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Disclaimer

U Any views and opinions expressed in this presentation or any material distributed in conjunction with it
solely reflect the views of the author and nothing herein is intended to, or should be deemed, to reflect
the views or opinions of the employer of the presenter.

U The information, statements, opinions, documents or any other material which is made available to you
during this presentation are without any warranty, express or implied, including, but not limited to,
warranties of correctness, of completeness, of fithess for any particular purpose.
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Reserve risk distribution — What do we know in a chain-ladder framework ?

From Mack (1993):
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Reserve risk distribution — What do we know in other frameworks ?

O Bornhuetter — Ferguson

= Best estimate known

= Estimate of the standard deviation known (see Mack 2008)
O Mix Bornhuetter — Ferguson / Chain-ladder

= Best estimate known

= Hybrid chain-ladder method provides an estimate of the standard deviation (see Arbenz 2010)
O GLM based on incremental triangles

= Best estimate known

= Different estimates of the standard deviation given (See Merz-Withrich 2008)
0 Cape-Cod

= Best estimate known

= No estimate of the standard deviation



Reserve risk distribution — How do we get the distribution today ?

Q

Assume a lognormal distribution with mean given by Best Estimate and standard deviation given by
Mack standard equation (see equation (1) on slide 3).

Bootstrapping techniques based on Pearson residuals (see England and Verall 2006)
Generalized Linear Models based on incremental triangles (see Merz and Withrich 2008)

= Usual assumption: The distribution of the random element of the incremental claim X;; belongs
to the Exponential Dispersion Family (e.g. Poisson, Gamma ...)

Model of Salzman, Withrich, Merz on higher moments of the Claim Development Result in General
Insurance (ASTIN Bulletin 2012)

= Two models assumed for the distribution of the individual claims development factor F, | =—C"”l ;
Gamma and Lognormal models y

All of the above models use some distributional assumptions.



Skewness and kurtosis — Some basic properties

The following properties are taken from Wikipedia:

4 The skewness of a random variable X is the third standardized moment, denoted y, and defined as

(Sl

where i is the third moment about the mean p and o is the standard deviation.



Skewness and kurtosis — Some basic properties

O Sample skewness - For a sample of n values the sample skewness is:

) ﬁg(xi—ff
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L glis a biased estimator of sample skewness. H. Cramer (1946) provided

an unbiased estimator of sample skewness G:

S oy 9

where s is the unbiased sample standard deviation.

|
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Harald Cramer (1893 — 1985)

Swedish professor at University
of Stockholm

PhD for his thesis «On a class of

Dirichlet series» with the advisor
Marcel Riesz
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Skewness and kurtosis — Some basic properties

U The fourth standardized moment is defined as

el 2

4
o O

where 1, is the fourth moment about the mean p and o is the standard deviation.

J  Excesskurtosis is defined as:  y, = Ha 4

Excess kurtosis
Leptokurtic:
D: Laplace distribution
S: Hyperbolic secant distribution
L: Logistic distribution

N: Normal distribution

Platykurtic:

C: Raised cosine distribution

W: Wigned semicircle distribution
U: Uniform distribution
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Skewness and kurtosis — Some basic properties

O For a sample of n values the sample excess kurtosis is

(R _\
- -
©> (- %)
g2 — i=1 > _3
1< —\2
*Z(Xi -X)
)
L g2is a biased estimator of the sample excess kurtosis. H. Cramer (1946) provided an “unbiased”
estimator of sample excess kurtosis as follows. We denote :

1n 1n

m4:_Z(Xi_¥)4 mZZ_Z(Xi_K)Z

N3 N3

Then an unbiased estimator of the fourth centered moment is:
n(n2 —2n+ 3)
M, =

~ (n-1)(n-2)n-3)

—— n(2n-3)

*(n-1)(n-2)n-3)
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Reserve risk distribution — A proposal for a new approach

uwWy Dvpt Ultimate
1 2 3 4 5
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Assumption on kurtosis:

where: KT (Ci,k+1 | Ci,l""’Ci,k): E[(Ci,k+l - E(Ci,k+1 |Ci,1"

For one development year the skewness/kurtosis is

[Var(Ci,k+1 | Ci,l""’ Ci,k )]%
Where: SK(Ci,kJrl | Ci,l""’ Ci,k ): El(Ci,k+1 o E(Ci,k+1 | Ci,l’

depends on k but not on |

- Ci P 1Ci10ennn i

depends on k but not on i

Co ) 1C 1 Co |

the same for any UWY.

Context : Reserving portfolio which risks are similar for every UWY.
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Skewness : Use of the new approach

O With the above assumption, under a Mack model for the volatility, we have:

B SK( i1 1 Cits ,k) _SK(Ci,k+1|Ci,1""’Ci,k)
7 such that 7= b/ar( Cixa G G )]/ ) [O-kzci,k]%
:SK( |k+1|C |k }/k[akzclk]/ Sk3C/

U Then, it is possible to show that the estimator below is unbiased.:

—k

3
" 1 SV
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[ Clykz =1 |,k
|_k-\

Comments: R

1 — The formula for Sk’ has a similar “shape” as the formula for o

2 — The formula for Sk3 uses the usual weighted average (power 1.5) of cubic differences.
3 — As for the formula of O'k, outliers can play a major role in the estimation of Sk3

4 — The homogeneity formulas in terms of power of C; is kept in the above formulas.
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Kurtosis : Use of the new approach

O With the above assumption, under a Mack model for the volatility, we have:
— KT (Ci,k+1 | Ci,l""’ Ci,k) — KT (Ci,k+1 | Ci,l""’Ci,k)
lvar(Ci,kﬂ | Ci,l""’ Ci,k )J2 I:O-kZCi‘k i

dy, such that y,

= KT (Ci,k+1 |Ci,1""’Ci,k): Yk [O-kzci,k]2 - thka

O Then, itis possible to show that the estimator below is unbiased.:
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Notes:
1 — The formula is “as expected”.

2 — There is the “usual correction” equal to 3 times the square of the variance estimator.

3 — The homogeneity formulas in terms of power of C; is kept in the above formulas.
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Skewness/Kurtosis : Simulation to the ultimate

uwy Dvpt Ultimate
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Assumption: The chosen supporting distribution should not be influencing the overall simulated skewness.
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Skewness/Kurtosis : Simulation to the ultimate — Generalized Pareto

Distribution
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Application to real triangles

The calculations of Skewness/Kurtosis per development year as well as the simulations to ultimate on the
triangle using the GPD distribution were performed on the following triangle:

L Schedule P triangles provided by G Meyers on the CAS website — Accident year 1988 to 1997 (10 x
10 triangles - http://www.casact.org/research/index.cfm?fa=loss_reserves_data):

= Farmers Alliance — Private Motor
= NC Farm Bureau — Private Motor
= New Jersey Manufacturers — Private Motor
= Pennsylvania — Product Liability
= West Bend — Product Liability
U First example triangle in Mack 1993 (10 x 10 triangle)

L SCOR Global P&C 2011 reserve triangles — Excel files (15x15 triangle -
http://www.scor.com/en/investors/financial-reporting/presentations.html)

= Casualty proportional worldwide

= Motor non-proportional worldwide
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Application to real triangles — Skewness and Kurtosis per development
year — 10x10 triangles

k 1 ) 3 4 5 6 7
2,3 ( ~2)3
_ , Sk kﬁ 0.611| -0.256 -0.349 -0.090 1.049 0.477 0.273
Private Motor Farmers Alliance >
7e4 ([ ~2
Kt / ( k) 317.02%| 177.30%| 166.23%| 146.75%| 340.69%| 165.38% NA
~ ~ 3V
, Sk /(62 )P 0.703|  0.412 0.727 -0.047| -0.058| -0.769 0.500
Private Motor NC Farm Bureau R ]
4 ~2
Ktk / ( k) 223.54%| 201.65% 182.26% 78.01%| 144.84%| 237.28% NA
~ ~o\3
, New Jersey Sk /(52 )2 0.583 0.187 0.414 -0.565|  -0.141 0.230|  -0.008
Private Motor
Manufacturers Kt“ /(Az)z
k k 204.32%| 229.15%]| _ 207.06% 192.21%| 103.56%| 104.25% NA
Sk 1(62)? |
Product Liability Pennsylvania 0.774 1.716 -0.540 -1.059 -0.620 0.164 0.111
214 g 22V
Kt/ ( k) 324.61%| 620.07%| 298.72%| 369.19%| 164.25%| 119.36% NA
~ ~o\3
Sk /( k )A -0.008 1.060 0.525 -0.507 -0.030 -0.484 -0.113
Product Liability West Bend ~ )
Kt (62
k k 205.13%| ~411.28% 302.64% 200.90%| 125.54%| 121.50% NA
~ 3
3 ~2V2
Sk /( k)/ 0.137 0.215 0.638 -0.433 0.402 -0.026 -0.497
Mack 1993
Kt! /(62
k k 184.92%| 170.29%| 265.62%| 162.92%| 185.65%| 123.00% NA




Application to real triangles — Skewness and Kurtosis per development
year — 15x15 triangles SCOR

k 1 ! 2 | 3 4 5 6 7 8 9 10 11 12
k2 /(52>
Casualty K K | 1.031 0.070 -0.372 -0.119 -0.390 0.537 -0.334 0.863| -0.842 0.868 -0.843 0.518
Prop 54 ~2)2 '
Kt, / ( k) 233.59%| 291.73% 339.24% 193.39%| 194.71%| 260.08%| 226.84%| 314.55%|294.64%| 266.31%| 257.91% NA
k2 /(52> |
Motor k k 1.491 0.286 0.348 -0.155 0.621 0.177 0.920 0.411 0.658 0.713 0.865 -0.212
NonProp Kt /(Az)z
k k i 631.06%| ,201.17%| 403.49% 234.55%| 294.37%| 167.42%| 292.94%| 194.28%| 291.68%| 245.21%| 265.76% NA
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Application to real triangles — Simulation to ultimate

LoB Company Chain- Chain- CoV Overall Overall
ladder ladder simulated | simulated LogN
reserves stdev skewness | kurtosis Resulting |Resulting
Mu | Sigma2|skewness| kurtosis
Private Motor Farmers Alliance -374 1493| -400% -0.01 297%| “NA NA NA NA

Private Motor NC Farm 19'415 9'528(: 49%D 0.32 298%| P.77| 0.216 1.59 781%>—

Private Motor New Jersey Manuf. 109'719 11'961 11% 0.07l 295%+°11.60| 0.012 0331 319%

Product Liab. Pennsylvania 1'474 1784 121%__ 0.06| 350%| ~6.84| 0.903 5.41)  8220%)
Product Liab. West Bend 2150 1895\ 88%| 0.35 384%| “7.38| 0.577\_ 3.34 2784%,>_

Mack 1993 triangle 18'680'856 |  2'447'095 % 0.13 292%| 16.73| 0.017 0 328%

WW Casualty Prop SCOR 219'461'925| 79'722'452 36% 0.14 300%| 19.14| 0.124 1.14 539%

WW Motor NP SCOR 402'645'321 | 53'078'447 13% 0.17 289%| 19.80| 0.017 0.40 328%
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The Johnson distribution

We recall that the family of Johnson distribution has the following properties (see also Johnson 1949):
X —
Z=y+0 f X=¢
A
where f is a function of simple form and z is a unit normal variable.

Depending on f, the Johnson distribution is noted as follows:
f =109 : Distribution SL

f =sinh™. pistribution SU

Z=y+0 |09( j - Distribution SB

E+A-X

X=¢& o
Z=y+ 5(7} : Distribution SN Norman Lloyd Johnson (FIA)

PhD 1948 for his thesis «A family of

Frequency Curves» done under the advisor
Egon Sharpe Pearson
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The Johnson distribution

The Johnson distribution is available in the software R:
O Package “SuppDists”

O Fitting of a Johnson distribution on the first 4 moments can be done with the function:
JohnsonFit

O Getting the main statistics of a known Johnson distribution (with its 4 parameters and its
type can be done with the function:

sJohnson
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The Johnson distribution — Fitting to simulated data

LoB Company Chain- Chain- CoV | Overall Overall Johnson fitting
ladder ladder stdev simulated | simulated
reserves skewness | kurtosis | Type |Fitted Mean|Fitted Stdev| Fitted Fitted
Skewness|Kurtosis
Private Motor Farmers Alliance -374 1493( -400% -0.01 297%|/ SN -374 1'493 - 300%
Private Motor NC Farm 19'415 9'528 | 49% 0.32 298%| SB 19'355 9'406 0.19 287%
Private Motor | New Jersey Manuf. 109'719 11'961| 11% 0.07 295%| \SN /| 109'719 11'961 - 300%
Product Liab. Pennsylvania 1'474 1'784 | 121% 0.06 350%|/ SU | 1'474 1'784 0.06 350%
Product Liab. West Bend 2150 1899| 88% 0.35 384%|\ SU 2'150 1'899 0.35 348%
Mack 1993 triangle 18'680'856 2'447'095 | 13% 0.13 292%| SB 18'645'236 2'428'748 0.18 278%
WW Casualty Prop SCOR 219'461'925( 79'722'452| 36% 0.14 300%| SL 219'461'925 | 79'722'452 0.14 303%
WW Motor NP SCOR 402'645'321| 53'078'447| 13% 0.17 289%| SB 401'885'733 | 52'707'797 0.21 278%
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The Johnson distribution — Comparison of VaR 99%

LoB Company VaR 99% Difference
LogN
Johnson Lognormal | Johnson
VaR 99%
Private Motor Farmers Alliance 3'099 NA NA

Private Motor NC Farm 43'432 51'358 18%
Private Motor New Jersey Manuf. 137'544 140'453 2%
Product Liab. Pennsylvania 5'864 8'556 46%
Product Liab. West Bend 7'214 9'430 31%
Mack 1993 triangle 24'555'541 ( 25'089'172 2%
WW Casualty Prop SCOR 411'994'159 | 467'889'645 14%
WW Motor NP SCOR 531'340'556 | 541'742'729 2%
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The Johnson distribution — Case of West Bend / Product Liability

k 1 2 3 4 5 6 7 8 9
fk 1.692 1.487 1.269 1.016 1.150 1.130(0.862) 1.007 1.000
~2
o Ok 31.078 66.326 70.197 33.319] 23.011 3.421 14.919 0.015] 0.000
Product Liability West Bend - 3
Sk /(O'kz)A -0.008 1.060 0.525 -0.507 -0.030 -0.484 -0.113] NA NA
ket /(62 f
kTATk 205.13% 411.28%| 302.64%| 200.90%| 125.54%| 121.50% NA NA NA
<
Lo ]
7 -
2
-
<
& — LN
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g &
<
Lo ]
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Reserve risk distribution — Conclusions and next steps

O The usual feelings on the reserving distribution seem to be confirmed by the study
= The distribution is slightly positively skewed
= The distribution is not sharp

L The use of the Lognormal distribution can fit with the above feelings in the case where the coefficient
of variation is small.

L When the coefficient of variation is high (e.g. more than 36%), the lognormal distribution may not be
adequate anymore. Use of alternatives should be sought.

L Next steps

= Find formulae for overall skewness and kurtosis

= Find distributions that can fit specific lines of business
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