will have a great effect. Figure 6 shows the risk capital requirement with 
a universal introduction of deductibles in our sample portfolio. Somewhat lower 
deductibles for €250 and €500 have been assumed, as higher may otherwise lead to the 
undesirable effect of losing customers due to the general unpopularity of deductibles. 
 
Modelling based on mathematical statistical methods as shown in Section 4 has been 
adjusted to these altered conditions by exactly calculating the deductibles to historical loss 
data according to as-if calculations. The relief from loss in the longer return periods has 
also been approximated from as-if calculations. Modelling using ELTs requires the 
individual events to be fitted to conditions. Here, we have omitted this step since this is 
only possible with direct access to natural risks models. At €250 deductibles, the risk 
capital requirement decreases by around 24%, and a clear reduction of 45% results from 
€500 deductibles. This confirms the positive affect of deductibles on the risk situation of 
the company with regard to storm loss. However, successfully introducing deductibles 
heavily depends on customer acceptance as described earlier, and the marketing aspects 
should not be ignored in such strategic decisions. 
 
To summarise, we conclude that adequate catastrophe modelling is especially important in 
internal modelling in order to create a solid decision base for companies in deciding on 
corporate strategy. So for decisions in the areas of underwriting policy, changing 
insurance terms (as introduction of deductibles, limits, etc.), expansion, withdrawal from 
special segments, reinsurance buying, pricing, marketing, etc., these models will be an 
essential benefit for the management in future. 
 
Modelling with mathematical statistical methods can be used to review the suitability of 
PMLs in long return periods with reference to historical data. If modelling based on 
natural risk models and mathematical statistical models yield similar results, the former 
can be judged as matching well. The latter present the distinct advantage of enabling 
direct modelling for corporate strategy in that a variety of gross strategies such as 
portfolio expansion, withdrawal from various agreements or the universal introduction of 
deductibles can be directly modelled. The effects of reinsurance contracts and alternative 
reinsurance strategies such as event XLs can be tested with both modelling types. The 
approach based on natural risk models usually leads to results that are more beneficial to 
the company since all of the events in the ELT are explicitly included in the model. As a 
result, in future insurance companies should use own natural risks models, which allow 
them to change the respective parameters for calculating the effects on management 
strategies. 
 
Individual company modelling in DFA models create distributions of results of all 
different lines of business, reinsurance contracts, assets-classes, etc., as a basis for 
defining important strategic indicators such as return on risk adjusted capital, economic 
value added, economical profit and loss accounts, balance sheets, etc., by using simulation 
methods. The models described here represent an important step in supporting 
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management in a thorough value- and risk-based corporate strategy that will lead to a 
lasting increase in corporate value while providing solid support for risk management. 
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