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1 EXECUTIVE SUMMARY

1.1 BACKGROUND AND OBJECTIVES
Insurance and reinsurance undertakings face an ever-increasing demand from their various 
stakeholders for a deeper understanding of financial results and risk profiles. Meeting this demand 
essentially places huge pressures on existing financial modelling capabilities. Over time, the resource 
requirements of these systems (both in terms of cost and time) may become excessive.

A number of potential solutions to this problem have emerged. Amongst these is the suite of ‘proxy 
modelling’ techniques. The primary objective of this paper is to consider a case study application of one 
of these techniques to variable annuity (VA) business, namely the Least Squares Monte Carlo (LSMC) 
technique. We have chosen to base the case study on VA business as the complexity of this business 
generally requires very sophisticated and time-consuming modelling and is therefore an ideal candidate 
to illustrate the applicability of the LSMC proxy modelling technique. In demonstrating that the LSMC 
proxy modelling technique may be successfully applied to VA business, we also indirectly demonstrate 
that LSMC can handle the complexity associated with other types of business.

The case study covers the calculation of capital requirements as at the balance sheet date (and 
particularly in the context of Solvency II, although the conclusions have wider application to 
economic capital modelling in general). Consideration is also given to the extension of the LSMC 
method to other contexts such as Own Risk and Solvency Assessment (ORSA).

In this paper, for simplicity, we consider only the modelling of liabilities arising from VA products. We 
do not consider the modelling of the assets.

1.2 SCOPE AND STRUCTURE OF THIS PAPER
This paper begins with an introduction in Section 2 to the modelling problem faced by many insurers 
and reinsurers at present, together with its underlying causes.

Section 3 goes on to describe current modelling capabilities in more detail, particularly in the context 
of nested stochastic modelling techniques.

Proxy modelling techniques, and the reasons for choosing to apply such techniques,  
are covered in Section 4.

We highlight the LSMC technique in Section 5, providing details on how it may be applied, its 
theoretical background, and its key inputs, before going on to discuss the main advantages and 
limitations to bear in mind.

Section 6 provides background information on variable annuities as a product class together with a 
high-level description of the case study (data point and assumptions) underlying this paper.

In Section 7, we calibrate the LSMC proxy model to the case study data and assumptions and 
demonstrate how to validate the output from the model.

Projections that cover a multi-year time horizon generally form part of the modelling requirements 
of insurers and reinsurers. We discuss the application of the LSMC technique for such 
projections in Section 8.

We discuss in Section 9 how LSMC may be applied to capital regimes other than Solvency II, such 
as the existing Solvency I regime in Europe.

Section 10 contains numerous references which underlie many aspects of our research.

Full details of the case study and assumptions are contained in the appendix.
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1.3 MAIN FINDINGS
This case study successfully demonstrates how the LSMC technique may be calibrated to model 
VA business, bearing in mind that in successfully applying this technique to such a complex product 
structure we have indirectly demonstrated that it will also work successfully for other product types.

LSMC is an objective and robust methodology for the determination of liability and capital values. 
In working through the calibration process it is possible to isolate instances of the need for expert 
judgment and to minimise reliance on such judgment.

Validation of the model calibration is critically important. We have found, through the application 
of confidence intervals, that it is possible to satisfactorily validate model outcomes under this 
proxy methodology.

Path dependency, dynamic policyholder behaviour, and dynamic management actions may add 
significant complexity to the modelling challenges of undertakings. Considering dynamic policyholder 
lapse behaviour as an example, we have shown how LSMC can take this into account without 
significant loss of accuracy.

LSMC may be used in order to address modelling challenges in a wide variety of real-life situations, 
from best estimate liability valuation to capital calculations, both at a given point in time as well 
as across multiple time periods (as illustrated by the case study in this paper). Hence, it is a 
methodology that has wide application as well as the necessary characteristics to address the 
modelling needs of a wide variety of undertakings.
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2 INTRODUCTION

2.1 BACKGROUND
Insurance and reinsurance undertakings face an ever increasing demand from their various 
stakeholders for a deeper understanding of financial results and risk profiles. Innovation, coupled 
with consumer demand, has also driven complexity in product design, which has in turn led to the 
need for more sophisticated modelling techniques. Developments in financial reporting and capital 
standards have further added to this need. 

In many cases the proper analysis of liabilities at a point in time requires the use of stochastic modelling 
techniques. Furthermore, understanding the future evolution of an insurer’s liability profile can require 
the use of nested stochastic modelling techniques, whereby at each node of a projection a further 
nested stochastic projection is used, as outlined in Section 3 below (and illustrated in Figure 1). Such 
techniques tend to require significant resources if acceptable run times are to be achieved.

FIGURE 1: NESTED STOCHASTIC SCENARIOS

Liability Year 1 Liability Years 2-…

Market-consistent
Scenarios

Real-world
Scenarios

In order to continually manage model run times and to keep them within what might be considered to 
be practical time frames, a number of approaches have been adopted, including:

�� Reliance on continued development of ever more efficient hardware and software
�� A larger volume of hardware, e.g., use of grid computing and cloud computing
�� Reductions in the numbers of scenarios and stresses examined
�� Use of representative liability model points rather than the entire portfolio
�� Simplification of cash-flow models
�� Use of proxy modelling techniques

These approaches may be adopted in isolation or in combination with one another in order to achieve 
the desired outcome. It is the use of proxy modelling techniques that will be the focus of this paper, 
in particular the LSMC technique.
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2.2 OBJECTIVES
The primary objective of this paper is to consider a case study application of the LSMC technique 
to VA business. LSMC, which is explained in further detail in Section 4.2.1 and Section 5 below, 
is a flexible method that can be applied in a range of different situations. However, VA business in 
particular exhibits characteristics that are very well suited to the application of LSMC. For example, 
the typical investment guarantees offered with such products will most likely necessitate a stochastic 
approach when assessing risk exposures and capital requirements. Furthermore, frequent up-to-date 
information is required as VA liabilities can change rapidly over time. With the growth of VAs in the 
European market in recent years, following significant growth in the past in other markets (such as 
the United States and Japan), writers and reinsurers of such business are facing significant model 
resource demands.

This case study analysis considers two typical VA product structures and applies LSMC to the 
calculation of the Solvency II Solvency Capital Requirement (SCR). For simplicity, representative 
model point policies have been constructed for these two product designs. The case study provides 
a step-by-step guide to the implementation of the LSMC technique as well as benchmarking the 
outcomes for accuracy against a fully stochastic calculation in order to demonstrate the accuracy 
and robustness of the proxy modelling technique. For the purposes of this case study, it is primarily 
market risk that is modelled, although lapse risk is also modelled to the extent that exposure to lapse 
risk is impacted by the performance of the underlying funds relative to the guaranteed benefits and 
market conditions in general.

While the majority of the case study considers capital at the balance sheet date and in the context of 
Solvency II, consideration is also given to the extension of the LSMC method to other contexts such 
as the ORSA (see Section 8.1.1) and Solvency I (see Section 9). Although Solvency I is a European 
regulatory framework, the conclusion of this paper should be equally applicable to other jurisdictions.

In this paper, for simplicity, we consider only the modelling of liabilities arising from VA products. We 
do not consider the modelling of the assets. However, LSMC may also be applied to the asset side 
of the balance sheet (for example, the valuation of American options). Of course, it is also possible 
to apply LSMC as a proxy for assets minus liabilities (i.e., the ‘surplus’ or ‘net asset value’) instead 
of attempting to create separate proxy valuations for the assets and liabilities. However, in general, 
insurers and reinsurers tend to model these separately. In addition, both assets and liabilities are 
individually very large numbers, whereas surplus is much smaller and generally much less stable.
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3 NESTED STOCHASTIC MODELS

3.1 THE CASE FOR NESTED STOCHASTIC PROJECTIONS
While point-in-time liability valuations generally require nothing more complex than a normal 
stochastic calculation, nested stochastic models are particularly useful when it comes to projecting 
either financial results or capital requirements over time. This challenge may arise under a number of 
different guises, such as:

�� Solvency II
�� IFRS
�� C3 Phase II and Phase III capital requirements
�� Actuarial Guideline 43 (AG43)
�� Market-consistent embedded value
�� Economic capital

Essentially, whenever an insurer or reinsurer needs to produce a distribution of projected outcomes 
over time, where reserves or capital need to be determined using stochastic techniques, there will 
be a strong case for nested stochastic modelling. Intensive modelling is a characteristic of financial 
projections for guaranteed business and, in particular, VA business.

3.2 NESTED STOCHASTIC MODELLING AND SOLVENCY II
Nested stochastic techniques will not be needed for point-in-time calculations under the Solvency 
II standard formula. Instead, the need for nested stochastic simulations is likely to be primarily an 
issue for internal model or partial internal model users. It may also prove useful for the purposes of 
the ORSA to project future capital requirements (whether using the standard formula or another 
modelling approach). Internal models will need to project a distribution of expected future capital 
requirements. In the case of VA business, liability and capital calculations generally necessitate 
stochastic techniques. Therefore, the development of each point of the capital requirement 
distribution is likely to need a further (nested) stochastic calculation.

In other words, it is necessary to consider two stochastic dimensions: a so called ‘outer’ real-world 
one to capture the probability distribution of different outcomes for the market conditions over a 
one-year time horizon and, in the case of Solvency II, an ‘inner’ risk-neutral one in order to value 
assets and liabilities along each of these real-world paths. Such a calculation would require a nested 
stochastic approach.

For standard formula purposes, in order to calculate their current capital requirement, it is sufficient 
to apply a single stress factor to individual risks, so there is, in a sense, just a single outer scenario. 
However, under the ORSA requirements, there will be a need to project capital requirements into 
the future under a range of potential outcomes. In a sense, this is similar to a nested stochastic 
approach, depending on the range of future outcomes to be projected.

The production of full-scale nested stochastic projections poses huge challenges in terms of run 
time, as there are so many individual stochastic paths required to be projected. For example, an 
insurer or reinsurer using an internal model under Solvency II may run something on the order of 
100,000 outer scenarios and 5,000 inner scenarios. This would necessitate 500,000,000 stochastic 
paths to be projected with a one-year period projection horizon in the outer scenarios. 

In the context of Solvency II, the LSMC proxy modelling technique may be applied to individual 
risk modules under a partial internal model approach and later aggregated with other risk modules 
calculated under a standard formula approach or indeed other risk modules calculated in other 
ways such as alternative proxy modelling approaches or full nested stochastic projections. Before 
discussing this in detail, it is useful to briefly outline some alternative proxy modelling techniques, as 
set out in the next section.
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4 PROXY MODELLING

4.1 THE CASE FOR PROXY MODELS
Life insurers and reinsurers offering investment guarantees will typically monitor their exposures to 
market risk, in particular, on a daily basis. The value of the guarantees they underwrite can change 
rapidly as investment markets move. Companies will make use of thousands of economic scenarios 
to assess their liability exposures. In addition, many writers and reinsurers of guaranteed business will 
hedge their economic exposures using derivative instruments. The combination of needing to model 
relatively complex assets and liabilities and requiring regular updates of their risk exposures poses a 
practical problem.

Such companies need a fully flexible valuation process allowing for timely and frequent delivery of 
results to management. These deliverables generally comprise key liability values as well as solvency 
and economic capital figures and include various sensitivities of the results to market changes such 
as equity market falls or interest rate changes.

The valuation of complex insurance liabilities such as VA products generally requires stochastic 
scenarios in order to determine the market value of the embedded options and guarantees. Such 
valuations typically require huge numbers of simulations in order to properly assess the market value 
of these products, particularly if there is an element of path-dependence in the guarantee. 

For example, if determining the SCR in the context of Solvency II, (re)insurers using internal models 
face the challenge of evaluating their liability portfolios for thousands of real-world market outcomes 
over a one-year time horizon. This typically results in the need for nested stochastic simulations 
running to millions of individual scenario projections.

FIGURE 2: NESTED STOCHASTIC SCENARIOS

Liability Year 1 Liability Years 2-…

Market-consistent
Scenarios

Real-world
Scenarios

This approach can lead to real challenges for companies in managing run times and in having the 
IT capability to perform the modelling. These challenges cannot necessarily be overcome through 
additional hardware. Hence, various proxy modelling techniques have become increasingly popular. 
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Proxy models tackle this problem in a number of ways—for example, by providing a functional 
relationship between the economic variable under consideration, e.g., the best estimate liability (BEL), 
and the market conditions at time t=1. Once such a relationship has been determined, the valuation of 
the liabilities becomes a much less onerous task as it can be performed simply by evaluating the proxy. 
Hence, deriving a real-world view on the distribution of the liability value basically means evaluating the 
proxy for a large set of real-world realisations of these market conditions.

Deriving reliable and robust proxy models which require only minimal expert judgment is a major 
challenge facing (re)insurers. Actuarial projection models incorporate the projection of complex 
liability products such as VAs, including complex dynamic management actions and policyholder 
behaviour, and a successful proxy model has to incorporate these effects and interactions. The 
following section outlines a number of alternative approaches.

4.2 PROXY MODELLING APPROACHES
Over recent years, a number of proxy modelling approaches have begun to be widely used by life 
insurers and reinsurers. These include the following techniques:

�� Least Squares Monte Carlo
�� Curve fitting
�� Replicating portfolios

This research paper investigates the use of LSMC in the context of calculating and projecting capital 
requirements for VA business. However, before getting into the detail of LSMC and its application to VA 
business, the following sections provide a brief overview of each of the techniques mentioned above.

4.2.1 LEAST SQUARES MONTE CARLO
The LSMC method is applied across a range of different applications, from banking to the energy 
sector. It is a standard numerical method for option pricing where the option is exercisable at points 
prior to ultimate maturity, otherwise known as an American-style option.

The accuracy of results obtained using the LSMC proxy approach (relative to using a full stochastic 
approach) can be verified in a practically robust and statistically sound way. The LSMC method 
generally requires much less manual intervention than some of the alternative proxy methods and may 
also give valuable insights about the interplay of different risk drivers.

In general, LSMC has the following beneficial properties:

�� Accuracy of calculations
�� Speed of calculations
�� Consistent coverage of market, credit and insurance risks
�� Robust and reliable validation
�� Feasibility of process automation

LSMC can be used in any situation where the complexity of liabilities necessitates a stochastic 
valuation approach. For example, where there are embedded options in contracts or scope for future 
management actions, in addition to the modelling of investment guarantees.

Further details on the implementation of the LSMC approach are provided in Section 5.
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4.2.2 CURVE FITTING
Whereas LSMC considers fitting a regression model to a large number of inaccurate valuations 
to remove the statistical sampling error, curve fitting considers a small number of very accurate 
calculations. At a high level, the curve-fitting process develops as follows (where, in this example, the 
objective is to project a BEL):

�� Recalculate the BEL under a small number of instantaneous shocks. This involves running a large 
number of inner scenarios for each outer scenario and averaging the results of the inner scenarios 
at each outer scenario node point.

�� Fit a multidimensional polynomial to the BEL values by regression techniques. The fitting itself 
requires a predetermined view about the structure of the polynomial that is used for this purpose.

�� The validation of the curve fitting can only be carried out by performing out-of-sample tests where 
the true BEL value for an arbitrary outer scenario is derived by using a large number of inner 
scenarios and comparing this with the estimate produced by the curve fitting function. 

The method can work well with a small number of risk drivers. The main differences relative to LSMC are:

�� The calculations can quickly become quite onerous because fitting a polynomial with n roots 
requires the use of valuations for up to n different outer scenarios. In circumstances where 
there are complex interactions and many risk drivers, this will lead to a large number of valuation 
scenarios involved. 

�� The use of a predetermined polynomial could introduce an intrinsic error if the polynomial structure 
is unsuitable, e.g., if it misses certain terms. The choice of the right polynomial involves in-depth 
knowledge of the effect of the single risk drivers and their interactions for the product under 
consideration.

�� Choosing the right fitting points is crucial for the quality of the resulting fit and it can be difficult to 
choose these fitting points appropriately.

�� The validation and assessment of the error of the fit is limited to brute-force validations that involve 
large numbers of scenarios.

It can be shown that LSMC and curve fitting essentially converge to the same answer under certain 
conditions. In addition, LSMC can be used for some risk drivers and curve fitting for others and 
the two results combined. There are, of course, limitations with this latter approach (for example, it 
generally fails to capture interactions of the risk drivers between those modelled using LSMC and 
those modelled using curve fitting), but it can still work well in certain circumstances.
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4.2.3 REPLICATING PORTFOLIOS
The basic idea of replicating portfolio techniques is to replace the complexity of the liability 
calculation with a proxy portfolio of market instruments whose value closely replicates the change 
in the value of the (re)insurance liabilities across a range of potential outcomes. The valuation of the 
market instruments could be much more straightforward than the valuation of the liabilities directly, in 
which case the nested stochastic problem may be very much simplified.

The general process involved in finding a replicating portfolio is as follows:

�� Choose a set of potential assets
�� Run a range of scenarios through the liability cash-flow model
�� Solve for the weights in each of the assets that would replicate the liability cash flows
�� Revalue the asset portfolio under the desired set of scenarios as a proxy for the liability valuation

Replicating portfolios can be useful for dealing with market risks and, in particular, can have 
immediate applications for ALM exercises and hedge asset selection. However, it can be more 
difficult to use them in relation to non-market risks as the assets won’t necessarily be sensitive to the 
types of non-market risk factors that drive the liabilities. It can be quite challenging to choose a good 
replicating portfolio, depending on the complexity of the liabilities under consideration as well as 
factors such as the availability of suitable assets in the market place, the liquidity of such instruments 
and the level of transparency in pricing.

4.2.4 GENERAL COMMENTS ON PROXY MODELS
Each of the approaches outlined above has its own unique features and may be more or less 
applicable depending on individual situations. One observation that is often made regarding both 
curve fitting and replicating portfolios is that neither of these techniques is straightforward, and when 
there are complex interactions between assets and liabilities it may be difficult to get an adequate 
level of fit. In addition, a significant amount of professional judgment needs to be applied under these 
two methods. Therefore, a lot of attention has recently focused on LSMC in an effort to address 
these issues.

Arguably, other methodologies may also be classified as proxy approaches, such as statistical 
methods which pre-select the 99.5% value-at-risk (VaR) outcome without running a whole 
distribution of stochastic cash-flow projections. 

However, the examples discussed above may be considered amongst the most commonly used.
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5 APPLICATION OF THE LSMC TECHNIQUE

5.1 HIGH-LEVEL INTRODUCTION TO THE TECHNIQUE
LSMC aims to determine a functional relationship between key parameters used for the evaluation 
of the liability. These key parameters are referred to as ‘risk drivers,’ and the corresponding liability 
value for the purposes of this case study is the BEL but could be any economic measurement of the 
product cash flows.

The overall LSMC process can be briefly summarised as follows:

Step 1: 	 Evaluate the liabilities for a number of different deterministic joint positions of the risk 
drivers at time t=1 (the so-called outer scenarios) by using only a small number of valuation 
scenarios (so-called inner scenarios) per outer scenario. Typically this ‘small number’ is 
between 1 and 10 scenarios. The liability value per outer scenario is the mean of the liability 
values that have been simulated using the corresponding inner scenarios. Hence any 
liability value itself is a very imprecise estimate for the corresponding outer position.

This step basically collects a lot of (inaccurate) information concerning the relationship 
between risk drivers and liability values.

FIGURE 3: LSMC SCENARIOS

Liability Year 1 Liability Years 2-…

Market-consistent
Scenarios

Outer
Scenarios

Step 2: 	 Perform least squares regression based on the output from Step 1 to determine a 
functional relationship between risk drivers and liability values.

This step removes the remaining variance that has been left from Step 1 and uncovers the 
underlying relationship between risk drivers and liability values.



Milliman  
Research Report

11An application of Monte Carlo proxy techniques to variable annuity business: A case study
Mario Hörig, Karl Murray, Eamonn Phelan, and Michael Leitschkis

November 2013

FIGURE 4: INACCURATE LIABILITY VALUES AND RESULTING LIABILITY VALUE CURVE
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The overall aim is to significantly reduce the number of simulations involved by first evaluating the 
liabilities using only a limited number of inner scenarios, with the high residual level of ‘noise’ being 
removed in a second step by the least squares regression technique.

5.2 THEORETICAL BACKGROUND ON LSMC
5.2.1 LINEAR REGRESSION MODELS
LSMC is based on linear regression models. The fundamental idea of linear regression models is to 
model the relationship between a variable Y (the so-called response variable or dependent variable) 
and some explanatory variables X1,…,Xm (so-called independent variables) via the relationship 

Y = b0 + b jj=1

kÂ j j (X1,...,Xm )+ e =: f (X1,...,Xm )+ e

where  j j :R
m Æ R ,   j =1,…,k, form a set of k basis functions and ε is the error variable (for 

simplicity we denote the overall function by f ) . The model is called linear because the relationship 
between Y and the basis functions ϕj is linear. Note that the functions ϕj  themselves can be non-
linear, e.g., ϕ1 (X1,…,X3)= X1

2 * X2
3.

In our case, the dependent variable Y refers to the liability value while the independent variables 
X1,…,Xm are the risk drivers parameterising the conditions at a relevant future time horizon (e.g., t=1 
for a 1-year-VaR problem).
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5.2.2 HOW TO CALIBRATE A LINEAR MODEL TO A SET OF OBSERVATIONS
Consider that we have made n different observations (Y(i),X1

(i),…,Xm
(i)), i =1,…,n of the dependent 

variable and the corresponding independent variables, and want to calibrate a model represented by 
some basis functions ϕj , j =1,…,k to this data. This means that we aim at finding a set of coefficients 
β0,…, βk such that the resulting linear model

f : = b0 + b jj=1

kÂ j j

yields an optimal proxy for the observed data. Mathematically, this means that we aim at deriving a 
vector of coefficients (β1,…, βk) that minimises the sum of squared residuals (RSS)

RSS = ( f (X1i=1

nÂ (i) ,...,Xm
(i) )-Y (i))2

The solution β = (β0,…, βk) for this optimisation problem is the corresponding least squares estimator 
and it can be shown analytically that it has the following form:

β  =  X T X   
−1  

X T y       



 


where X =





1 j1 X1
(1) ,...,Xm

(1)( ) 
  

1 j1 X1
(n) ,...,Xm

(n)( ) 

jk X1
(1) ,...,Xm

(1)( )


jk X1
(n) ,...,Xm

(n)( )

 
 


 
and y =





Y (1)


Y (n)

 
 


 

.

The Gauss-Markov theorem states the most important properties of the least squares estimator and 
is of particular importance for the convergence of LSMC. According to the Gauss-Markov theorem, 
assuming that the errors ε are normal and independent identically distributed with mean 0, the 
estimator β as defined above is the Best Linear Unbiased Estimator (BLUE), i.e., 

�� It is a maximum likelihood estimator 
�� It is unbiased
�� It has the lowest variance among all possible linear and unbiased estimators 

By virtue of the Gauss-Markov theorem, we see that, based on the underlying assumptions, the least 
squares estimator is the best estimate. 
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5.2.3 WHY LSMC WORKS
The LSMC approach derives a functional relationship between the risk drivers X1,…,Xm and the 
corresponding liability value Y. First we derive rough estimates Y(1),…,Y(n) of the liability value for n 
different risk driver positions (X1

(i),…,Xm
(i)), i=1,…,n. Therefore, in the context of linear regression 

models, we can assume Y(1),…,Y(n) are only rough estimates because their values have been derived 
by using only a small number of valuation scenarios (e.g., each one might be the BEL calculated 
using only 10 risk-neutral inner scenarios instead of 1,000 or 2,000 such scenarios).

Using fewer valuation scenarios (or inner scenarios) per risk driver positions (or outer scenarios) 
allows for the generation of large numbers of inaccurate (or noisy) liability values within quite 
reasonable run-times. In accordance with the Central Limit Theorem, the error of each single estimate 
Y(i), i=1,..,n, i.e., the difference between Y(i) and the corresponding actual liability value (as derived by 
using, for example, 2,000 simulations) is asymptotically normally distributed with mean 0. Therefore, 
we are now in the context of linear regression models where we assume that there is a functional 
relationship between certain dependent variables (risk drivers) and an independent variable (liability 
value) with some additional noise (ε). Hence, by using a least squares regression with a proper set 
of basis functions the LSMC approach uncovers the true relationship between Y and the risk drivers 
X1,…,Xm from the noisy input data. Basically, LSMC removes the errors ε and what remains is the 
true functional relationship between the liability value and risk drivers. For a detailed proof of the 
convergence of LSMC see Kalberer in the References section.

The least squares approach removes the noise from the input data and uncovers the  
true functional relationship.

5.2.4 EFFICIENCY OF THE TECHNIQUE
While we have seen that LSMC works in the sense that its estimates converge to the true values, 
it is worth mentioning why the approach of using many noisy liability values for the estimation of the 
functional relationship is particularly efficient. The reason for this lies in the square root convergence 
of the mean values themselves. 

When deriving the actual BEL by using L valuation scenarios, we know from the Central Limit 
Theorem that the estimates based on L scenarios converge for L g∞ against the actual value at the 
speed of 1/√L. Therefore, the overall simulation procedure ultimately becomes quite inefficient as 
more and more additional scenarios are required to get final convergence towards the actual value 
(see Figure 5, showing the convergence of a sample liability value over the number of valuation 
scenarios involved). In this example, while the actual value is 350, we have come quite close to this 
using very few scenarios (e.g., estimated liability value with first 10 scenarios is 386). While a small 
number of scenarios can generate a good estimate, it takes a significant number of scenarios to 
determine the actual value.
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FIGURE 5: CONVERGENCE OF LIABILITY VALUES
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In summary, the LSMC approach uses only a small number of valuation scenarios and therefore 
produces noisy estimates of the liability data. The remaining noise is removed by the least squares 
regression. By using only a few inner scenarios per outer one we already have quite reasonable 
estimates of the corresponding liability values due to the square root convergence (see above). This 
allows us to use many outer scenarios for a given overall number of scenarios. Therefore, we use the 
scenarios involved particularly efficiently. Using many inner scenarios but just a small number of outer 
ones would be less efficient because most of the inner scenarios are used for slight improvements 
of the liability value estimates (where the remaining noise will be removed by the least squares 
regression anyway).

5.2.5 KEY INPUTS
The most crucial ingredient for a successful LSMC application is a proper selection of the basis 
functions that are used to derive the functional relationship between liability value and risk drivers. 
Note that, in our approach, the basis functions are special combinations of ordinary polynomials.

Examples: 

�� If the liability value displays a non-linear behaviour in a particular risk driver, we have to make sure 
that the functional relationship takes this into account by having cubic, quadratic or higher-order 
polynomial terms as part of the function.

�� If there are interactions between certain risk drivers, we have to make sure to include proper 
polynomial cross terms in the function (e.g., x1*x2

2 if there is such an interaction between risk 
drivers x1 and x2).

�� Using too many and unnecessary polynomial terms will lead to overfitting, i.e., explaining effects 
that are not significant. 
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This leads to the following questions:

�� How can we make sure to include all significant polynomial terms that are required and exclude 
insignificant ones?

�� Given several functions f1,f2,… that could be used for the underlying linear model, which one is 
best for the given data?

In order to avoid any pitfalls related to these questions, we make use of well-known statistical procedures 
(called model selection algorithms) in order to detect the polynomial that best explains the effects that are 
shown in the fitting data (i.e., the rough liability values Y(1),…,Y(n) and the corresponding risk drivers (X1

(i),…
,Xm

(i)), i=1,…,n), based on a well-established statistical criterion known as the Akaike Information Criterion 
(AIC). This criterion enables us to judge and compare the explanatory power of different liability functions 
by comparing their respective AIC values. The AIC value of a linear model f is defined as AIC(f) := n * 
log(RSS(f) / n) + 2 * (k+1), where k+1 is the number of terms of f. Its judgment of the explanatory power 
of a certain polynomial for a set of calibration data considers the RSS of the model (as defined in Section 
5.2.2.), i.e., it prefers models with small RSS because this is an indicator for a good fit, but simultaneously 
penalises the use of additional terms by adding 2*(k+1) with k+1 being the number of terms involved. The 
polynomial with the lowest AIC value is best for the given data because it minimises the RSS under the 
constraint to use as few polynomial terms as possible.

To select the best possible function for the relationship between the liability value and risk drivers we 
start with a trivial model (i.e., only the constant term) and iteratively add further terms. In each step 
of this selection procedure, we take the previous model (i.e., those polynomial terms selected in the 
previous steps), add different possible further terms, compare their AIC values, and choose the one 
with smallest AIC value as the new model. This procedure terminates after a number of steps as the 
AIC criterion penalises additional terms and hence will indicate that adding any further term won’t be 
favourable after a certain number of polynomial terms have already been chosen.

Figure 6 illustrates this process by showing the following three stylised steps:

�� Choice of a constant term at the start of the LSMC calibration process
�� Addition of a linear term
�� Addition of a quadratic term

FIGURE 6: MODEL SELECTION-EQUITY PERFORMANCE
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5.2.6 CONFIDENCE INTERVALS FOR LIABILITY ESTIMATES
LSMC not only allows for the efficient and robust estimation of a liability function but can also derive 
confidence intervals for its liability value estimates. 

LSMC doesn’t just answer the question, ‘What is the liability value for a given set of risk drivers?’ but 
also indicates how much confidence to have in these estimates.

Suppose we have derived a liability function f. For a certain risk driver combination X1,…,Xm we get 
an estimate for the corresponding liability value by evaluating f(X1,…,Xm) (i.e., a point estimate). In 
order to derive confidence intervals for the point estimate f(X1,…,Xm) we apply a certain resampling 
procedure known as jackknifing. The jackknifing involves resampling of the liability function from the 
simulation data used for the LSMC fitting. Each resampling results in a new liability function and a 
new point estimate. The collection of new point estimates is used to derive standard deviations and 
confidence intervals for the point estimates of the liability function. 

Further detail on this procedure is contained in Appendix A.3. The case study that is described 
below illustrates the use of confidence intervals for the judgment of the LSMC results.

5.3 LSMC PROCESS
The overall LSMC process begins by identifying the underlying risk drivers in order to make sure 
that all relevant risks are covered in an efficient way. Based on the risk drivers and their particular 
parameterisations, we create:

�� n outer scenarios, i.e., joint positions of the risk drivers at the relevant future horizon (e.g., time t=1 
if we are dealing with a 1-year-VaR problem)

�� N inner scenarios per outer scenario, in order to evaluate the liabilities for the conditions as 
parameterised by the outer scenario

This gives n*N valuation scenarios that are run through the underlying stochastic cash-flow model to 
generate the n tuples for the liability value (e.g., the BEL) to be approximated via LSMC. 

Next, the LSMC calibration is performed to determine the best functional relationship between 
liability value and risk drivers as indicated by the data. The resulting function is used to evaluate the 
liabilities on a large set of real-world realisations of the risk drivers to obtain the distribution forecast 
and related figures such as SCR, quantiles, or expected shortfall. 
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By their nature, certain proxy models tend to have black box characteristics. That is to say, the user 
inputs a large set of data and the model outputs a functional relationship that incorporates complex 
effects of and interactions between risks or even just a distribution forecast. Therefore it is important to 
emphasise that each step of the LSMC process can and must be validated to give comfort and trust in 
the results. In the case study section below, we discuss different ways of validating LSMC results.

FIGURE 7: OVERALL LSMC PROCESS
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5.3.1 HOW TO CHOOSE RISK DRIVERS
Choosing a proper set of risk drivers and their respective parameterisations is an essential task for any 
kind of proxy modelling technique. The most vital point of this step is to find the right balance between 
including all of the risks that are relevant, while not overloading the exercise with thousands of potential 
risks that might be considered. Therefore, dimension reduction techniques such as, for example, a 
principal component analysis (PCA) of interest rates can help keep the number of risk drivers low. 

LSMC is by no means restricted to market risk drivers but can also include insurance risks such as 
lapse, mortality, longevity, expenses or even management actions parameters (see the next section 
for details), because these can be included in a polynomial just the same as market risk drivers. In 
summary, LSMC can cover all those risk drivers which are accounted for by the underlying stochastic 
cash-flow model.

The number of relevant risk drivers varies from one application to another. While three risk drivers 
could well be enough for a simple valuation, upwards of 30 risk drivers could be relevant for a large-
scale multi-currency situation.
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5.3.2 DYNAMIC MANAGEMENT ACTIONS AND DYNAMIC POLICYHOLDER BEHAVIOUR
The LSMC approach aims at deriving a polynomial relationship between risk drivers and their effects 
on the liability value. Hence, by its nature LSMC automatically covers effects caused by dynamic 
management actions (DMA) or dynamic policyholder behaviour (DPB) because these effects are 
contained in the liability data used for the LSMC fitting.

More generally, one could also ask whether or how the LSMC process could allow for different sets 
of assumptions concerning DMA and DPB. On the one hand, if the LSMC calibration is carried 
out under a certain parameter set of DMA and DPB, then the LSMC results cannot be expected to 
remain appropriate under a different parameter set. On the other hand, it is possible to incorporate 
any key parameter of DMA or DPB into the risk driver list, if the LSMC polynomial has to act as a 
liability proxy under a range of different values of this parameter.

On a note of caution, while this approach can allow for possible changes of an important parameter, 
it clearly is not feasible to allow for changes in a large range of model parameters or to deal with 
discontinuities, e.g., dynamic purchases of a certain derivative instrument. 

5.3.3 GENERATION OF OUTER SCENARIOS
The generation of the outer scenarios involves the following steps:

�� For each risk driver Xi, we identify an interval [ai, bi], i=1,…, m of values under consideration. 
Therefore we have to make sure that these individual intervals are large enough to cover all 
possible events we might experience with a certain probability, but simultaneously are not too 
wide; we want to restrict our focus to a relevant range of possible values.

−− The risk driver space under consideration is the multidimensional interval [a1, b1]x…x[am, bm].

�� The n outer positions are spread evenly over [a1, b1]x…x[am, bm].

−− We do not include any real-world view in the process of choosing outer points. This would 
introduce a certain bias in the sense that the LSMC estimates will be particularly good and 
reliable for those risk driver realisations that appear with high probability, but display a significant 
loss of quality for rather unlikely risk driver realisations.1

−− The resulting liability function is based on information between risk drivers and liability values 
that have been evenly spread over all possible positions within the range under consideration 
and hence display a homogeneous level of quality even for tail events of the risk drivers.

1	 Note that the tail realisations are the ones of most interest when it comes to SCR estimation.
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FIGURE 8: DISTRIBUTION OF OUTER SCENARIOS

-60% -40% -20% 0 20% 40% 60%
-75%

-55%

-35%

-15%

5%

25%

45%

65%

La
ps

e 
st

re
ss

 

Equity stress 

5.3.4 GENERATION OF INNER SCENARIOS: BRUTE FORCE OR BOOTSTRAPPING
Each of the outer scenarios considered in the previous section reflects different market conditions 
(such as a new initial yield curve or different volatility assumptions), which typically require a 
re-calibration of the economic scenario generator (ESG) underlying the generation of the inner 
scenarios at each point in time. This can pose significant challenges. However, there are a number of 
possible solutions to address this issue, including the following:

�� Set up an automated solution for the ESG: In order for this to work properly, the ESG first needs 
to be provided with all of the outer scenarios that are of interest. For each of the scenarios, the 
ESG then needs to re-calibrate to the new conditions at each time step for which inner scenarios 
are required and generate the desired number of inner scenarios. This process is then repeated 
for each individual outer scenario. In practice, this may be achieved by using integrated scripting 
features of the ESG or an application programming interface that accesses the ESG.

�� Apply the reweighted bootstrapping technique described in Hörig et al. (see References section 
below), which only requires a set of base valuation scenarios and transforms it into a large set of LSMC 
calibration scenarios. This is the approach that has been adopted for the purposes of this case study.
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5.4 COMMENTS ON USE OF LSMC
5.4.1 ADVANTAGES OF LSMC
The LSMC proxy modelling approach displays the following strengths:

�� LSMC involves only a limited amount of expert judgment as the statistical model (i.e., the 
polynomial and its coefficients that are used as proxy function) may be selected in an automated 
and objective way by using well-known statistical criteria. 

�� LSMC deals extremely efficiently with the data in the sense that it makes the most of the available data.

�� Having the opportunity to derive confidence intervals for the LSMC liability value estimates gives 
valuable information on the reliability of the resulting estimates.

�� Overall, the approach is generic enough to have real-world as well as risk-neutral application.

�� Convergence of LSMC estimates against actual values can be proved mathematically.

�� The approach can also include non-market risk drivers, such as changes to mortality rates, lapse 
assumptions, or management action parameters, because polynomial terms can be added for each 
of these risk drivers. 

�� Certain proxy modelling approaches can lead to instability, in the sense that small changes in the 
input data might lead to large changes in the resulting proxy functions and their parameters. This 
problem typically arises when companies calibrate their proxy models on an annual or quarterly 
basis. While one would expect that subsequent proxy models look quite similar, it is often the case 
that the resulting models are completely different (in terms of functions and coefficients involved). 
This property is clearly unsatisfactory because a gradually changing liability portfolio should not 
lead to proxy models that are completely discontinuous over time. Stable models with reasonable 
parameters allow companies to build some intuition about how the business should behave as a 
function of the risk drivers.

−− Our implementation of the LSMC approach (for the purposes of this case study) yields robust 
proxy functions by using a combination of special basis functions and outer calibration scenarios 
that are uniformly distributed over the space of possible risk driver values (so-called orthogonal 
outer scenarios).2

5.4.2. IMPLICIT ASSUMPTIONS AND LIMITATIONS
One of the most significant assumptions underlying the LSMC technique is that the error variable 
(ε) is normally distributed. Illustratively this means that when simulating the liability value with only 
a limited number of valuation scenarios, the difference between this rough estimate and the actual 
value is symmetrically distributed and tends to be negative or positive with the same probabilities. 
While this property holds asymptotically (when using more and more valuation scenarios) by virtue 
of the central limit theorem, it might be violated for some valuation scenarios once the liability value 
itself possesses some limitations in the sense that it is bounded from above or below. 

Furthermore, the main paradigm of using polynomial proxy models is that the liability value to proxy 
can be properly approximated by polynomial terms. Once the underlying model displays severe 
discontinuities—for example, based on certain management actions—this may result in a certain 
degree of loss of accuracy. However, while such discontinuities can appear when dealing with a 
single policy or scenario, they are often smoothed out within a larger portfolio. Finally, the impact of 
management rule discontinuities is typically smoothed over time within a net present value such as a 
Solvency II BEL.

2	 Note that such techniques can also be applied to other proxy approaches such as replicating portfolios in order to get 
robust estimates.
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6 CASE STUDY

6.1 INTRODUCTION TO VARIABLE ANNUITIES
In this paper we focus our attention on the analysis of capital requirements for typical variable annuity 
(VA) products currently sold in the market.

The term VA can be applied to a wide range of product types. Generally it is used to describe 
products which are unit-linked in nature but with investment and/or insurance guarantees provided 
to the policyholder. A detailed analysis of the type of products in question is contained in ‘Variable 
Annuities,’ an Institute of Actuaries research paper (see References section below). Here is a high-
level summary of the various types of guarantees that are commonly available.

The guarantees provided on VAs generally fall into four categories as follows:

�� Guaranteed minimum death benefit (GMDB). In its most basic form, this guarantee represents a 
return of the premium invested on death if the underlying unit-linked account value is less than the 
premium invested. 

�� Guaranteed minimum accumulation benefit (GMAB). This guarantee can take similar forms to the 
GMDB except that it applies on survival for a specified period of time. There may be multiple times 
during the duration of the policy when the guarantee applies.

�� Guaranteed minimum income benefit (GMIB). This guarantee provides a regular income stream 
from a specified future point in time, typically in the form of an annuity.

�� Guaranteed minimum withdrawal benefit (GMWB). This guarantee offers a level of withdrawals 
from the underlying unit-linked fund value even if the account value runs out. The guaranteed 
income stream can apply for either a fixed period of time or for life. The ‘for-life’ version is 
commonly referred to as a GMWBL.

Note that GMIBs and GMWBs are normally associated with a pension arrangement so there may be 
a pre-retirement accumulation phase before the guarantees kick-in.

The guaranteed amount is generally known as the benefit base (BB). The basic form of VA guarantee 
involves the return of the BB (or payment of an income stream based on it) to the policyholder, 
contingent on some event (death, survival, or maturity). The product design can involve certain 
variations though; for example, the BB can accumulate, or roll up, at a defined rate each year. It can 
also be locked in at higher amounts, depending on the performance of the underlying unit-linked 
account value (something commonly known as a ratchet feature).

6.2 SAMPLE PRODUCT DESIGN
For the purposes of this case study we considered two individual model point policies, one 
representing a GMAB policy and the other a GMWB policy. The policies can be considered to have 
just come into force and the guarantees are at-the-money. The details of the model points are set out 
in Appendix A.1.

Our case study analysis of these model points captures a wide range of features and risks of VA 
products including dynamic policyholder behaviour, a range of guarantee types, fund performance 
risk stemming from equity and bond returns, and interest rate risk.
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6.3 LAPSE ASSUMPTIONS
The chance of a policyholder surrendering a VA policy depends on how the account value performs 
relative to the guarantee level. Policyholders are less likely to surrender a policy if the guaranteed 
benefits are very valuable.

Therefore, we have used a dynamic lapse model to capture some sensitivity of lapses to fund 
performance. This sample dynamic formula is included in Appendix A.1. The structure and calibration of 
the dynamic formula is purely for illustrative purposes in order to demonstrate the LSMC approach.

6.4 MODELLING SIMPLIFICATIONS
We have only considered two independent model points representing a GMAB case and a GMWB 
case. We also did not model a portfolio of policies, but nevertheless this can be dealt with adequately 
using the LSMC approach.

The pricing of the guarantee charges was set to give a reasonable level of profitability to an insurer 
under conditions pertaining at the end of 2012 but we have not carried out a detailed pricing 
exercise. The use of the two specific model points is for illustrative purposes only in order to help to 
demonstrate the LSMC approach.

Both model points are new business model points, so when we consider cash flows at time t=1, for 
example, this represents the first policy anniversary.

6.5 SETUP
The case study was performed using GMAB and GMWB product versions, as outlined above. Given 
the nature of these two products, we’ve considered the following risk drivers:

�� Interest rates: Interest rate risk refers to the risk arising from a change of the interest yield curve. 
Hence, it is not a one-dimensional risk but depends on the structure of the whole yield curve. 
Historical time series show that interest rate yields for different maturities are not independent but 
move with a high level of mutual dependency. Hence, considering each maturity as an independent 
risk driver would not be reasonable because most joint combinations of these risk drivers would 
never be experienced in reality.

Therefore, we apply a principal component analysis (PCA), which is a statistical method that (in 
this context) aims at reducing the number of dimensions of the multivariate time series. The starting 
point for the PCA is a historical time series of EUR swap rates ranging from 31 March 2003 to 
31 March 2013. The implementation of the PCA method follows that set out by I.T. Jolliffe (see 
References section).

Based on the PCA, we see that the first principal component (PC1, the level of the curve) explains 
94% of the yield curve variation during the past 10 years and that the second principal component 
(PC2, the slope of the curve) explains another 4%. Hence, using the first two PCs as risk drivers 
explains 98% of the historical yield curve variation.3  Therefore, it is reasonable to focus on these 
two PCs as risk drivers for interest rates. 

3	 A PCA performs an Eigenvector/Eigenvalue decomposition of the covariance matrix of historical yield curves. Each 
Eigenvector refers to one PC. The importance of the Eigenvector is determined by the magnitude of the corresponding 
Eigenvalue. The sum of the first two Eigenvalues (the weights of the first two PCs) equals 98% of the sum over all 
Eigenvalues.
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For the generation of different initial interest yield curves, the general approach that we took was 
to simultaneously stress the first two principal components of the yield curve within reasonable 
ranges.4 Given the current very low interest rate environment we used a non-market yield curve as 
part of the calibration process (see Appendix A.2 for a comparison of this yield curve with a market 
yield curve). The aim of this procedure is to perform sensible yield curve stresses by stressing 
the most important building blocks of the full yield curves, i.e., the first two principal components, 
which implicitly stresses all maturities. By doing so we avoid the challenge of determining ‘realistic’ 
stresses for each maturity itself, because it is very unlikely that, for example, the 7-year rate goes 
up by 2% while simultaneously the 8-year rate drops by 2%.

�� Equity return: Initial equity return was stressed between -60% and 60% to cover a reasonable 
range of equity movements.

�� Equity volatility: Initial equity volatility, i.e., the implied volatility of an at-the-money (ATM) call option 
on equity with maturity in 10 years was 25%. We’ve stressed this volatility to levels between 10% 
and 60%.

�� Bond fund return: Initial bond fund return was stressed between -30% and 30%.

�� Lapse rates: Lapse assumptions have been stressed with multiplicative factors between 0.25 and 1.75.

For each product, cash flows were simulated across a total of 50,000 scenarios, comprising 5,000 
outer scenarios with 10 inner valuation scenarios per outer scenario. There is no specific required 
number of scenarios to use to reach a certain level of precision (noting that we know from Section 
5.2.4 that the proxy model converges towards the true values once we continue to increase the number 
of inner and outer scenarios and allow for polynomial terms of higher order). However, as part of the 
assessment of the quality of our proxy model we will see that 50,000 scenarios leads to a good fit.

For the purposes of the case study, the variable of interest was the BEL at time t=1. Running the 
50,000 calibration scenarios through the liability valuation model resulted in 5,000 different values 
for the BEL, each one derived as the mean over 10 inner valuation scenarios.

In order to test the capability of the LSMC proxy methodology in dealing with dynamic actions (either 
management actions or policyholder behaviour), we carried out the fitting procedure twice: first 
including dynamic lapse behaviour and then without the dynamic element of lapse behaviour. The 
figures and graphs in the following sections relate to the case, which includes dynamic policyholder 
behaviour (which we consider to be the more relevant in the case of VA business because dynamic 
policyholder behaviour is a key element of actuarial projection models for this type of business). 
However, when performing a quantitative assessment of the quality of the LSMC proxy models in 
our case study (see Sections 7.1 and 7.2) we also include results for the case without dynamic 
policyholder behaviour in order to compare the explanatory quality of the proxy model in both cases. 

The LSMC proxy model was then calibrated in accordance with the steps described in 
Sections 5.1 to 5.3.

4	 When determining a reasonable stress range, we restricted our focus in order to avoid the possibility of negative rates 
occurring at any maturity.
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7 DISCUSSION AND VALIDATION OF LSMC CALIBRATION

Having performed the LSMC calibrations for the GMAB and GMWB products under consideration, 
we now consider the quantitative and qualitative assessment of the LSMC proxy models. In doing so 
we consider three layers of validation:

�� Qualitative assessment of the two-dimensional and three-dimensional function plots for different 
risks, that is:

−− Do the function plots reflect the observations that were used as inputs for the calibration?
−− Do we see monotonicity in the plot where this is expected?
−− Are the level, slope and curvature of the graphs as expected?
−− Do three-dimensional plots display interactions between the main risk drivers?

�� Consideration of confidence intervals for LSMC estimates

�� Comparison of LSMC estimates with actual BEL values derived via a full Monte Carlo simulation 
with 2,000 valuation scenarios for each risk driver position

The following sections first cover the results of the GMAB product then the results of the 
GMWB product.

7.1 GMAB LIABILITIES: QUALITATIVE ASSESSMENT AND CONFIDENCE INTERVALS
Figure 9 illustrates the starting point for the LSMC fitting as seen from the bond fund return risk 
driver. Each blue dot refers to the estimate for the BEL for one outer scenario, i.e., the mean value 
over 10 inner valuation scenarios per outer scenario. We can clearly see that these 5,000 estimates 
display quite a high level of variance5  but still show the clear tendency to decrease once the initial 
bond fund return is increasing, which is to be expected.

FIGURE 9: GMAB SCATTERPLOT
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5	 Note that the extent of the variation of the observations is also due to the variation in the other risk drivers for each 
observation.
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Figure 10 shows a two-dimensional plot of the LSMC proxy function for the bond fund return, which 
shows that the curve is smooth through the noisy input data from Figure 9.

FIGURE 10: GMAB LIABILITY VALUE: 2D PLOT FOR BOND FUND RETURN

-10,000 

-6,000 

-2,000 

2,000 

6,000 

-30% -15% 0% 15% 30%

Bond fund return 

B
E

L
 

GMAB 



Milliman  
Research Report

26An application of Monte Carlo proxy techniques to variable annuity business: A case study
Mario Hörig, Karl Murray, Eamonn Phelan, and Michael Leitschkis

November 2013

The following two-dimensional plots (Figures 11 to 14) show the shape of the LSMC function for 
each of the individual risk drivers while all other risk drivers are kept at their unstressed level from the 
calibration process (i.e., the plots show the marginal sensitivities for each individual risk driver):

�� Figure 11: This plot of BEL versus PC1 shows decreasing BEL values once the PC1 increases, 
i.e., once interest rates go up. This is caused by a number of effects:6

−− Higher interest rates lead to higher discounting rates, which decrease BEL values.

−− Higher initial interest rates also increase the drift of the equity position, which again decreases 
BEL values.

−− Higher interest rates can also lead to lower lapses (as well as possibly lower utilisation of 
income benefits in the case of GMWB), depending on the form of the dynamic policyholder 
behaviour assumptions (i.e., if interest rates form part of the dynamic function).

Note that the PC1 value which refers to the position of the base (market) yield curve is actually 
close to PC1=-0.5 as opposed to corresponding to PC=0. This follows from the calibration of 
the proxy model (as discussed in Section 6.5 above), during which a modified yield curve was 
used to determine the polynomials. This is because the application of symmetrical interest rate 
stresses to the current market yield curve would otherwise inevitably lead to negative initial 
yields given current conditions.

�� Figure 12: This plot of BEL versus equity performance shows that BEL values decrease as equity 
returns increase. However, the relationship is non-linear. This is discussed further below.

�� Figure 13: The liability value increases as equity volatility increases, which is primarily due to the 
fact that the cost of guarantee claims will increase with higher equity volatility.

�� Figure 14: Higher lapse rates lead to decreasing liability values. Normally, one would expect that 
higher lapse rates would lead to lower liability values for an at-the-money guarantee (as, in this 
case, charges arise before the benefit payments and so higher lapses have a proportionately 
greater impact on the benefits than the charges). However, higher lapses also erode margins on 
the underlying product, leading to a less negative BEL (i.e., a higher liability value). In this case, 
the impact on the guarantee outweighs the impact on the base product margins. While this plot is 
reasonable in this case it is important to note that this effect may depend on many factors, such as 
changes in the economic environment and the passage of time.

It is worth highlighting that the two-dimensional plots of risk drivers with particularly strong influence on 
the BEL (such as equity performance, equity volatility, and bond fund return) typically show non-linear 
behaviour, while the plots of less-severe risk drivers (such as interest rates and lapse) display linear 
behaviour. This indicates that the more severe risk drivers trigger some asymmetrical events, which 
cause non-linear shapes, while the less severe ones have symmetrical influence on the liability values. 

Consider equity performance as an example. Equity performance will affect the margins associated 
with the unit-linked account value. This element will be reasonably linear. However, because of the 
existence of the ratchet feature on the VA guarantee, increases in equity values will drive benefit 
ratchets, meaning that guarantees will remain at-the-money even if investment performance is 
good. On the other hand, falls in equity values will result in guarantees biting. This generates non-
symmetrical behaviour.

6	 Note that there is also a counteracting effect here: higher interest rates will reduce bond values,  
which will increase the BEL.
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FIGURE 11: GMAB LIABILITY VALUE: 2D PLOT FOR PC1
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FIGURE 12: GMAB LIABILITY VALUE: 2D PLOT FOR EQUITY FUND RETURN
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FIGURE 13: GMAB LIABILITY VALUE: 2D PLOT FOR EQUITY VOLATILITY
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FIGURE 14: GMAB LIABILITY VALUE: 2D PLOT FOR LAPSE
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The three-dimensional plot in Figure 15 illustrates the joint behaviour of the BEL in the two risk 
drivers PC1 and lapse. Similar plots can easily be constructed for any pair of risk drivers relative to 
the BEL. The structure of the surface in Figure 15 clearly indicates that there are strong interactions 
between interest rates and lapse rates. 
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At high interest rate levels, the higher the lapse rate the higher the BEL. This is because higher 
interest rates cause the guarantee to move out-of-the-money. Hence, the guarantee itself becomes 
an asset (i.e., the present value of charges exceeds the present value of claims). As lapse rates 
increase, the value of this asset reduces (i.e., the BEL increases). At low interest rate levels, the 
opposite occurs.

While we know from the projection models for the GMAB product that there are interactions 
between interest rates and lapse rates, Figure 15 underlines that they have been detected and 
captured in a sensible way by the LSMC proxy model.

FIGURE 15: GMAB LIABILITY VALUE: 3D PLOT FOR PC1 AND LAPSE
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Figure 16 displays a two-dimensional plot for the liability value with varying initial levels of equity 
performance (blue line) as well as upper and lower 90% confidence intervals (green lines). The 
confidence intervals have been derived using the jackknifing procedure (see Appendix A.3 for further 
details). This involves fitting proxy models to subsets of the full set of fitting data. Any such new 
proxy model serves as a random realisation of the main proxy model and we therefore get a variety of 
liability value estimates for any risk driver position by evaluating each of these proxy models. Based 
on these realisations we have derived an empirical distribution of any liability value estimate of the 
proxy model, which in turn allows for the assessment of the corresponding confidence intervals. 
Hence, these confidence intervals span the range which contains any particular LSMC estimate 
with probability 80% and indicate how much randomness is left in the corresponding estimates. The 
confidence intervals seen here are reasonable in the sense that they are quite narrow and display a 
very similar pattern to the LSMC curve itself. However, this is a subjective assessment and requires a 
certain amount of expert judgment.F

FIGURE 16: GMAB LIABILITY VALUE: CONFIDENCE INTERVALS FOR EQUITY PERFORMANCE
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Turning now to a quantitative validation of the model, we compare the LSMC estimates with their 
corresponding actual values using the full liability cash-flow model. This involves evaluating the BEL 
for some risk driver combinations with a full set of 2,000 valuation scenarios each and comparing 
those values to the corresponding LSMC estimates. Figure 17 shows the plot of liability value 
against the bond fund return (while the other risk drivers remain unchanged) in blue as well as seven 
actual BEL values for different bond fund returns (red dots). Figure 17 also shows the corresponding 
upper and lower 90% confidence intervals (green lines). We see that the actual values are close to 
the proxy function values, display the same overall shape, and fall within the bounds of the LSMC 
confidence intervals. For a more detailed assessment of these validations, refer to the table in Figure 
25 in Section 7.3.
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FIGURE 17: GMAB LIABILITY VALUE: CONFIDENCE INTERVALS AND ACTUAL VALUES FOR BOND FUND RETURN
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7.2 GMWB LIABILITIES: QUALITATIVE ASSESSMENT AND CONFIDENCE INTERVALS
This section considers the GMWB product. As with the GMAB product, we start with a scatterplot 
of each risk driver versus the BEL. Figure 18 shows 5,000 BEL estimates for different levels of 
equity volatility. Each blue dot refers to the estimate of the BEL for one outer scenario, i.e., the mean 
value over 10 valuation scenarios per outer scenario. Just as in Section 7.1, there is a high degree of 
noise in these initial estimates.

FIGURE 18: GMWB SCATTERPLOT
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Figure 19 shows a two-dimensional plot of the LSMC proxy function for equity volatility. We can see 
that the curve is smooth through the noisy input data from Figure 18 and maps the best estimate 
of the true relationship between equity volatility and liability value. As in Section 7.1, the value of the 
BEL increases as the equity volatility increases, which is primarily due to the fact that the cost of 
guarantee claims will increase with higher equity volatility (as the guarantee is more likely to bite and 
guarantee ratchets are more likely to occur).

FIGURE 19: GMWB LIABILITY VALUE: 2D PLOT FOR EQUITY VOLATILITY
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The following sample two-dimensional plots (Figures 20 and 21) show the shape of the LSMC 
function for PC1 and equity return risk drivers, respectively, while all other risk drivers in each case 
are kept at their unstressed levels from the calibration process (i.e., the plots show the marginal 
sensitivities for each individual risk driver):

�� Figure 20: The BEL versus PC1 plot shows decreasing BEL values once the PC1 increases, i.e., 
once interest rates go up. The same drivers apply here as for the GMAB product (see Figure 11 in 
Section 7.1 above), although the relationship is much less linear. This is due to the greater impact 
of interest rates on the value of the GMWB BEL relative to the GMAB. In Figure 20, as interest 
rates rise (PC1=0 to PC1=0.5) the value of the BEL falls. This is caused by the reduction in the 
present value of charges being outweighed by the reduction in the present value of benefits. The 
duration of the benefits is much longer than the duration of the charges. Hence, as rates continue 
to rise (PC1=0.5 to PC1=1.0) a convexity effect starts to kick in, which prevents the value of the 
BEL decreasing further.

�� Figure 21: BEL values decrease once the initial equity position increases, which is a reasonable 
reaction. In such a situation, the GMWB claims will reduce and the fund charges will increase so it 
makes sense that the BEL becomes more negative.
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FIGURE 20: GMWB LIABILITY VALUE: 2D PLOT FOR PC1
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FIGURE 21: GMWB LIABILITY VALUE: 2D PLOT FOR EQUITY PERFORMANCE
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Similar plots can be constructed for the remaining risk drivers (as shown in Section 7.1 for the 
GMAB product).

Next we turn to an assessment of potential interactions and whether they have been captured by the 
LSMC proxy model. The three-dimensional plot in Figure 22 illustrates the joint behaviour of the BEL 
in accordance with the two risk drivers PC1 and lapse. Just as for the GMAB product in Section 7.1, 
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we see that the evolving surface clearly indicates the presence of interactions between interest rates 
and lapse rates. These interactions are broadly similar to what is observed in the case of the GMAB 
above in that, at high interest rate levels, the higher the lapse rate the higher the BEL, while at low 
interest rate levels, the opposite occurs.

FIGURE 22: GMWB LIABILITY VALUE: 3D PLOT FOR PC1 AND LAPSE
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Figure 23 shows a two-dimensional plot for the liability values (blue line) with varying equity volatility 
as well as upper and lower 90% confidence intervals (green lines). As described in Section 7.1 
above (see Figure 16), the confidence intervals seen here are reasonable in the sense that they are 
quite narrow and display a pattern very similar to the liability plot itself.

FIGURE 23: GMWB LIABILITY VALUE: CONFIDENCE INTERVALS FOR EQUITY VOLATILITY
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In the remainder of this section we perform a quantitative validation of our overall results. Figure 24 
shows the plot of liability value (blue line) against the bond fund return (while the other risk drivers 
are fixed at a certain level). Seven actual BEL values for different levels of the bond fund return (red 
dots) are shown, as well as the corresponding upper and lower 90% confidence intervals (green 
lines). Here, we see that the proxy values are good estimators for the actual values and both display 
the same overall shape.

FIGURE 24: GMWB LIABILITY VALUE: CONFIDENCE INTERVALS AND ACTUAL VALUES FOR BOND FUND RETURN
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7.3 COMPARISON OF LSMC ESTIMATES WITH ACTUAL BEL VALUES
In this section we compare estimates prepared using the LSMC proxy model for a set of sample 
scenarios with their corresponding actual values using the full liability cash-flow model.

The table in Figure 25 compares the BEL estimates derived by the proxy model with actual values 
derived by Monte Carlo simulations for 37 different risk driver positions (the base one and six 
uniformly distributed ones per risk driver). In practice, it is preferable to also test combinations of 
stressed risk drivers, though we have not done so here (in the interests of simplicity).

FIGURE 25: VALIDATION DATA

GMAB GMWB

Risk 
Driver

Stress 
Level

LSMC 
Value

Actual 
Value Deviation

LSMC 
Value

Actual 
Value Deviation

None Base level -7,582 -7,579 0.00% -7,671 -7,806 1.70%

Interest 
Rates PC1

-0.9 -9,393 -9,105 3.80% -9,046 -8,972 0.90%

-0.6 -8,790 -8,680 1.40% -8,669 -8,687 0.20%

-0.3 -8,186 -8,175 0.10% -8,210 -8,304 1.20%

0.3 -6,979 -6,889 1.20% -7,051 -7,178 1.60%

0.6 -6,375 -6,094 3.70% -6,350 -6,396 0.60%

0.9 -5,771 -5,176 7.90% -5,567 -5,439 1.60%

Interest 
Rates PC2

-0.9 -7,342 -7,545 2.70% -7,462 -7,572 1.40%

-0.6 -7,327 -7,556 3.00% -7,532 -7,658 1.60%

-0.3 -7,496 -7,567 0.90% -7,602 -7,736 1.70%

0.3 -7,496 -7,590 1.20% -7,741 -7,870 1.70%

0.6 -7,327 -7,601 3.60% -7,811 -7,927 1.50%

0.9 -7,342 -7,613 3.60% -7,880 -7,977 1.20%

Equity 
Return

-50% -1,224 -1,536 4.10% -1,204 -1,421 2.80%

-30% -4,099 -4,357 3.40% -4,114 -4,387 3.50%

-10% -6,532 -6,618 1.10% -6,593 -6,790 2.50%

10% -8,522 -8,449 1.00% -8,642 -8,720 1.00%

30% -10,071 -9,948 1.60% -10,260 -10,310 0.60%

50% -11,177 -11,214 0.50% -11,448 -11,667 2.80%
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GMAB GMWB

Risk 
Driver

Stress 
Level

LSMC 
Value

Actual 
Value Deviation

LSMC 
Value

Actual 
Value Deviation

Equity 
Volatility

20.00% -8,377 -8,291 1.10% -8,735 -8,657 1.00%

21.25% -8,178 -8,056 1.60% -8,488 -8,385 1.30%

22.50% -7,981 -7,818 2.10% -8,228 -8,101 1.60%

23.75% -7,783 -7,338 5.90% -7,956 -7,503 5.80%

26.25% -7,377 -7,096 3.70% -7,375 -7,190 2.40%

28.75% -6,946 -6,853 1.20% -6,749 -6,869 1.50%

Lapse*

0.60 -7,848 -7,879 0.40% -8,285 -8,602 4.10%

0.75 -7,748 -7,763 0.20% -8,055 -8,278 2.90%

0.90 -7,649 -7,651 0.00% -7,825 -7,986 2.10%

1.10 -7,516 -7,508 0.10% -7,518 -7,638 1.50%

1.25 -7,416 -7,406 0.10% -7,288 -7,403 1.50%

1.40 -7,316 -7,306 0.10% -7,057 -7,188 1.70%

Bond 
Fund 
Return

-25% -1,852 -2,079 3.00% -4,991 -5,039 0.60%

-15% -4,428 -4,625 2.60% -6,063 -6,238 2.20%

-5% -6,626 -6,690 0.80% -7,135 -7,313 2.30%

5% -8,444 -8,390 0.70% -8,207 -8,274 0.90%

15% -9,885 -9,800 1.10% -9,279 -9,144 1.70%

25% -10,947 -11,000 0.70% -10,351 -9,937 5.30%

Average    1.90%   1.90%

Note: PCI=0 for the base level.   * Stress value refers to the factor that is applied to base lapse rates.

FIGURE 25: VALIDATION DATA – CONTINUED

We see that the average deviations between the LSMC estimates and the actual values are 1.9% for both products. This indicates that the 
LSMC proxy model generally provides a good approximation for the behaviour of the true liability values over a large variety of economic 
circumstances and that we have achieved a certain level of convergence judging by these out-of-sample validations. Here, the convergence 
becomes visible by that fact that the overall level of deviation is quite stable for different kinds of economic stresses applied to the liabilities. 
Therefore, we can expect a similar level of deviation in the SCR, for example, since the economic conditions underlying the SCR calculation will 
be within the bounds of the range of conditions for which we have performed the validation. Having assessed these deviations allows us to make 
a judgment as to whether or not the achieved level of convergence is sufficient. By increasing the overall number of simulations we provide a 
simple framework to further increase the level of convergence. Of course, this is a subjective assessment, and the level of deviation which may 
be considered acceptable will vary from one situation to the next.
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Deciding upon whether or not the deviations between the liability value estimates derived from the 
proxy model and the actual liability values are at an acceptable level is a non-trivial task, for the 
following reasons:

�� Choice of an error measure: For the purposes of this case study, we compare the absolute value 
of the deviations to the base liability value. This error measure can be misleading once the base 
value is close to zero because the resulting relative deviations are artificially magnified in this case. 
Furthermore, if the liability values are large and display little movement under different risk driver 
positions, such a relative error measure indicates low deviations even if the estimates are quite 
far off. For example, suppose that the base BEL is at 10,000 and all the actual stresses lead to 
minimum liability values of 9,950 and maximum values of 10,050. If all the proxy model estimates 
are off by +100, the relative error measure indicates deviations of a maximum of about 1% even 
though the proxy model estimates are not very useful, as the proxy model’s worst-case BEL 
stress value is as large as the actual best case BEL. Alternatively, one might consider the relative 
deviations between BEL(stress) and BEL(base) for the proxy model and the actual values as the 
error measure. While this approach has its merits, it also has its drawbacks.

The tolerated level of deviation should take into account several important considerations, including: 

�� Number of risk drivers involved
�� Overall number of calibration scenarios
�� Magnitude of stress impacts
�� Spread of deviations (equally spread or systematically biased)
�� Size of deviations in the tail

 
Taking these aspects into consideration, we concluded that the proxy models generated in the case 
study pass our quality criteria.

This case study includes dynamic policyholder behaviour as a part of the projection model. Therefore, we 
see that LSMC is capable of explaining the effects of such dynamic and highly path-dependent actions in 
a suitable way. Given the nature of dynamic policyholder behaviour or dynamic management actions, this 
cannot be taken for granted, as these actions are among the most challenging features for the replication 
of the liability behaviour. To assess the proxy model quality without dynamic lapse, we repeated the case 
study for both products, this time switching off dynamic lapse in the projection model. The quantitative 
validations in this case indicate average deviations of 1.2% (GMAB) and 1.9% (GMWB) using the same 
37 sample scenarios as above. Hence, we see that dynamic lapse is a factor that makes the calibration 
of a proper proxy model for the liabilities a more complex task, while on the other hand the loss of 
explanatory quality is within a reasonable range.

7.4 BUILDING A PROXY MODEL FOR THE SCR
Having calibrated and validated the LSMC proxy models for the GMAB and GMWB products in the 
previous sections, we now turn to using this model for SCR calculations. The main input here (besides 
the proxy model itself) is a real-world distribution of the risk drivers. In order to derive the SCR (which, 
in this case, is the 99.5% quantile of the BEL distribution) we sample a sufficiently large number of 
joint realisations (in this case, 50,000) of the risk drivers under their real-world probability measure. 
Each of these realisations is a vector containing the corresponding risk driver sample. Next, the proxy 
model is evaluated for each of these risk driver vectors and each resulting value constitutes a particular 
realisation of the liability value. Hence, we get a large number of realisations of the liability value under 
our real-world view. We then use these to derive the empirical distribution of the liability value and 
related figures, such as the value-at-risk or expected shortfall for certain probability levels of the SCR. 
Having a polynomial proxy model available allows for the quick computation of this exercise because all 
we need to do is to evaluate a polynomial for a large number of risk driver realisations.7 

7	 Each evaluation of the polynomial corresponds to an assessment of the liability value for the economic situation as 
determined by the risk driver realisation.
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The determination of a real-world distribution for the underlying risk drivers is a complex task for 
insurance companies. It generally involves taking into account the asset portfolio, calibrating to 
market conditions, and determining further economic assumptions such as correlation targets. A 
similar level of complexity applies to the determination of the distribution of non-market risks such 
as lapse risk. Hence, we acknowledge that there is no unique real-world view and each insurer may 
have a different one. Taking this into account we perform our case study on a relevant, but not too 
sophisticated, real-world view to allow for an appropriate illustration of the results. In this case, we 
assume that the risk drivers follow a multivariate normal distribution with the following parameters: 

�� Mean values: The mean values of the individual risk factors correspond to the base 
valuation assumptions.8

�� Standard deviations: The standard deviations of the individual risk factors have been determined in 
such a way that the 99.5% quantile of each risk driver coincides with a certain stress target:

−− Interest rates: 99.5% quantile yield curve is initial yield curve stressed with the Solvency II 
Quantitative Impact Study 5 (QIS5) assumptions. 

−− Equity: 99.5% quantile is -39%.9 

−− Equity volatility: 99.5% quantile is 37.5%, which refers to a multiplicative stress of the base 
volatility with a factor of 1.5.10 

−− Lapse: 99.5% quantile is +50%11 of base case lapses. 

−− Bond fund: Change of bond fund is implicitly driven by change of initial yield curves; hence we 
need no explicit assumptions here.

�� By following this approach we calibrate the marginal distribution of each risk factor toward a 
certain stress target in its tail. 

�� We used the stylised correlation matrix shown in the table in Figure 26 in our case study12 in order 
to describe the dependency structure of the risk drivers.

8	 The base valuation assumption for the risk factor PC1 was set equal to -0.5.
9	 This is the QIS5 shock level for global equity before application of the symmetric adjustment mechanism.
10	 Shock level was chosen for illustrative purposes.
11	 This is the QIS5 shock level for lapse. As we assume that the risk drivers follows a normal distribution this is equivalent 

to using -50% of base case lapses as the 0.5% quantile. We are not making a judgment here as to the more onerous 
direction of the lapse shock.

12	 The distribution of the bond fund implicitly results from the change of the interest rate levels and hence no further 
assumptions will be required for its distribution.
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FIGURE 26: REAL-WORLD CORRELATION TARGETS FOR RISK DRIVERS

PC1 PC2 Equity return Equity volatility Lapse

PC1 1 0 0.5 -0.25 0

PC2 0 1 0.5 -0.25 0

Equity return 0.5 0.5 1 -0.25 0

Equity volatility -0.25 -0.25 -0.25 1 0

Lapse 0 0 0 0 1

The resulting BEL distributions for the GMAB and GMWB product have the forms shown in Figures 
27 and 28.

FIGURE 27: GMAB LIABILITY VALUE DISTRIBUTION
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FIGURE 28: GMWB LIABILITY VALUE DISTRIBUTION
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The overall shape of both BEL distributions is right-skewed, indicating that there are asymmetrical rules 
within the projection models from which the policyholder is benefitting. We see that the level of asymmetry 
of the BEL distribution is more pronounced for the GMAB product (Figure 27) than for the GMWB one 
(Figure 28). These distributional shapes are exactly what we expect to see, based on: a) the underlying real-
world distribution, and b) the functional shapes as seen in Sections 7.1 and 7.2. The real-world distribution 
is a multivariate normal one, which has the property that it is symmetrical with respect to the mean value. 
Hence, any deviation from the mean has equal probability in both directions. Looking at the two-dimensional 
plots in Sections 7.1 and 7.2, we see that they display either a linear or a convex shape. While a linear 
function shape evaluated for a set of normal random variables will result in a normal and hence perfectly 
symmetrical distribution again, a convex shape will result in a right-skewed liability distribution. Convexity 
refers to the fact that the policyholders benefit more from good scenarios than they suffer from bad ones. 
Hence, a symmetrically distributed set of risk factors will lead to a right-skewed liability distribution.13  

From the resulting distributions we get a 99.5% VaR of 1,979 (GMAB) and 4,190 (GMWB). The table 
in Figure 29 summarises the joint 99.5% change of BEL as well as the marginal 99.5% BEL changes 
per risk driver. These have been derived by evaluating the LSMC proxy model for corresponding marginal 
distributions of the risk driver under consideration while all other risk drivers have been kept at their base 
level. We see that equity return and equity volatility are the most significant risk drivers judged by their 
individual 99.5% changes of BEL. Taking into account the two-dimensional graphs from the previous 
section, this is what we expect. The relatively low impact of the bond fund return comes from the fact that 
even though the bond fund return itself has a significant impact on BEL, its real-world distribution displays 
quite a low degree of variance.

13	 We can derive this analytically in the following way: If f is a convex function we know that f(λx + (1-λ)y) ≤  λf(x) + (1-λ)f(y) for 
any λ in [0,1]. By choosing λ=½ and y=-x this relationship reads f(0) ≤ ½ f(x) + ½ f(-x). Without loss of generality we can 
assume that f(0)=0 and get -f(-x) ≤ f(x). In the context of our paper, this means that the gain in good scenarios (i.e., the rise of 
the BEL for large risk driver values x) exceeds the loss in bad ones (i.e., the fall of the BEL values for small risk driver values 
x). Thus, if the risk driver X is symmetrically distributed with mean 0, we see that the probability of f(X) exceeding any positive 
number z is larger than the one of f(X) falling short of -z, which directly leads to a right-skewed distribution of f(X).
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FIGURE 29: MARGINAL DISTRIBUTIONS

Total SCR GMAB GMWB

BEL -4,250 -3,170

99.5% VaR 1,979 4,190

Total SCR 6,229 7,360

Breakdown od SCR elements GMAB GMWB

Marginal SCR contributions

Interest Rates (PC1 and PC2) 952 1,725

Equity Return 6,508 7,913

Equity Volatility 2,740 4,879

Lapse 564 57

Bond Fund Return 544 307

Total of Marginal SCRs 11,308 14,881

Diversification Effect 5,079 7,521

Total SCR 6,229 7,360

Note that this is just an illustrative example. Correlations in this example are not intended to represent 
what might be used in real-life situations.

A straightforward validation of the SCR itself would involve a brute-force nested stochastic approach. 
Avoiding such an approach is the main reason for the application of proxy models and hence this form 
of validation is unsuitable. Therefore, it is essential to have a proper validation of the proxy model itself 
before turning to an assessment of the SCR. Once we’re comfortable with the results of the proxy 
model validation, i.e., once we have seen that it passes validation testing for the change of liability value 
under a variety of economic conditions (as seen in Figures 10 to 25) with a reasonably low level of 
variance (as assessed by the confidence intervals in Figures 16,17, 23, and 24), we can apply the proxy 
model to estimate the distribution of the liability value under a particular real-world distribution of risk 
drivers. Note that there are methods which may be used to explicitly assess the variance of the SCR 
estimator (see Kalberer in the References section for details) but we do not cover them further here.

Alternative joint real-world distributions of the risk drivers are typically either: 

�� Copulas to join assumed14 marginal distributions of risk drivers15

�� Causal model structures where a causal structure of the risk drivers and the underlying factors 
driving those risks are modelled jointly and simulated by a set of underlying assumptions

14	 For example, distributions per risk driver that are calibrated to a certain set of parameters and assumptions for the 
underlying asset portfolio.

15	 Note that the approach of using a multivariate normal distribution as a real-world distribution is equivalent to joining 
normally distributed marginal distributions using a Gaussian copula.
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7.5 INCLUSION OF FURTHER RISK DRIVERS OUTSIDE OF THE MODEL
Typically, some risks such as operational risk are not part of the actuarial cash-flow model and hence 
cannot be directly included in the LSMC fitting and calibration process. Using some simplifying 
assumptions, such risks can be aggregated with those covered by the cash-flow model and/or 
LSMC proxy model: 

�� For example, assume that:

−− Any such risk from outside the model has a linear impact on the liability value 

−− The SCR values for the individual ‘outside risks’ have been aggregated outside the model – to a 
value SCRout 

−− The overall impact of the risks from outside the model is normally distributed and SCRout displays 
correlation ρ with SCRLSMC

�� Calculate the overall SCRLSMC as done above excluding ‘outside risks’ and aggregate both 
elements of the SCR as follows: SCRtotal=√SCR2LSMC+SCR2out+2ρSCRLSMCSCRout.

Even though the assumptions above will typically not hold from a theoretical point of view, they may 
be regarded as a reasonable proxy of the true circumstances and applied, taking into account that 
there might be no perfect solution for this problem.

Other approaches can be used to join the marginal distribution of the liability value under the risks 
modelled via LSMC and risks that are outside the proxy model. Basically, this comes back to the 
problem of joining different marginal distributions (where at least one of them—the distribution of 
the liability value under those risks which are part of the proxy model—is non-analytic) and can be 
addressed with similar approaches, as discussed in the previous section (dealing with the joining of 
real-world risk driver simulations). 

It is useful to consider an example of the possible form of a causal model for joining an outside risk 
with the liability value distribution covered by the proxy model. Suppose Company A holds equity 
as well as a bond issued by another company, Company B. For simplicity, we assume that the bond 
debt will be repaid by Company B after one year. Company A considers this repayment subject 
to default risk and assumes that in the case of default the liability value will increase by 500.16 The 
default risk is not part of the cash-flow model of Company A and hence cannot be captured by the 
LSMC proxy model. However, Company A has a separate ‘asset-only’ model to simulate the defaults 
of Company B. This model follows a Merton-like approach for credit risk (see Merton in the References 
section for details) and simulates the assets of Company B under a 1one-year real-world view in a very 
simplistic way (by considering the assets of Company B as a single equity position, with a drop in this 
equity position below a certain threshold indicating the default of Company B). 

Since Company A also holds an equity stake in Company B, it models its real-world view on the 
overall equity return (which is a risk driver of the proxy model) by joining the real-world performances 
of the shares of Company B and a global equity index (which refers to the performance of its 
remaining equity positions).

16	 Of course, this is a simplification of reality where the default of an individual bond will have an impact on liabilities, which 
depends on other risk drivers as well.
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Hence, Company A has generated 10,000 realisations of the BEL under the risks that are part of 
the proxy model (see first block of the table in Figure 30 below) including EquityB, the performance 
of Company B’s equity that forms part of the overall equity performance. It uses these 10,000 
realisations of EquityB to derive 10,000 simulations of the default events for the bond issued by 
Company B (see second block of Figure 30). It then joins the influence of the default of Company 
B on the overall BEL by adding the change of BEL caused by the default of Company B to the BEL 
derived by the proxy model (see third block of Figure 30). Therefore, the insurance company has 
joined the distribution of the BEL under the risks covered by the proxy model and the change of BEL 
distribution under an outside risk in a consistent way by linking the performances of the equity of 
Company B that (partly) drives the overall equity risk as well as the default of Company B’s debt.

FIGURE 30: SCENARIO AGGREGATION

								        Change	 Overall 
	Simulation	 EquityB	 Equityglobal	 …	 BEL	 EquityB	 Default	 of BEL	 BEL 

	 1	 -13%	 +4%	 …	 10,000	 -13%	 No	 -	 10,000

	 2	 -45%	 +4%	 …	 9,500	 -45%	 Yes	 +500	 10,000

	 3	 +12%	 +15%	 …	 7,000	 +12%	 No	 -	 7,000

	 4	 +0%	 -6%	 …	 11,000	 +0%	 No		  11,000

	 …	 …	 …	 …	 …	 …	 …	 …	 …

	 9,999	 +4%	 +7%	 …	 8,000	 +4%	 No		  8,000

	 10,000	 -29%	 -3%	 …	 10,500	 -29%	 Yes	 +500	 11,000
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8 LSMC ACROSS A MULTI-YEAR TIME HORIZON

8.1 APPLICATIONS 
In the previous section, we discussed how to apply LSMC to deal with one-year VaR problems—
in other words, the time horizon had been t=1. While those problems are at the core of many 
calculations, such as those required for Solvency II capital requirements, several instances where 
proxy models may be applied require consideration of longer time horizons. In this section we briefly 
discuss some examples of such applications.

8.1.1 OWN RISK AND SOLVENCY ASSESSMENT 
According to Article 45 of the Solvency II Directive (see Solvency II Directive in the References 
section), every insurance undertaking shall carry out an ORSA. In particular:

…The own risk and solvency assessment shall be an integral part of the business strategy and shall 
be taken into account on an ongoing basis in the strategic decisions of the undertaking.

Furthermore, Consultation Paper 008/2011 issued by the European Insurance and Occupational 
Pensions Authority (EIOPA) provides the following interpretation of the directive:

…The undertaking’s assessment of the overall solvency needs should be forward-looking.

…The undertaking needs to project its capital needs over its business planning period. This 
projection is to be made considering likely changes to the risk profile and business strategy over 
the projection period and sensitivity to the assumptions used. 

In other words, Solvency II coverage ratios should be assessed over a period extending beyond 
one year (perhaps three to five years). There are a number of ways in which such projections may 
be prepared, such as the projection of balance sheets and capital requirements along certain 
deterministic paths that are considered appropriate for business planning purposes.

8.1.2. VALUE-BASED MANAGEMENT 
Valuation metrics such as market-consistent embedded value (MCEV) represent a valuation exercise 
with time horizon t=0, while Solvency II SCR calculations at the valuation date involve a one-year 
time horizon. However, the availability of MCEV and SCR numbers is generally not enough for the 
purposes of value-based management (VBM).

Naturally, one can make use of information available from sensitivities and analysis of change for 
VBM purposes. However, these sources do not provide further information such as how MCEV or 
other economic balance sheet items would evolve over a multi-year planning period. This is where a 
proxy model can prove useful.

8.2 CHALLENGES OF MULTI-YEAR CALCULATIONS 
The problems mentioned above imply a number of practical challenges, which we will briefly touch on in 
this section. A thorough treatment of these challenges would go beyond the scope of this current paper.

8.2.1. MODELLING FUTURE NEW BUSINESS 
Usually, valuation exercises at t=0 are concerned with the business in-force—for example, MCEV 
principles clearly exclude future new business from the MCEV scope. However, a meaningful 
consideration of MCEV development over a multi-year business planning period cannot be carried 
out under the assumption that the insurance undertaking will not write any new business during that 
period. The same reasoning applies to the question as to how the main risks, measured by their 
solvency capital requirements, would evolve over such a medium-term time horizon.
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Modelling future new business leads to a number of interesting questions, such as how to set 
assumptions for future new business (for example volume and profitability) or expanding upon 
dynamic management actions in the cash-flow model in order for the latter to cover such actions as a 
reduction of new business volume in ‘bad’ scenarios. 

8.2.2. LSMC PROXY MODELLING AT A TIME HORIZON t > 1 
Generally speaking, the LSMC process lends itself to an arbitrary time horizon very well. In particular, 
it is possible to obtain an adequate liability function for any relevant time horizon. However, the  
t > 1 case includes an additional subtlety which we did not have to worry about when dealing with 
the 1-year time horizon. The economic situation of an insurance undertaking at time horizon t > 1 
depends not only on the current risk driver values but also on the history between the valuation 
date and time t—whereas in the case of t = 1, all scenarios for t = 1 share the same history at t = 0. 
For example, it is not enough to know that the interest rates are 5% flat in some scenario for t = 3 
without also knowing how high the interest rates have been at times t = 1 and t = 2 or whether, for 
example, an insurance undertaking was able to declare a bonus to with-profits policyholders at times 
t = 1 and t = 2, and so on. 

Thus, we have to introduce additional risk drivers—called state variables—in order to ensure that 
the LSMC process can properly distinguish between two scenarios which may be similar or even 
identical at time horizon t and yet feature very different history between time 0 and time t.

We cannot determine universally appropriate state variables, because their choice is clearly 
dependent on the particular problem and the underlying stochastic cash-flow model. 

There are certain key questions and considerations to bear in mind when preparing the model for 
multi-year calculations:

�� Identification of important state variables: Which variables at time t most efficiently incorporate the 
history of a certain scenario prior to time t? 

�� Assessment of the correlation of the state variables: Is all of the information contained in the state 
variables necessary or is there a certain level of redundancy when using all of them? If the state 
variables display high correlations amongst each other, then it may be possible to remove certain 
variables that are highly correlated with others in order to make the analysis more manageable 
without significant loss of accuracy.

�� Check that the future risk factor distributions within calibration scenarios are rich enough: Just as 
for the case at time t=1 we need a broad universe of risk factor positions to be covered over the 
projection period.  This is necessary to ensure that we can explain the liability value during the 
projection at all different risk factor levels and are able to stress those risk factors to assess the 
capital requirements at any point in time and for any scenario.

For a more thorough discussion of this topic, please see Bettels et al. in the References section below.
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8.2.3. ESTIMATION OF SOLVENCY II COVERAGE RATIOS AT t > 1 FROM LSMC RESULTS 
In order to obtain a Solvency II coverage ratio for a particular scenario s and time horizon t, one 
has to define an approach as to how to calculate this coverage ratio based on some LSMC liability 
functions such as BEL or present value of future profits (PVFP), which can be evaluated for that 
scenario and time horizon.

In other words, one has to define an approach as to how to calculate SCR(t,s) as well as the 
available capital AC(t,s).

It is possible to calculate SCR(t,s) using a pragmatic approach such as the following:

�� Evaluate the LSMC liability function at time t in order to obtain the base value PVFP(t, s). Here, the 
state variables would take the history of scenario s between time 0 and time t into account.

�� Evaluate the LSMC liability function for time t for each SCR-relevant stress in order to obtain an 
individual SCR(i) for each risk i. The magnitude of each stress would represent the corresponding 
‘one-in-200-year’ event for each risk. 

�� Aggregate the individual SCR(i) obtained in the previous step via a standard formula-style 
correlation approach.

Alternatively, one could construct many thousands of real-world scenarios emanating from (t,s) over the 
one-year horizon, evaluate the LSMC liability function on each of them, and calculate SCR(t,s) from the 
resulting risk distribution. However, this approach is likely to be extremely burdensome in practice.

In order to calculate the available capital AC(t,s), we would need the value PVFP(t,s) calculated 
above and the risk margin RM(t,s). A pragmatic way of estimating the latter would be a cost of 
capital approach. Here, we obtain SCRnh(t,s) for non-hedgeable risks as outlined above. We then 
compute SCRnh(T,s) for T > t by projecting SCRnh(t,s) along a simple risk driver such as value of 
reserves in the best estimate scenario (i.e., a scenario in which future interest rate outcomes match 
exactly the forward rates predicted by the yield curve at the outset).
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9 SOLVENCY I CAPITAL

Owing to the recent delays to the planned implementation of Solvency II regulations, it is likely that 
companies will continue to need to be able to calculate their capital requirements under Solvency I 
rules for some time.

9.1 VARIABLE ANNUITY CAPITAL REQUIREMENTS 
Currently the application of Solvency I rules throughout Europe varies to a certain degree by territory. 
In addition, the current rules were introduced before the recent development of the VA market in 
Europe and so do not capture particularly well the types of risks inherent in VA products. 

In recent years, some individual regulatory authorities have introduced specific capital requirements 
to deal with the exceptional features of VA products. In Ireland, which is one of the primary 
jurisdictions from which VA business is written in Europe, the regulator (the Central Bank of Ireland) 
requires companies to hold total capital (reserve plus solvency margin) on new business written to 
cover what is known as the ‘CTE95’ outcome. ‘CTE’ stands for conditional tail expectation, while ‘95’ 
indicates that it is the average of the worst 5% of outcomes that is of interest. The methodology is a 
real-world stochastic methodology, involving the projection of future income and outgo over a range 
of different scenarios. Economic assumptions are based on estimates of future market conditions 
while other assumptions (such as demographic experience) are based on prudent estimates adjusted 
to capture any specific requirements of the regulations.

The Irish approach has been adapted from the US approach. The umbrella body for insurance 
supervisory authorities in the US, the National Association of Insurance Commissioners (NAIC), 
asked the American Academy of Actuaries (AAA) to produce standards for setting the level of capital 
required to support VA liabilities. Over the course of a number of years the AAA has formulated and 
refined an approach to setting VA capital requirements.

At a high level, the US methodology involves running a cash-flow model over a large number of 
investment scenarios (typically 10,000), calculating a present value of future losses for each scenario 
and basing the total capital requirement on the distribution of those losses. More specifically, the 
methodology involves projecting policy cash flows stochastically across a large number of scenarios 
and then determining the greatest present value of the cost of the guarantees for each scenario. The 
total capital requirement is set to the average of the 10% of scenarios which produce the largest 
negative present values—which is generally referred to as the CTE90 (conditional tail expectation 
of the 10% of scenarios which produce the largest negative present values). The assumptions 
underlying these scenarios, for example the mean paths and volatilities of the projected assets, are 
external parameters and fixed for each projection. Therefore, one can characterise this situation 
as follows: The liability value is the CTE90 emerging under a real-world distribution where the 
parameters of this distribution serve as risk drivers. Note that this kind of liability value is quite 
different to an economic value in the Solvency II context. However, this definition is suitable for the 
purposes of applying a proxy model, as we outline below.
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9.2 PROJECTION OF SOLVENCY I CAPITAL REQUIREMENTS 
An LSMC approach to the projection of capital requirements in a Solvency I context will look similar 
to the following:

�� Risk drivers: Key parameters of the underlying real-world distribution used to project the VA cash 
flows serve as risk drivers. Examples are: 

−− Initial yield curves
−− Mean paths of interest rates and indices
−− Volatilities of interest rates and indices

�� Outer scenarios: Just as for the Solvency II type applications in Section 5, we identify a reasonable 
range of values for each risk driver. The n outer positions will then be uniformly distributed over the 
multidimensional space of risk drivers, i.e., multidimensional parameter vectors that span the space 
of values under consideration as uniformly as possible.

�� Inner scenarios: For each outer scenario, i.e., for each combination of parameters for the 
underlying real-world distribution, we generate a set of Y inner scenarios which incorporate the 
corresponding outer assumptions.

�� Valuation: For each of the n outer positions we derive the present value of future losses for each of 
the Y inner scenarios and derive the CTE90 by taking the average of the 10% of scenarios which 
produce the largest negative present values of future losses. Any such value will serve as CTE90 
estimate per outer scenario.

�� This puts us in the same position as discussed in Section 5.1—for each outer scenario, i.e., 
each parameter combination of the real-world scenario distribution, we get a rough liability value 
estimate and use the LSMC approach to smooth out the noise and uncover the true relationship 
between these parameters and the resulting CTE90. Note that the LSMC approach does not rely 
on the fact that the liability value is related to the valuation of liability cash flows under a risk-neutral 
probability measure. All it takes is a liability value that is derived as a (conditional) mean over a set 
of stochastic scenarios. 

Note on convergence: As seen in Section 5.2.4, the underlying assumption of LSMC was that the 
error term, i.e., the difference between the actual liability value and its estimate derived by using Y 
inner simulation, is normally distributed. For valuations in the context of Solvency II, we can assume 
this assumption to be approximately fulfilled when using even very few inner scenarios. Empirically, 
this means that the estimated liabilities encountered over the range of outer scenarios will tend to be 
too large with the same probability as they tend to be too small, and hence this symmetrical error can 
be cancelled out through regression.

However, in the context of Solvency I, where the liability value is derived from the 10% worst-
case inner scenarios, this will require a significantly larger number of inner scenarios per outer 
one because the estimation of the CTE90 based on only a small number of inner scenarios will 
display a significant bias toward smaller values. This comes from the fact that, when estimating 
the CTE90 with only a few scenarios, we are unlikely to encounter the really large losses that can 
have a significant influence on the conditional tail expectation, and thus the resulting estimated 
conditional tail expectations tend to be too small. Therefore, the error is non-symmetrical, which 
introduces a bias to the resulting LSMC proxy model. It is advisable to perform a thorough analysis 
of the empirical distribution of the error, ε, by considering the realisations of the error variable 
(also referred to as residuals) εi= Y(i)- f(X1

(i),…,Xm
(i)), i=1,…,n. To counter this effect we have to use 

significantly more inner scenarios per outer one and use the distribution of the errors in order to 
apply a (subjective) assessment of whether or not the chosen number of inner scenarios is sufficient 
to overcome the estimation bias described above.
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APPENDIX

A.1. DETAILS OF THE PRODUCTS USED IN THE CASE STUDY
Note that all of the assumptions below are simply for illustrative purposes and do not purport to be 
representative of current or expected future pricing conditions.

A.1.1 GMAB
The guarantee is a return of premium on death or after 10 years.

Guarantee charge = 1.4% p.a. (levied on fund value).

The initial split of the fund is 35% equities and 65% bonds.

Single premium = €100,000.

Age at entry = 50.

Fund management charge = 1.6% p.a.

The maintenance expense = €40 p.a. inflating at 2.5% p.a.

Lapses:

Base rates (p.a.)

Year GMAB
1 0.0%
2 4.5%
3 6.0%
4 6.0%
5+ 7.0%

Dynamic behaviour:

Effective lapses = max (Base lapses * Dynamic lapse factor, 2%)

Where 

ITM = Account Value / Benefit Base

Dynamic lapse factor = min (140%, max (0%, 2 * ITM – 1))
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FIGURE 31: GMAB DYNAMIC LAPSE FACTOR
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A.1.2 GMWB
Details of the guarantee are as follows:

�� There is a deferral period of five years and withdrawals start after this period
�� During the deferral period the benefit base rolls up at 2.5%
�� An annual ratchet applies
�� The guaranteed withdrawals after the deferral period are 3.5% per annum of the benefit base

Guarantee charge = 1% p.a. (levied on fund value).

The initial split of the fund is 50% equities and 50% bonds.

Single premium = €100,000.

Age at entry = 60.

Fund management charge = 1.6% p.a.

The maintenance expense = €40 p.a. inflating at 2.5% p.a.

Lapses:

Base rates (p.a.)

Year GMAB
1 1.0%
2 2.0%
3 3.0%
4 4.0%
5+ 5.0%



Milliman  
Research Report

53An application of Monte Carlo proxy techniques to variable annuity business: A case study
Mario Hörig, Karl Murray, Eamonn Phelan, and Michael Leitschkis

November 2013

Dynamic behaviour:

Effective lapses = Base lapses * Dynamic lapse factor

Where 

ITM = 10 year spot rate – Withdrawal Rate * Benefit Base / Account Value

Dynamic lapse factor = min (200%, max (0%, (100 / 3) * (ITM + 2%)))

FIGURE 32: GMWB DYNAMIC LAPSE FACTOR
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A.2. ECONOMIC ASSUMPTIONS
Lognormal equity returns with 25% volatility

Single factor Hull-White model for interest rates with mean reversion 3% and volatility 1%17

0% equity/interest rate correlation

Bonds modeled as 7-year risk-free zero coupon bonds

The yield curve that was used for the pricing of the model points used in the case study represents 
the Q3 2012 yield curve (the ‘market curve’ in the chart in Figure 33).

For the purposes of calibration of the LSMC proxy model, a higher yield curve (‘PC1=0’ in Figure 33) 
was used in order to avoid problems associated with negative interest rates, which would arise if the 
market yield curve had been used for this purpose.

17	 J. Hull, A. White. (1990). Pricing Interest Rate Derivative Securities. Review of Financial Studies.
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Figure 33 shows that PC1=-0.5 is a good approximation for the market curve.

FIGURE 33: DISCOUNT RATE CURVES
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A.3. BACKGROUND ON JACKKNIFING THE LSMC CONFIDENCE INTERVALS
Suppose we’ve derived a liability function f. For a certain risk driver combination X1,…,Xm we get an 
estimate for the corresponding liability value by evaluating f(X1,…,Xm) (called a point estimate). In 
order to derive confidence intervals for the point estimate f(X1,…,Xm) we apply a certain resampling 
procedure, called jackknifing. The jackknifing aims at subsequently resampling the liability function 
from the simulation data used for the LSMC fitting. Each resampling results in a new liability function 
and a new point estimate that is used to derive standard deviations and confidence intervals for the 
point estimates of the liability function. The algorithm for the jackknifing is as follows (see Wu):

Input

�� n liability values Y(1),…, Y(n) and the values of the corresponding risk driver vector X(i)=(X1(i),…
,Xm(i)), i=1,…,m

�� The final polynomial f from the LSMC fitting approach (i.e., a vector of coefficients β=(β1,…, βk) 
and corresponding polynomial)

�� Number p of jackknife repetitions (e.g., p = 5,000)
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Process

Repeat the following steps p times (with the current step indicated by j):

�� Draw a random subset of the fitting data with size d=floor(0, 8*n) (i.e., the subset consists of 
floor(0, 8*n) distinct liability values from [Y(1),…, Y(n)] and their corresponding risk drivers, where 
floor[x] refers to the largest integer smaller or equal to x). In this case ‘random’ means that each 
liability value may be drawn with the same probability.

�� Refit the final polynomial structure from the original LSMC fitting to this data.

−− This results in a new vector of coefficients  β̂ ( j ) .

−− Determining  β̂ ( j ) involves inverting the matrix Xj
TXj, where Xj is built in the same way as the final 

design matrix X (i.e., the matrix X used for the final fit that determines β) but consists only of d of 
the n lines of X. Calculate vi = det(Xj

TXj), the determinant of Xj
TXj.

−− vj is the specific weight of results from jth jackknife trial.

�� Compute b ( j ) = b̂ ( j ) +√
       




 


d-k+1
n-d

b̂ ( j ) - b( ) , where the operations are applied 
component-wise.

−− The vector β(i) represents the liability function estimated in the current jackknife trial.

Output

This procedure yields p different liability functions f1,…,fp (represented by the corresponding 
coefficient vectors β(1),…, β(p)) and their associated weights v1 ,…,vp.

This information can be used to derive confidence intervals and standard deviations for f(X1,…, Xm) 
for any arbitrary risk drivers value X=(X1,…, Xm). In order to do so we proceed in the following way:

�� Calculate the values f1(X1,…, Xm),…, fp(X1,…, Xm) by using the polynomial structure of f and the 
coefficient vectors β(1),…, β(p).

�� Set  wi = vi
vjj=1

pÂ
 (i=1 ,..., p) → individual weight of the ith jackknife trial.

�� Calculate standard deviation [f(X1,…, Xm)] = wj f X1,...,Xm ) - f j X1,...,Xm )(( )2(j=1

pÂ .

�� To sample a confidence interval of f(X1,…, Xm) at any confidence level α, we start by sorting the 
values f1(X1,…, Xm),…, fp(X1,…, Xm) in ascending order and considering their associated weights. 
The α confidence level (0 ≤ α ≤ 1) is derived by choosing the smallest function value such that 
the sum of its weight and the weights of all smaller function values exceed α.
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