# Kurtosis and skewness estimation for non-life reserve risk distribution

**ASTIN colloquium 2013** 

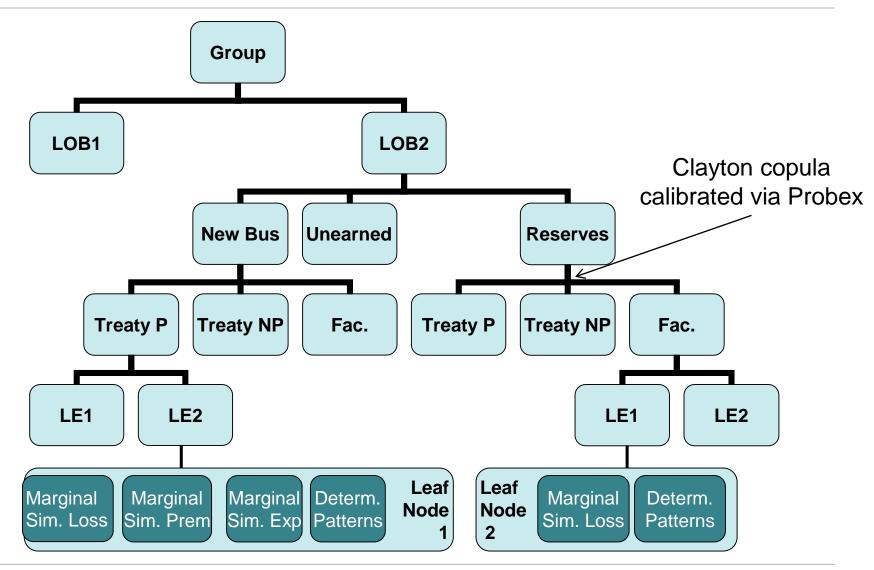
Eric Dal Moro



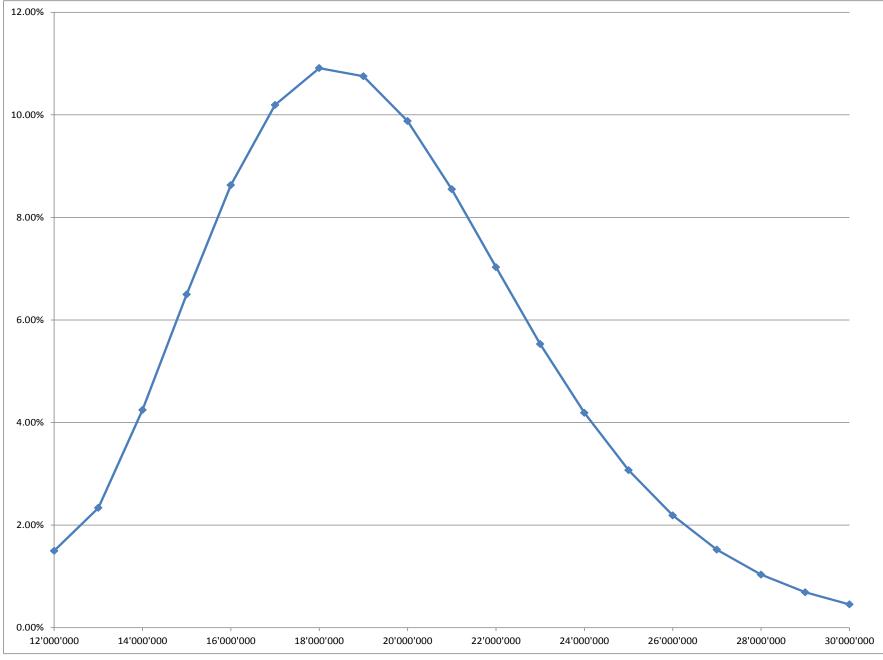
Any views and opinions expressed in this presentation or any material distributed in conjunction with it solely reflect the views of the author and nothing herein is intended to, or should be deemed, to reflect the views or opinions of the employer of the presenter.

□ The information, statements, opinions, documents or any other material which is made available to you during this presentation are without any warranty, express or implied, including, but not limited to, warranties of correctness, of completeness, of fitness for any particular purpose.

## SCOR Internal Model - P&C





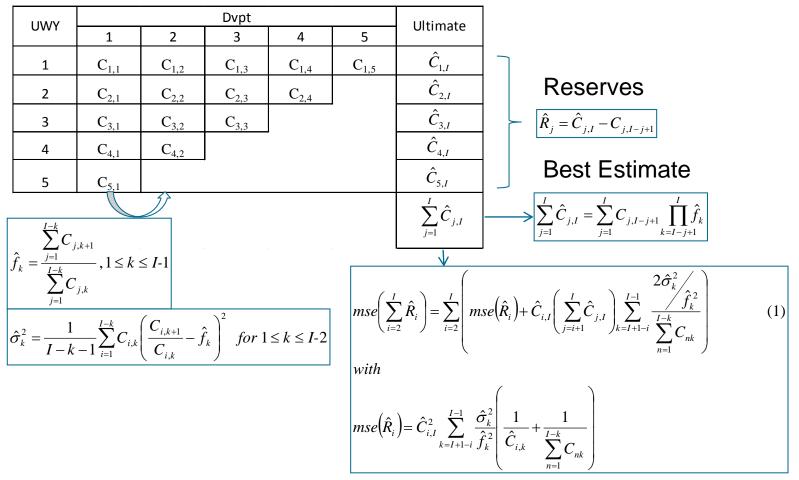


## Agenda

- Reserve risk distribution What do we know ?
- Skewness and kurtosis Some basic properties
- Reserve risk distribution A proposal for a new approach
- Simulations to the ultimate
- Application to real triangles
- The Johnson distribution
- Conclusion
- References

## Reserve risk distribution – What do we know in a chain-ladder framework ?

### From Mack (1993):



## Reserve risk distribution – What do we know in other frameworks ?

- Bornhuetter Ferguson
  - Best estimate known
  - Estimate of the standard deviation known (see Mack 2008)
- Mix Bornhuetter Ferguson / Chain-ladder
  - Best estimate known
  - Hybrid chain-ladder method provides an estimate of the standard deviation (see Arbenz 2010)
- GLM based on incremental triangles
  - Best estimate known
  - Different estimates of the standard deviation given (See Merz-Wüthrich 2008)
- Cape-Cod
  - Best estimate known
  - No estimate of the standard deviation

## Reserve risk distribution – How do we get the distribution today ?

- Assume a lognormal distribution with mean given by Best Estimate and standard deviation given by Mack standard equation (see equation (1) on slide 3).
- Bootstrapping techniques based on Pearson residuals (see England and Verall 2006)
- Generalized Linear Models based on incremental triangles (see Merz and Wüthrich 2008)
  - Usual assumption: The distribution of the random element of the incremental claim X<sub>i,j</sub> belongs to the Exponential Dispersion Family (e.g. Poisson, Gamma ...)
- Model of Salzman, Wüthrich, Merz on higher moments of the Claim Development Result in General Insurance (ASTIN Bulletin 2012)
  - Two models assumed for the distribution of the individual claims development factor  $F_{i,j} = \frac{C_{i,j+1}}{C_{i,j}}$ : Gamma and Lognormal models

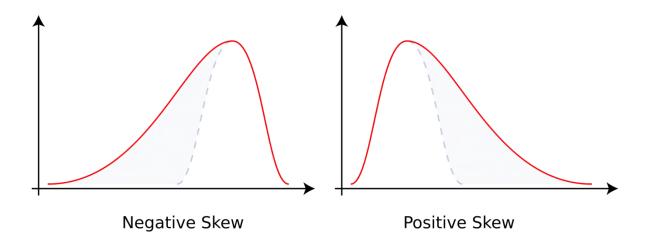
All of the above models use some distributional assumptions.

The following properties are taken from Wikipedia:

 $\Box$  The skewness of a random variable X is the third standardized moment, denoted  $\gamma_1$  and defined as

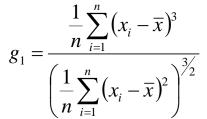
$$\gamma_1 = E\left[\left(\frac{X-\mu}{\sigma}\right)^3\right] = \frac{\mu_3}{\sigma^3}$$

where  $\mu_3$  is the third moment about the mean  $\mu$  and  $\sigma$  is the standard deviation.



## Skewness and kurtosis – Some basic properties

Sample skewness - For a sample of *n* values the *sample skewness* is:



g1 is a biased estimator of sample skewness. H. Cramer (1946) provided an unbiased estimator of sample skewness G:

$$G = \frac{n}{(n-1)(n-2)} \sum_{i=1}^{n} \left(\frac{x_i - \overline{x}}{s}\right)^3$$

where s is the unbiased sample standard deviation.



Harald Cramer (1893 – 1985)

Swedish professor at University of Stockholm

PhD for his thesis «On a class of Dirichlet series» with the advisor Marcel Riesz

## Skewness and kurtosis – Some basic properties

The fourth standardized moment is defined as

$$\beta_2 = E\left[\left(\frac{X-\mu}{\sigma}\right)^4\right] = \frac{\mu_4}{\sigma^4}$$

where  $\mu_4$  is the fourth moment about the mean  $\mu$  and  $\sigma$  is the standard deviation.

Excess kurtosis is defined as:

### Excess kurtosis

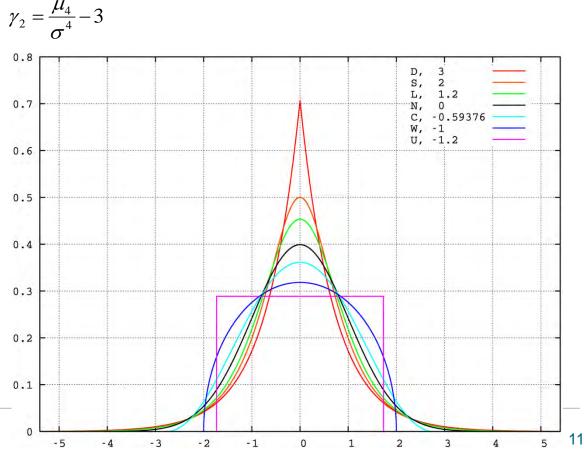
### Leptokurtic:

- D: Laplace distribution
- S: Hyperbolic secant distribution
- L: Logistic distribution

N: Normal distribution

### **Platykurtic:**

C: Raised cosine distribution W: Wigned semicircle distribution U: Uniform distribution



SCOR

## Skewness and kurtosis – Some basic properties

 $\Box$  For a sample of *n* values the sample excess kurtosis is

$$g_{2} = \frac{\frac{1}{n} \sum_{i=1}^{n} (x_{i} - \overline{x})^{4}}{\left(\frac{1}{n} \sum_{i=1}^{n} (x_{i} - \overline{x})^{2}\right)^{2}} - 3$$

g2 is a biased estimator of the sample excess kurtosis. H. Cramer (1946) provided an "unbiased" estimator of sample excess kurtosis as follows. We denote :

$$m_4 = \frac{1}{n} \sum_{i=1}^n (x_i - \overline{x})^4 \qquad m_2 = \frac{1}{n} \sum_{i=1}^n (x_i - \overline{x})^2$$

Then an unbiased estimator of the fourth centered moment is:

$$M_{4} = \frac{n(n^{2} - 2n + 3)}{(n - 1)(n - 2)(n - 3)}m_{4} - 3m_{2}^{2}\frac{n(2n - 3)}{(n - 1)(n - 2)(n - 3)}$$

## Reserve risk distribution – A proposal for a new approach

For one development year the skewness/kurtosis is the same for any UWY. Context : Reserving portfolio which risks are similar for every UWY.

## SCOR

With the above assumption, under a Mack model for the volatility, we have:  $\exists \gamma_k \text{ such that } \gamma_k = \frac{SK(C_{i,k+1} \mid C_{i,1},...,C_{i,k})}{\left[Var(C_{i,k+1} \mid C_{i,1},...,C_{i,k})\right]^{\frac{3}{2}}} = \frac{SK(C_{i,k+1} \mid C_{i,1},...,C_{i,k})}{\left[\sigma_i^2 C_{i,k}\right]^{\frac{3}{2}}}$  $\Rightarrow SK(C_{i,k+1} | C_{i,1},...,C_{i,k}) = \gamma_k \left[\sigma_k^2 C_{i,k}\right]^{3/2} = Sk_k^3 C_{i,k}^{3/2}$ 

Then, it is possible to show that the estimator below is unbiased.: 

$$\hat{S}k_{k}^{3} = \frac{1}{\left(\frac{\left(\sum_{i=1}^{I-k} C_{i,k}^{3/2}\right)^{2}}{\left(\sum_{i=1}^{I-k} C_{i,k}\right)^{3}}\right)^{2}} \sum_{i=1}^{I-k} C_{i,k}^{3/2} \left(\frac{C_{i,k+1}}{C_{i,k}} - \hat{f}_{k}\right)^{3} \text{ for } 1 \le k \le I-3$$

Comments:

- 1 The formula for  $\hat{S}k_k^3$  has a similar "shape" as the formula for  $\hat{\sigma}_k^2$
- 2 The formula for  $\hat{S}k_k^3$  uses the usual weighted average (power 1.5) of cubic differences. 3 As for the formula of  $\hat{\sigma}_k^2$ , outliers can play a major role in the estimation of  $\hat{S}k_k^3$
- 4 The homogeneity formulas in terms of power of  $C_{i,k}$  is kept in the above formulas.

## Kurtosis : Use of the new approach

With the above assumption, under a Mack model for the volatility, we have:  $\exists \gamma_k \text{ such that } \gamma_k = \frac{KT(C_{i,k+1} | C_{i,1}, \dots, C_{i,k})}{\left[Var(C_{i,k+1} | C_{i,1}, \dots, C_{i,k})\right]^2} = \frac{KT(C_{i,k+1} | C_{i,1}, \dots, C_{i,k})}{\left[\sigma_k^2 C_{i,k}\right]^2}$   $\Rightarrow KT(C_{i,k+1} | C_{i,1}, \dots, C_{i,k}) = \gamma_k \left[\sigma_k^2 C_{i,k}\right]^2 = Kt_k^4 C_{i,k}^2$ 

Then, it is possible to show that the estimator below is unbiased.:

$$\hat{K}t_{k}^{4} = \frac{\left[\sum_{i=1}^{I-k} C_{i,k}^{2} \left(\frac{C_{i,k+1}}{C_{i,k}} - \hat{f}_{k}\right)^{4} - 3(\hat{\sigma}_{k}^{2})^{2} \left(2 - 6\frac{\sum_{i=1}^{I-k} C_{i,k}^{2}}{\left(\sum_{i=1}^{I-k} C_{i,k}\right)^{2}} + 4\frac{\sum_{i=1}^{I-k} C_{i,k}^{3}}{\left(\sum_{i=1}^{I-k} C_{i,k}\right)^{3}}\right)\right]}{\left(\sum_{i=1}^{I-k} \left(1 - \frac{C_{i,k}}{\sum_{i=1}^{I-k} C_{i,k}}\right)^{4} + \frac{\left(\sum_{i=1}^{I-k} C_{i,k}^{2}\right)^{2} - \sum_{i=1}^{I-k} C_{i,k}^{4}}{\left(\sum_{i=1}^{I-k} C_{i,k}\right)^{4}}\right)}\right] \text{ for } 1 \le k \le I-4$$

Notes:

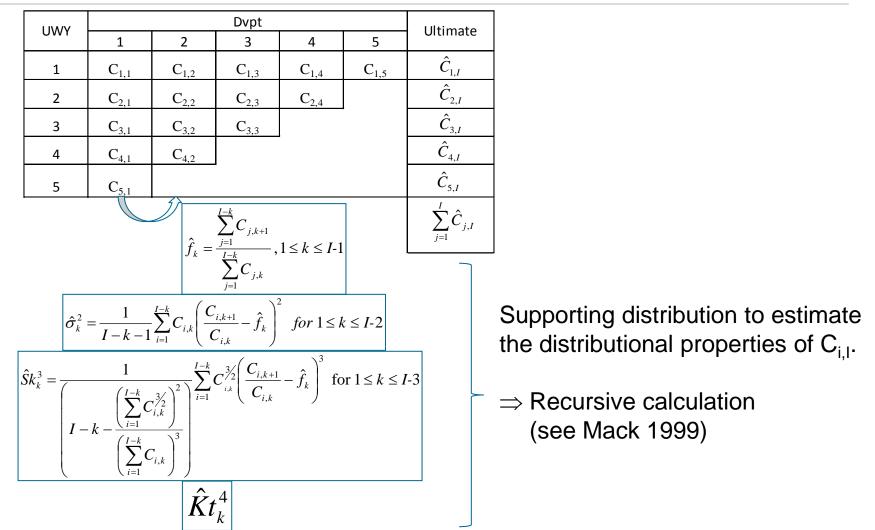
1 – The formula is "as expected".

2 – There is the "usual correction" equal to 3 times the square of the variance estimator.

3 - The homogeneity formulas in terms of power of C<sub>i,k</sub> is kept in the above formulas.

## SCOR

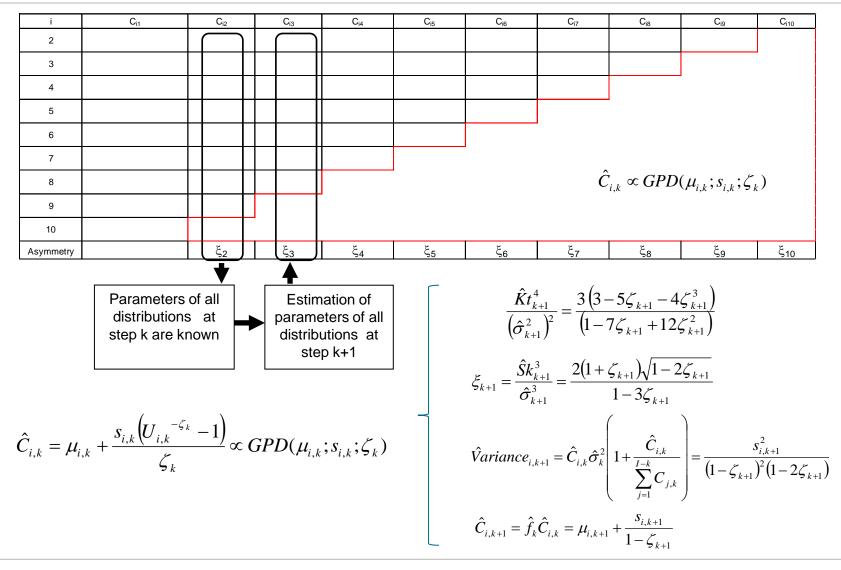
## Skewness/Kurtosis : Simulation to the ultimate



Assumption: The chosen supporting distribution should not be influencing the overall simulated skewness.

## SCOR

# Skewness/Kurtosis : Simulation to the ultimate – Generalized Pareto Distribution



## Application to real triangles

The calculations of Skewness/Kurtosis per development year as well as the simulations to ultimate on the triangle using the GPD distribution were performed on the following triangle:

- Schedule P triangles provided by G Meyers on the CAS website Accident year 1988 to 1997 (10 x 10 triangles http://www.casact.org/research/index.cfm?fa=loss\_reserves\_data):
  - Farmers Alliance Private Motor
  - NC Farm Bureau Private Motor
  - New Jersey Manufacturers Private Motor
  - Pennsylvania Product Liability
  - West Bend Product Liability
- □ First example triangle in Mack 1993 (10 x 10 triangle)
- SCOR Global P&C 2011 reserve triangles Excel files (15x15 triangle <u>http://www.scor.com/en/investors/financial-reporting/presentations.html</u>)
  - Casualty proportional worldwide
  - Motor non-proportional worldwide

# Application to real triangles – Skewness and Kurtosis per development year – 10x10 triangles

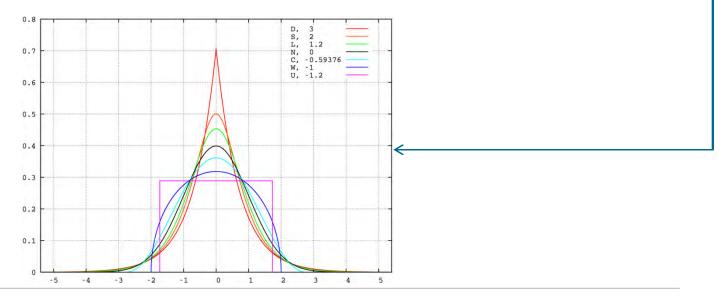
|                   | k                                 |                                                 | 1       | 2       | 3       | 4       | 5       | 6                                                                                        | 7      |
|-------------------|-----------------------------------|-------------------------------------------------|---------|---------|---------|---------|---------|------------------------------------------------------------------------------------------|--------|
| Private Motor     |                                   | $\hat{S}k_k^3/(\hat{\sigma}_k^2)^{3/2}$         | 0.611   | -0.256  | -0.349  | -0.090  | 1.049   | 0.477                                                                                    | 0.273  |
|                   | Farmers Alliance                  | $\hat{K}t_k^4 / (\hat{\sigma}_k^2)^2$           | 317.02% | 177.30% | 166.23% | 146.75% | 340.69% | 165.38%                                                                                  | NA     |
| Drivata Matar     |                                   | $\hat{S}k_k^3/(\hat{\sigma}_k^2)^{3/2}$         | 0.703   | 0.412   | 0.727   | -0.047  | -0.058  | -0.769                                                                                   | 0.500  |
| Private Motor     | NC Farm Bureau                    | $\hat{K}t_k^4/(\hat{\sigma}_k^2)^2$             | 223.54% | 201.65% | 182.26% | 78.01%  | 144.84% | 237.28%                                                                                  | NA     |
| Drivato Motor     | New Jersey<br>Manufacturers       | $\hat{S}k_k^3/(\hat{\sigma}_k^2)^{3/2}$         | 0.583   | 0.187   | 0.414   | -0.565  | -0.141  | 0.230                                                                                    | -0.008 |
| Private Motor     |                                   | $\hat{K}t_k^4/(\hat{\sigma}_k^2)^2$             | 204.32% | 229.15% | 207.06% | 192.21% | 103.56% | 104.25%                                                                                  | NA     |
| Product Liability | Pennsylvania                      | $\hat{S}k_{k}^{3}/(\hat{\sigma}_{k}^{2})^{3/2}$ | 0.774   | 1.716   | -0.540  | -1.059  | -0.620  | 0.164                                                                                    | 0.111  |
|                   | i ennisyivania                    | $\hat{K}t_k^4 / (\hat{\sigma}_k^2)^2$           | 324.61% | 620.07% | 298.72% | 369.19% | 164.25% | 119.36%                                                                                  | NA     |
|                   |                                   | $\hat{S}k_k^3/(\hat{\sigma}_k^2)^{3/2}$         | -0.008  | 1.060   | 0.525   | -0.507  | -0.030  | -0.484                                                                                   | -0.113 |
| Product Liability | West Bend                         | $\hat{K}t_k^4 / (\hat{\sigma}_k^2)^2$           | 205.13% | 411.28% | 302.64% | 200.90% | 125.54% | 0.477<br>165.38%<br>-0.769<br>237.28%<br>0.230<br>104.25%<br>0.164<br>119.36%            | NA     |
| Ma                | $\hat{S}k_k^3/(\hat{\sigma}_k^2)$ |                                                 | 0.137   | 0.215   | 0.638   | -0.433  | 0.402   | -0.026                                                                                   | -0.497 |
|                   | ck 1993                           | $\hat{K}t_k^4/(\hat{\sigma}_k^2)^2$             | 184.92% | 170.29% | 265.62% | 162.92% | 185.65% | -0.769<br>237.28%<br>0.230<br>104.25%<br>0.164<br>119.36%<br>-0.484<br>121.50%<br>-0.026 | NA     |

# Application to real triangles – Skewness and Kurtosis per development year – 15x15 triangles SCOR

|          | k                                       | 1       | 2       | 3       | 4       | 5       | 6       | 7       | 8       | 9       | 10      | 11      | 12     |
|----------|-----------------------------------------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|--------|
| Casualty | $\hat{S}k_k^3/(\hat{\sigma}_k^2)^{3/2}$ | 1.031   | 0.070   | -0.372  | -0.119  | -0.390  | 0.537   | -0.334  | 0.863   | -0.842  | 0.868   | -0.843  | 0.518  |
| Prop     | $\hat{K}t_k^4/(\hat{\sigma}_k^2)^2$     | 233.59% | 291.73% | 339.24% | 193.39% | 194.71% | 260.08% | 226.84% | 314.55% | 294.64% | 266.31% | 257.91% | NA     |
| Motor    | $\hat{S}k_k^3/(\hat{\sigma}_k^2)^{3/2}$ | 1.491   | 0.286   | 0.348   | -0.155  | 0.621   | 0.177   | 0.920   | 0.411   | 0.658   | 0.713   | 0.865   | -0.212 |
| NonProp  | $\hat{K}t_k^4/(\hat{\sigma}_k^2)^2$     | 631.06% | 201.17% | 403.49% | 234.55% | 294.37% | 167.42% | 292.94% | 194.28% | 291.68% | 245.21% | 265.76% | NA     |

## Application to real triangles – Simulation to ultimate

| LoB              | Company           | Chain-      | Chain-     | CoV   | Overall   | Overall        |       |        |           |           |
|------------------|-------------------|-------------|------------|-------|-----------|----------------|-------|--------|-----------|-----------|
|                  |                   | ladder      | ladder     |       | simulated | simulated LogN |       |        |           |           |
|                  |                   | reserves    | stdev      |       | skewness  | kurtosis       |       |        | Resulting | Resulting |
|                  |                   |             |            |       |           |                | Mu    | Sigma2 | skewness  | kurtosis  |
| Private Motor    | Farmers Alliance  | -374        | 1493       | -400% | -0.01     | 297%           | NA    | NA     | NA        | NA        |
| Private Motor    | NC Farm           | 19'415      | 9'528      | 49%   | 0.32      | 298%           | 9.77  | 0.216  | 1.59      | 781%      |
| Private Motor    | New Jersey Manuf. | 109'719     | 11'961     | 11%   | 0.07      | 295%           | 11.60 | 0.012  | 0.33      | 319%      |
| Product Liab.    | Pennsylvania      | 1'474       | 1'784      | 121%  | 0.06      | 350%           | 6.84  | 0.903  | 5.41      | 8222%     |
| Product Liab.    | West Bend         | 2150        | 1899       | 88%   | 0.35      | 384%           | 7.38  | 0.577  | 3.34      | 2784%     |
| Mack 199         | 93 triangle       | 18'680'856  | 2'447'095  | 13%   | 0.13      | 292%           | 16.73 | 0.017  | 0.40      | 328%      |
| WW Casualty Prop | SCOR              | 219'461'925 | 79'722'452 | 36%   | 0.14      | 300%           | 19.14 | 0.124  | 1.14      | 539%      |
| WW Motor NP      | SCOR              | 402'645'321 | 53'078'447 | 13%   | 0.17      | 289%           | 19.80 | 0.017  | 0.40      | 328%      |



We recall that the family of Johnson distribution has the following properties (see also Johnson 1949):

$$z = \gamma + \delta f\left(\frac{x - \xi}{\lambda}\right)$$

where f is a function of simple form and z is a unit normal variable.

Depending on f, the Johnson distribution is noted as follows:  $f = \log$  : Distribution SL

$$f = \sinh^{-1} : \text{Distribution SU}$$
$$z = \gamma + \delta \log \left( \frac{x - \xi}{\xi + \lambda - x} \right) : \text{Distribution SB}$$
$$z = \gamma + \delta \left( \frac{x - \xi}{\lambda} \right) : \text{Distribution SN}$$



Norman Lloyd Johnson (FIA)

PhD 1948 for his thesis «A family of Frequency Curves» done under the advisor Egon Sharpe Pearson The Johnson distribution is available in the software R:

- Package "SuppDists"
- Fitting of a Johnson distribution on the first 4 moments can be done with the function: JohnsonFit
- Getting the main statistics of a known Johnson distribution (with its 4 parameters and its type can be done with the function:

sJohnson

## The Johnson distribution – Fitting to simulated data

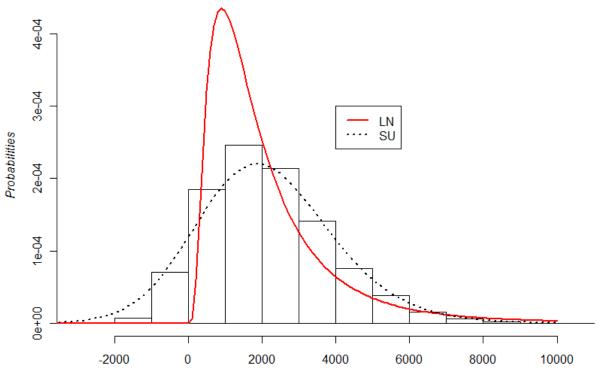
| LoB                | Company           | Chain-      | Chain-       | CoV   | Overall   | Overall   | Johnson fitting |                            |            |          |          |  |
|--------------------|-------------------|-------------|--------------|-------|-----------|-----------|-----------------|----------------------------|------------|----------|----------|--|
|                    |                   | ladder      | ladder stdev |       | simulated | simulated |                 |                            |            |          |          |  |
|                    |                   | reserves    |              |       | skewness  | kurtosis  | Туре            | e Fitted Mean Fitted Stdev |            | Fitted   | Fitted   |  |
|                    |                   |             |              |       |           |           | $\frown$        |                            |            | Skewness | Kurtosis |  |
| Private Motor      | Farmers Alliance  | -374        | 1493         | -400% | -0.01     | 297%      | SN              | -374                       | 1'493      | -        | 300%     |  |
| Private Motor      | NC Farm           | 19'415      | 9'528        | 49%   | 0.32      | 298%      | SB              | 19'355                     | 9'406      | 0.19     | 287%     |  |
| Private Motor      | New Jersey Manuf. | 109'719     | 11'961       | 11%   | 0.07      | 295%      | SN              | 109'719                    | 11'961     | -        | 300%     |  |
| Product Liab.      | Pennsylvania      | 1'474       | 1'784        | 121%  | 0.06      | 350%      | SU              | 1'474                      | 1'784      | 0.06     | 350%     |  |
| Product Liab.      | West Bend         | 2150        | 1899         | 88%   | 0.35      | 384%      | SU              | 2'150                      | 1'899      | 0.35     | 348%     |  |
| Mack 1993 triangle |                   | 18'680'856  | 2'447'095    | 13%   | 0.13      | 292%      | SB              | 18'645'236                 | 2'428'748  | 0.18     | 278%     |  |
| WW Casualty Prop   | SCOR              | 219'461'925 | 79'722'452   | 36%   | 0.14      | 300%      | SL              | 219'461'925                | 79'722'452 | 0.14     | 303%     |  |
| WW Motor NP        | SCOR              | 402'645'321 | 53'078'447   | 13%   | 0.17      | 289%      | SB              | 401'885'733                | 52'707'797 | 0.21     | 278%     |  |

## The Johnson distribution – Comparison of VaR 99%

| LoB              | Company           | VaR 99%     |             | Difference |
|------------------|-------------------|-------------|-------------|------------|
|                  |                   |             |             | LogN       |
|                  |                   | Johnson     | Lognormal   | Johnson    |
|                  |                   |             |             | VaR 99%    |
| Private Motor    | Farmers Alliance  | 3'099       | NA          | NA         |
| Private Motor    | NC Farm           | 43'432      | 51'358      | 18%        |
| Private Motor    | New Jersey Manuf. | 137'544     | 140'453     | 2%         |
| Product Liab.    | Pennsylvania      | 5'864       | 8'556       | 46%        |
| Product Liab.    | West Bend         | 7'214       | 9'430       | 31%        |
| Mack 199         | 93 triangle       | 24'555'541  | 25'089'172  | 2%         |
| WW Casualty Prop | SCOR              | 411'994'159 | 467'889'645 | 14%        |
| WW Motor NP      | SCOR              | 531'340'556 | 541'742'729 | 2%         |

## The Johnson distribution – Case of West Bend / Product Liability

| k                 |           |                                         | 1       | 2       | 3       | 4       | 5       | 6       | 7      | 8     | 9     |
|-------------------|-----------|-----------------------------------------|---------|---------|---------|---------|---------|---------|--------|-------|-------|
| Product Liability | West Bend | $\hat{f}_k$                             | 1.692   | 1.487   | 1.269   | 1.016   | 1.150   | 1.130   | 0.862  | 1.007 | 1.000 |
|                   |           | $\hat{\sigma}_k^2$                      | 31.078  | 66.326  | 70.197  | 33.319  | 23.011  | 3.421   | 14.919 | 0.015 | 0.000 |
|                   |           | $\hat{S}k_k^3/(\hat{\sigma}_k^2)^{3/2}$ | -0.008  | 1.060   | 0.525   | -0.507  | -0.030  | -0.484  | -0.113 | NA    | NA    |
|                   |           | $\hat{K}t_k^4/(\hat{\sigma}_k^2)^2$     | 205.13% | 411.28% | 302.64% | 200.90% | 125.54% | 121.50% | NA     | NA    | NA    |



Ultimate

The usual feelings on the reserving distribution seem to be confirmed by the study

- The distribution is slightly positively skewed
- The distribution is not sharp
- □ The use of the Lognormal distribution can fit with the above feelings in the case where the coefficient of variation is small.
- □ When the coefficient of variation is high (e.g. more than 36%), the lognormal distribution may not be adequate anymore. Use of alternatives should be sought.
- Next steps
  - Find formulae for overall skewness and kurtosis
  - Find distributions that can fit specific lines of business

## **References and contacts**

- ARBENZ P., SALZMANN R., 2010: "A robust distribution-free loss reserving method with weighted data- and expertreliance", <u>http://www.risklab.ch/hclmethod</u>
- CRAMER H., 1946: "Mathematical methods of statistics", Princeton: Princeton University Press
- DAL MORO ERIC, 2012 "Application of skewness to non-life reserving", Paper presented to the ASTIN Colloquium of Mexico-City, 2 October 2012
- ENGLAND, P.D., VERRALL, R.J., 2002: "Stochastic claims reserving in general insurance", Paper presented to the Institute of Actuaries, 28 January 2002
- ENGLAND, P.D., VERRALL, R.J., 2006: "Predictive distributions of outstanding liabilities in General Insurance", Annals of Actuarial Science, Volume 1, Issue 02, September 2006, pp 221-270
- JOHNSON N.L., 1949: "Systems of Frequency Curves Generated by Methods of Translation", Biometrika, Vol 36 No 1/2
- MACK Thomas, 1993a : "Distribution-free calculation of the standard error of chain-ladder reserve estimates", ASTIN Bulletin Vol 23, No2, 1993
- MACK Thomas, 1993b : "Measuring the variability of Chain-Ladder Reserve Estimates", Casualty Actuarial Society Prize Paper Competition
- MACK Thomas, 1999: "The standard error of chain-ladder reserve estimates, Recursive calculation and inclusion of a tail factor", ASTIN Bulletin Vol 29, No2, 1999
- MACK Thomas, 2008 : "The Prediction Error of Bornhuetter/Ferguson", ASTIN Bulletin Vol 38, No1, 2008
- WÜTHRICH, M. V., MERZ, M., 2008: "Stochastic Claims Reserving Methods in Insurance", Wiley, Chichester
- ARBENZ, P., CANESTRARO, D. (2010): PrObEx A new method for the calibration of copula parameters from prior information, observations and expert opinions. SCOR Paper n. 10
- ARBENZ, P. and CANESTRARO, D. (2012): Estimating copula for insurance from scarce observations, expert opinion and prior information: a Bayesian approach. ASTIN Bulletin

Contact details eric\_dal\_moro@yahoo.com