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We consider a generalized time-dependent risk model with constant interest force, where the
claim sizes are of pairwise quasiasymptotical independence structure, and the claim size and its
interclaim time satisfy a dependence structure defined by a conditional tail probability of the claim
size given the interclaim time before the claim occurs. As the claim-size distribution belongs to the
dominated variation class, we establish some weakly asymptotic formulae for the tail probability
of discounted aggregate claims and the finite-time ruin probability, which hold uniformly for all
times in a relevant infinite interval.

1. Introduction

In the paper we will consider a generalized risk model of an insurance company, in which
the claim sizes {Xi, i ≥ 1} are nonnegative, identically distributed, but not necessarily
independent random variables (r.v.s) with common distribution F and generic r.v. X, and
their interarrival times {θi, i ≥ 1} are other independent, identically distributed (i.i.d.), and
nonnegative r.v.s with generic r.v. θ. To avoid triviality, X and θ are assumed not to be
degenerate at 0. Denote the claim arrival times by τ0 = 0, τn =

∑n
i=1 θi, n ≥ 1, which constitute

a renewal counting process as follows:

N(t) = sup{n ≥ 1, τn ≤ t}, t ≥ 0, (1.1)

with a finite-mean function λ(t) = EN(t) =
∑∞

i=1 P(τi ≤ t), t ≥ 0. Assume that, for every
i ≥ 2, Xi and τi−1 are mutually independent. Meanwhile, as mentioned by Wang [1], the total
amount of premiums accumulated before t ≥ 0, denoted by C(t) with C(0) = 0 and C(t) < ∞
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almost surely for any fixed t > 0, is a nonnegative and nondecreasing stochastic process. Let
r ≥ 0 be the constant interest force and x ≥ 0 be the insurer’s initial reserve. Hence, the total
reserve up to t ≥ 0 of the insurance company, denoted byUr(t), satisfies as following:

Ur(t) = xert +
∫ t

0
er(t−s)C(ds) −

∫ t

0
er(t−s)S(ds), (1.2)

and the discounted aggregate claims up to t ≥ 0 are expressed as

Dr(t) =
∫ t

0
e−rsS(ds) =

∞∑

i=1

Xie
−rτi1{τi≤t}, (1.3)

where S(t) =
∑N(t)

i=1 Xi is the aggregate claim amount before t ≥ 0 with S(t) = 0 ifN(t) = 0. As
usual, the ruin probability within a finite time t > 0 is defined by

ψr(x, t) = P(Ur(s) < 0 for some 0 ≤ s ≤ t), (1.4)

and the infinite-time ruin probability is

ψr(x,∞) = P(Ur(t) < 0 for some 0 ≤ t <∞). (1.5)

For the renewal risk model with i.i.d. claim sizes {Xi, i ≥ 1} and i.i.d. interarrival times
{θi, i ≥ 1}, in which {Xi, i ≥ 1} and {θi, i ≥ 1} are mutually independent, there are many
relatedworks on ruin theorywith a constant interest force r > 0, for example, see Klüppelberg
and Stadtimüller [2], Kalashnikov and Konstantinides [3], Konstantinides et al. [4], Tang
[5, 6], and Hao and Tang [7], among others. However, the independence assumptions above
are made mainly not for practical relevance but for theoretical interest.

In recent years, various extensions to the renewal risk model have been proposed to
appropriately relax these independence assumptions. Generally, there are two directions to
discuss the extensions. One is that a certain dependence structure is imposed on the claim
sizes {Xi, i ≥ 1} and/or their interarrival times {θi, i ≥ 1}, but {Xi, i ≥ 1} are assumed
to be independent of {θi, i ≥ 1}. See, for example, Chen and Ng [8], Li et al. [9], Yang
and Wang [10], Wang et al. [11], and Liu et al. [12], and references therein. The other is
that the claim size X and its interarrival time θ follow a certain dependence structure, but
{(Xi, θi), i ≥ 1} are i.i.d. random pairs. In this direction, many researchers considered some
ruin-related problems of a generalized risk model with a certain dependence between X and
θ when the claim-sized distribution is light tailed, for example, Albrecher and Teugels [13],
Boudreault et al. [14], Cossette et al. [15], and Badescu et al. [16]. Besides, Asimit and Badescu
[17] introduced a general dependence structure for (X, θ) and presented the tail behavior of
discounted aggregate claims Dr(t) for the compound Poisson model with constant interest
force and heavy-tailed claims. Under the dependence structure of Asimit and Badescu [17],
Li et al. [18] extended the tail behavior of Dr(t) to the renewal risk model.

The dependence structure between X and θ introduced by Asimit and Badescu [17]
satisfies that the relation

P(X > x | θ = t) ∼ F(x)h(t), t ≥ 0, (1.6)
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holds for some measurable function h(·) : [0,∞) �→ (0,∞), where the symbol ∼ means that
the quotient of both sides tends to 1 as x → ∞. When t is not a possible value of θ, the
conditional probability in (1.6) is understood as an unconditional one, and then h(t) = 1. If
relation (1.6) holds uniformly for all t ∈ [0,∞), then, by conditioning on τi−1 and θi, i ≥ 1, it
holds uniformly for all t ∈ [0,∞) that

P
(
Xie

−rτi1{τi≤t} > x
) ∼

∫ t

0

∫ t−v

0
P
(
Xie

−r(u+v) > x
)
P(τi−1 ∈ du)h(v)G(dv)

= P
(
Xie

−r(τi−1+θ∗)1{τi−1+θ∗≤t} > x
)
,

(1.7)

where θ∗ is a r.v. independent of X and θ, with a proper distribution given by

P(θ∗ ∈ dv) = h(v)G(dv). (1.8)

Remark 1.1. Note that the general dependence structure defined by (1.6) can cover both
positive and negative dependence and is also easily verifiable for many common bivariate
copulas, which can be found in Li et al. [18]. Furthermore, practitioners in insurance
industry often meet the following situations: for autoinsurance or fire insurance, if the claim
interarrival time is longer, then more measures can be taken to reduce the forthcoming losses
of property, while if the deductible of the insured is raised, then the claim interarrival time
will increase since some small claims can avoid. These situations tell us that the claim size
and its interarrival time are interacted on each other, and the dependence structure defined
by (1.6) is realistic in actuarial environments.

Based on the two study directions above to extend the renewal risk model, this paper
will consider a more generalized risk model with the claim sizes following some dependence
structure as well as the random pair (X, θ) satisfying relation (1.6) and establish the weakly
asymptotic formulae for the tail probability of discounted aggregate claims and the finite-
time ruin probability, which hold uniformly for all times in a relevant infinite interval. The
method used in the paper is different from that in the above mentioned literatures, and the
obtained results can extend and improve some existing results.

The rest of this paper is organized as follows: Section 2 will present the main results
of this paper after preparing some preliminaries, and Section 3 will give some lemmas which
are helpful to prove our main results in Section 4.

2. Preliminaries and Main Results

All limit relationships in the paper are for x → ∞ unless mentioned otherwise. For two
positive functions a(·) and b(·), we write a(x) = O(1)b(x) if lim supa(x)/b(x) = c < ∞,
write a(x) � b(x) or b(x) � a(x) if c ≤ 1, write a(x) ∼ b(x) if a(x) � b(x) and b(x) �
a(x), write a(x) = o(1)b(x) if c = 0, and write a(x) 
 b(x) if a(x) = O(1)b(x) and b(x) =
O(1)a(x). Further, for two positive bivariate functions a(·, ·) and b(·, ·), we write a(x, t) ∼
b(x, t) uniformly for all t ∈ Δ/= ∅ if lim supt∈Δ|a(x, t)/b(x, t) − 1| = 0.

As everyone knows, in the insurance industry how to model the dangerous claims is
one of the main worries of the practicing actuaries, and actually most practitioners choose the
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claim-size distribution from the heavy-tailed distribution class, one of which is the dominated
variation class. By definition, a distribution F belongs to the dominated variation class,
denoted by F ∈ D, if F(xy) = O(1)F(x) for all y > 0, where F(x) = 1 − F(x); belongs
to the extended regular variation (ERV) class if there exist some 0 < α ≤ β < ∞ such
that y−β ≤ F∗(y) ≤ F

∗
(y) ≤ y−α for all y ≥ 1, where F∗(y) = lim infF(xy)/F(x) and

F
∗
(y) = lim supF(xy)/F(x); belongs to the consistent variation class, denoted by F ∈ C,

if LF = limy↘1F∗(y) = 1; belongs to the subexponential class, denoted by F ∈ S, if F(x) > 0
for all x > 0 and F∗2(x) ∼ 2F(x), where F∗2 denotes the 2-fold convolution of F. Note that if
F ∈ S then F is long tailed, denoted by F ∈ L and characterized by F(x + y) ∼ F(x) for all
y /= 0.

For a distribution F and any y > 0, we set J+F = −limy→∞ logF∗(y)/ logy and J−F =
−limy→∞ logF

∗
(y)/ logy. It is well known that the following relationships hold, namely:

ERV ⊂ C ⊂ L ∩ D ⊂ S ⊂ L, D/⊂ L,L/⊂ D. (2.1)

For more details of heavy-tailed distributions and their applications to insurance and finance,
the readers are referred to Bingham et al. [19] and Embrechts et al. [20]. Additionally, some
reviews on the class D and its application can be found in Shneer [21], Wang and Yang [22],
and others.

Following the first trend to extend the renewal risk model, in the paper we will discuss
a risk model with the claim sizes satisfying the following dependence structure.

Definition 2.1. Say that the r.v.s {ξi, i ≥ 1} with their respective distributions Vi, i ≥ 1 are
pairwise quasiasymptotically independent if

P
(
ξi > x, ξj > x

)
= o(1)

(
Vi(x) + Vj(x)

)
for i /= j, i, j ≥ 1. (2.2)

Remark 2.2. The term “pairwise quasiasymptotic independence” is borrowed from Chen and
Yuen [23]. Clearly, if {ξi, i ≥ 1} are identically distributed, relation (2.2) is equivalent to

P
(
ξi > x, ξj > x

)
= o(1)P(ξi > x) for i /= j, i, j ≥ 1, (2.3)

which means that {ξi, i ≥ 1} are pairwise asymptotically independent or bivariate upper tail
independent; see Zhang et al. [24] and Gao and Wang [25]. Also remark that the sequence
of pairwise quasiasymptotically independent r.v.s can cover the sequence of widely upper
orthant dependent/widely lower orthant dependent r.v.s (see Wang et al. [11]), extended
negatively dependent r.v.s (see Liu [26]), negatively upper orthant dependent/negatively
lower orthant dependent r.v.s (NUOD/NLOD, see Block et al. [27]), pairwise negatively
quadrant dependent r.v.s (NQD, see Lehmann [28]), and even it can cover some sequences
of positive dependent r.v.s.
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For statement convenience, we denote by Λ the set of all t such that 0 < λ(t) ≤ ∞. Let
t = inf{t : P(τ1 ≤ t) > 0}, it is clear that

Λ =

{[
t,∞], if P

(
τ1 = t

)
> 0;

(
t,∞], if P

(
τ1 = t

)
= 0.

(2.4)

Also we write ΛT = [0, T] ∩Λ for any finite T ∈ Λ.
Under the case that the claim sizes and/or interarrival times follow some dependence

structure, Li et al. [9] obtained a weakly asymptotic formula for the finite-time ruin
probability as follows.

Theorem 2.3. Consider the insurance risk model introduced in Section 1, in which the claim sizes are
pairwise NQD with common distribution F ∈ D such that J−F > 0, the interarrival times {θi, i ≥ 1}
are NLOD, and the premium process {C(t), t ≥ 0} is a deterministic linear function. If {Xi, i ≥ 1}
and {θi, i ≥ 1} are mutually independent, then, for every fixed t ∈ Λ,

LF

∫ t

0
F(xers)dλ(s) � ψr(x, t) � L−2

F

∫ t

0
F(xers)dλ(s). (2.5)

In addition, if {C(t), t ≥ 0} is a general stochastic process and {N(t), t ≥ 0} is a delayed
renewal counting process, Yang and Wang [10] also gave the formula (2.5) for ψr(x, t).

Following the second extension direction, Li et al. [18] have investigated the tail
behavior of discounted aggregate claims Dr(t) for the renewal risk model with X and θ
meeting the dependence structure defined by (1.6).

Theorem 2.4. Consider the discounted aggregate claims defined in (1.3) with r > 0, in which
{(Xi, θi), i ≥ 1} are i.i.d. random pairs, and relation (1.6) holds uniformly for all t ∈ Λ. If
F ∈ ERV(−α,−β) for some 0 < α ≤ β <∞, and inf0≤t≤t∗h(t) > 0 for some t∗ ∈ Λ, then

P(Dr(t) > x) ∼
∫ t

0
F(xers)dλ̃(s) (2.6)

holds uniformly for t ∈ Λ, where

λ̃(t) =
∞∑

i=1

P(τi−1 + θ∗ ≤ t). (2.7)

Inspired by the results of Theorems 2.3 and 2.4, in this paper we will further discuss
the following issues.

(1) For the structure assumptions on the claim sizes, we will study the more general
case of pairwise quasiasymptotically independence assumption.

(2) We will extend the mutual independence between the claim sizes and their inter-
times to a general dependence structure defined by relation (1.6).

(3) We will extend the condition F ∈ ERV of Theorem 2.4 to the conditions F ∈ D (or
F ∈ C).
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(4) We will cancel the condition that inf0≤t≤t∗h(t) > 0 for some t∗ ∈ Λ of Theorem 2.4.

(5) We do not confine this paper only to the case that r > 0, but discuss the case that
r ≥ 0.

(6) We will discuss the case when the premium process {C(t), t ≥ 0} is not necessarily
independent of {Xi, i ≥ 1} and {N(t), t ≥ 0}.

The following are the main results of this paper, among which the first two theorems
discuss the tail behavior of the discounted aggregate claims Dr(t) described by (1.3).

Theorem 2.5. Consider the discounted aggregate claims (1.3) described in Section 1 with r ≥ 0. If the
claim sizes {Xi, i ≥ 1} are pairwise quasiasymptotically independent r.v.s with common distribution
F ∈ D such that J−F > 0, and relation (1.6) holds uniformly for all t ∈ ΛT , then it holds uniformly for
all t ∈ ΛT that

∫ t

0
F(xers)dλ̃(s) � P(Dr(t) > x) � L−2

F

∫ t

0
F(xers)dλ̃(s). (2.8)

Additionally if F ∈ C, then relation (2.6) holds uniformly for all t ∈ ΛT .

The second theorem extends the set over which relations (2.6) and (2.8) hold uniformly
to the whole set Λ. It is well known that if r = 0, then Dr(t) → ∞ almost surely as t → ∞,
and hence it is not impossible to establish the uniformity of (2.6) and (2.8) for all t ∈ Λ. So we
assume that r > 0 in the following result.

Theorem 2.6. Consider the discounted aggregate claims (1.3) described in Section 1 with r > 0. If the
claim sizes {Xi, i ≥ 1} are pairwise quasiasymptotically independent r.v.s with common distribution
F ∈ D such that J−F > 0, and relation (1.6) holds uniformly for all t ∈ Λ, then relation (2.8) still holds
uniformly for all t ∈ Λ. Further assume that F ∈ C, then relation (2.6) still holds uniformly for all
t ∈ Λ.

In what follows, we will deal with the asymptotic behavior of the finite-time and
infinite-time ruin probabilities, where we will discuss two cases: one is that the premium
process {C(t), t ≥ 0} is independent of {Xi, i ≥ 1} and {N(t), t ≥ 0}, and the other is that
{C(t), t ≥ 0} is not necessarily independent of {Xi, i ≥ 1} or {N(t), t ≥ 0}. For later use, we
write the discounted value of premiums accumulated before time t as

C̃(t) =
∫ t

0
e−rsC(ds). (2.9)

Clearly, by the conditions on C(t), it holds that 0 ≤ C̃(t) < ∞ almost surely for any fixed
0 < t <∞.

Theorem 2.7. Consider the insurance risk model introduced in Section 1 with r ≥ 0. Under the
conditions of Theorem 2.5, it holds uniformly for t ∈ ΛT that

LF

∫ t

0
F(xers)dλ̃(s) � ψr(x, t) � L−2

F

∫ t

0
F(xers)dλ̃(s), (2.10)
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if either of the following conditions holds:

(1) the premium process {C(t), t ≥ 0} is independent of {Xi, i ≥ 1} and {N(t), t ≥ 0};
(2) the discounted value of premiums accumulated by time t satisfies that

P
(
C̃(t) > x

)
= o(1)F(x). (2.11)

Particularly, if F ∈ C, it holds uniformly for t ∈ ΛT that

ψr(x, t) ∼
∫ t

0
F(xers)dλ̃(s). (2.12)

Applying Theorem 2.7, we now propose a corollary for the case when r = 0.

Corollary 2.8. Consider the insurance risk model in Section 1 with r = 0; if the conditions of
Theorem 2.7 are valid, then it holds uniformly for all t ∈ ΛT that

LFF(x)λ̃(t) � ψ0(x, t) � L−2
F F(x)λ̃(t), (2.13)

κ−1LF

∫x+κλ̃(t)

x

F
(
y
)
dy � ψ0(x, t) � κ−1L−3

F

∫x+κλ̃(t)

x

F
(
y
)
dy, (2.14)

where κ is any positive number. Further assume that F ∈ C, and then

ψ0(x, t) ∼ F(x)λ̃(t) ∼ κ−1
∫x+κλ̃(t)

x

F
(
y
)
dy (2.15)

holds uniformly for all t ∈ ΛT .

Theorem 2.9. Consider the insurance risk model introduced with r > 0. Under the conditions of
Theorem 2.6, relation (2.10) holds uniformly for t ∈ Λ, if either of the following conditions holds:

(1) the premium process {C(t), t ≥ 0} is independent of {Xi, i ≥ 1} and {N(t), t ≥ 0};
(2) the total discounted amount of premiums satisfies the following:

0 ≤ C̃(∞) <∞ almost surely, P
(
C̃(∞) > x

)
= o(1)F(x). (2.16)

Particularly, if F ∈ C, then relation (2.12) still holds uniformly for t ∈ Λ.

According to the uniformity of ψr(x, t) for all t ∈ Λ in Theorem 2.9, we can immediately
derive the corresponding result on the infinite-time ruin probability ψr(x,∞).

Corollary 2.10. Under conditions of Theorem 2.9, one has

LF

∫∞

0
F(xers)dλ̃(s) � ψr(x,∞) � L−2

F

∫∞

0
F(xers)dλ̃(s). (2.17)



8 ISRN Probability and Statistics

If F ∈ C, then

ψr(x,∞) ∼
∫∞

0
F(xers)dλ̃(s). (2.18)

Remark 2.11. We would like to make some explanations of conditions F ∈ D with J−F > 0 in
the main results. Wang and Yang [22] proposed the following assertions.

(i) D = D1 ∪ D2 ∪ D3, where

D1 =
{
F on [0,∞) : F∗

(
y
)
= 1 ∀y > 1

}
,

D2 =
{
F on [0,∞) : 0 < F∗

(
y
)
< F

∗(
y
)
= 1 ∀y > 1

}
,

D3 =
{
F on [0,∞) : 0 < F∗

(
y
) ≤ F∗(

y
)
< 1 ∀y > 1

}
,

(2.19)

and D1, D2, and D3 are pairwise disjoint sets.

(ii) F ∈ D with J−F > 0 ⇔ F ∈ D3.

(iii) Denote that

D(−α,−β,A, B) =
{
F on [0,∞) : By−β ≤ F∗

(
y
) ≤ F∗(

y
) ≤ Ay−α ∀y > 1

}
, (2.20)

where 0 ≤ α ≤ β <∞, 0 < B ≤ 1 ≤ A <∞, and then

D =
⋃

0≤α≤β<∞,0<B≤1≤A<∞
D(−α,−β,A, B),

D3 =
⋃

0<α≤β<∞,0<B≤1≤A<∞
D(−α,−β,A, B).

(2.21)

In the particular case where A = B = 1, the class ERV ⊂ D3 and this inclusion are proper. For
example, the Peter and Paul distribution (see Example 1.4.2 in Embrechts et al. [20]) belongs
toD3, but it does not belong toL; thus, it does not belong to the class ERV.

Remark 2.12. By the expression of (2.7), one can easily see that λ̃(t) is exactly the mean
function of a delayed renewal process constituted by {θ∗, θi, i ≥ 2}.

Remark 2.13. The Lemma 3.3 below tells us that Xie
−rτi1{τi≤t} and Xje

−rτj1{τj≤t} are
quasiasymptotically independent for all t ∈ ΛT and every fixed i /= j ≥ 1 under the following
assumptions: the claim sizes {Xi, i ≥ 1} are pairwise quasiasymptotically independent with
common distribution F ∈ D, and their interarrival times {θi, i ≥ 1} are independent,
identically distributed and such that (1.6) holds uniformly for all t ∈ ΛT . Hence, the
dependence structures among claim sizes and that between claim size and its interarrival
time in the paper are technically feasible.
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Remark 2.14. In Theorems 2.7–2.9 and Corollaries 2.8–2.10, the independence between the
premium process and the claim process in condition 1 has been extensively considered by
Wang [1], Yang and Wang [10], Wang et al. [11], Liu et al. [12], and many others, while
condition 2, which does not require the independence between the premium process and the
claim process, allows for a more realistic case that the premium rate varies as a deterministic
or stochastic function of the insurer’s current reserve, as that considered by Petersen [29],
Michaud [30], Jasiulewicz [31], and Tang [5].

3. Some Lemmas

In order to prove the main results, we need the following lemmas, among which the first
lemma is a combination of Proposition 2.2.1 of Bingham et al. [19] and Lemma 3.5 of Tang
and Tsitsiashvili [32].

Lemma 3.1. For a distribution F on (−∞,∞), the following assertions hold:

(1) F ∈ D ⇔ LF > 0 ⇔ J+F <∞,

(2) If F ∈ D, then for any p1 < J−F and any p2 > J+F , there are positive numbers Ci and Di,
i = 1, 2, such that

F
(
y
)

F(x)
≥ C1

(
x

y

)p1
∀x ≥ y ≥ D1, (3.1)

F
(
y
)

F(x)
≤ C2

(
x

y

)p2
∀x ≥ y ≥ D2. (3.2)

Lemma 3.2. Consider the insurance risk model introduced in Section 1 with r ≥ 0 and F ∈ D, where
a generic pair (X, θ) is such that relation (1.6) holds uniformly for all t ∈ ΛT , and then

(1) the distribution of the Xie
−rτi1{τi≤t} belongs to the class D for every fixed i ≥ 1 and all

t ∈ ΛT ; moreover, if F ∈ C, then the distribution of the Xie
−rτi1{τi≤t} still belongs to the

class C for every fixed i ≥ 1 and all t ∈ ΛT ;

(2) for every fixed i ≥ 1 and all t ∈ ΛT , it holds that

F(x) 
 P(Xie
−rτi1{τi≤t} > x

)
. (3.3)

Proof. (1) If F ∈ D, then we have from (1.7) and Theorem 3.3(ii) of Cline and Samorodnitsky
[33] that, for all y > 0,

lim sup
x→∞

P
(
Xie

−rτi1{τi≤t} > xy
)

P
(
Xie−rτi1{τi≤t} > x

) = lim sup
x→∞

P
(
Xie

−r(τk−1+θ∗)1{τk−1+θ∗≤t} > xy
)

P
(
Xie−r(τk−1+θ

∗)1{τk−1+θ∗≤t} > x
) <∞ (3.4)

holds for every fixed i ≥ 1 and all t ∈ ΛT , which implies that the distribution of the
Xie

−rτi1{τi≤t} belongs to the class D for every fixed i ≥ 1 and all t ∈ ΛT . Moreover, if F ∈ C,



10 ISRN Probability and Statistics

then by (1.7) and Lemma 2.5 of Wang et al. [34], we derive that, for every fixed i ≥ 1 and all
t ∈ ΛT ,

lim
y↘1

lim inf
x→∞

P
(
Xie

−rτi1{τi≤t} > xy
)

P
(
Xie−rτi1{τi≤t} > x

) = lim
y↘1

lim inf
x→∞

P
(
Xie

−r(τk−1+θ∗)1{τk−1+θ∗≤t} > xy
)

P
(
Xie−r(τk−1+θ

∗)1{τk−1+θ∗≤t} > x
) = 1, (3.5)

which also implies that the distribution of the Xie
−rτi1{τi≤t} belongs to the class D for every

fixed i ≥ 1 and all t ∈ ΛT .
(2) By F ∈ D, (1.7) and Theorem 3.3(iv) of Cline and Samorodnitsky [33], we can

prove that (3.3) holds.

Lemma 3.3. Under the conditions of Theorem 2.5, if F ∈ D, then Xie
−rτi1{τi≤t} and Xje

−rτj1{τj≤t} are
still quasiasymptotically independent for all t ∈ ΛT and every fixed i /= j ≥ 1.

Proof. Without loss of generality, we assume that j > i ≥ 1. By conditioning on τi−1 and θi,
i ≥ 1, and using (1.6) and (1.7), it holds for all t ∈ ΛT that

P
(
Xie

−rτi1{τi≤t} > x,Xje
−rτj1{τj≤t} > x

)

=
∫ t

0

∫ t−v

0
P
(
Xie

−r(u+v) > x,Xje
−r(u+v+θi+1+···+θj )1{θi+1+···+θj≤t−(u+v)} > x | τi−1 = u, θi = v

)

× P(τi−1 ∈ du)G(dv)

=
∫ t

0

∫ t−v

0
P
(
Xie

−r(u+v) > x | θi = v
)

× P
(
Xje

−r(u+v+θi+1+···+θj )1{θi+1+···+θj≤t−(u+v)} > x | Xie
−r(u+v) > x

)
P(τi−1 ∈ du)G(dv)

∼
∫ t

0

∫ t−v

0
P
(
Xie

−r(u+v) > x,Xje
−r(u+v+θi+1+···+θj )1{θi+1+···+θj≤t−(u+v)} > x

)

× P(τi−1 ∈ du)P(θ∗ ∈ dv)

= P
(
Xie

−r(τi−1+θ∗)1{τi−1+θ∗≤t} > x,Xje
−r(τj−1+θ∗)1{τi−1+θ∗≤t} > x

)
.

(3.6)

DenoteWi = e−r(τi−1+θ
∗)1{τi−1+θ∗≤t} andWj = e−r(τj−1+θ

∗)1{τj−1+θ∗≤t}, which are clearly independent
of (Xi,Xj). Thus, by (2.2) and (1.7), we will complete this proof if we can show that

P
(
WiXi > x,WjXj > x

)
= o(1)

(
P(WiXi > x) + P

(
WjXj > x

))
for i /= j ≥ 1. (3.7)
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Let Hi and Hj be the distributions of Wi and Wj , respectively, and H(s, t) be the joint
distribution ofWi andWj , then we see that

P
(
WiXi > x,WjXj > x

)

≤
∫ ∫

{0<s≤t≤1}
P
(
Xi >

x

t
,Xj >

x

t

)
dG(s, t) +

∫ ∫

0<t<s≤1
P

(

Xi >
x

s
,Xj >

x

s

)

dG(s, t)

= A1(x) +A2(x).

(3.8)

For A1(x), by (2.2), it follows that

A1(x) ≤
∫1

0
P
(
Xi >

x

t
,Xj >

x

t

)
dH2(t)

≤ (P(Xi > x) + P
(
Xj > x

))
∫1

0

P
(
Xi > (x/t), Xj > (x/t)

)

P(Xi > (x/t)) + P
(
Xj > (x/t)

)dH2(t)

= o(1)
(
P(Xi > x) + P

(
Xj > x

))
.

(3.9)

Then, by Theorem 3.3(iv) of Cline and Samorodnitsky [33], we have

A1(x) = o(1)
(
P(Xi > x) + P

(
Xj > x

))

= o(1)
(
P(WiXi > x) + P

(
WjXj > x

))
for i /= j ≥ 1.

(3.10)

Similarly, we also have

A2(x) = o(1)
(
P(WiXi > x) + P

(
WjXj > x

))
for i /= j ≥ 1. (3.11)

Therefore, we attain (3.7), and then we complete the proof.

Lemma 3.4. If the claim sizes {Xi, i ≥ 1} are pairwise quasiasymptotically independent r.v.s with
common distribution F ∈ D, and relation (1.6) holds uniformly for all t ∈ ΛT , and then, for r ≥ 0 and
for every fixed n ≥ 1, it holds uniformly for all t ∈ ΛT that

n∑

i=1

P
(
Xie

−rτi1{τi≤t} > x
)

� P

(
n∑

i=1

Xie
−rτi1{τi≤t} > x

)

� L−1
F

n∑

i=1

P
(
Xie

−rτi1{τi≤t} > x
)
. (3.12)

Additionally, if F ∈ C, then it holds uniformly for all t ∈ ΛT that

P

(
n∑

i=1

Xie
−rτi1{τi≤t} > x

)

∼
n∑

i=1

P
(
Xie

−rτi1{τi≤t} > x
)
. (3.13)
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Proof. Clearly, for every fixed n ≥ 1 and all t ∈ ΛT , we have

P

(
n∑

i=1

Xie
−rτi1{τi≤t} > x

)

≥
n∑

i=1

P
(
Xie

−rτi1{τi≤t} > x
)

−
∑

1≤i /= j≤n
P
(
Xie

−rτi1{τi≤t} > x,Xje
−rτj1{τj≤t} > x

)

=
n∑

i=1

P
(
Xie

−rτi1{τi≤t} > x
) −A3.

(3.14)

Form Lemma 3.3, we see that

lim sup
x→∞

A3
∑n

i=1 P
(
Xie−rτi1{τi≤t} > x

)

≤ lim sup
x→∞

∑

1≤i /= j≤n

P
(
Xie

−rτi1{τi≤t} > x,Xje
−rτj1{τj≤t} > x

)

P
(
Xie−rτi1{τi≤t} > x

)
+ P
(
Xje

−rτj1{τj≤t} > x
)

= 0,

(3.15)

which, along with (3.14), leads to

P

(
n∑

i=1

Xie
−rτi1{τi≤t} > x

)

�
n∑

i=1

P
(
Xie

−rτi1{τi≤t} > x
)

(3.16)

that holds uniformly for all t ∈ ΛT . On the other hand, we have that, for any fixed 0 < v < 1,

P

(
n∑

i=1

Xie
−rτi1{τi≥t} > x

)

≤ P

(
n⋃

i=1

(
Xie

−rτi1{τi≤t} > vx
)
)

+ P

(
n∑

i=1

Xie
−rτi1{τi≤t} > x,

n⋂

i=1

(
Xie

−rτi1{τi≤t} ≤ vx
)
)

= A4 +A5.

(3.17)
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For A4, it follows from F ∈ D that for any fixed ε > 0, there exists a x1 > 0 such that, for all
x ≥ x1 and all t ∈ ΛT , we have

A4 ≤
n∑

i=1

P
(
Xie

−rτi1{τi≤t} > vx
)

∼
n∑

i=1

P
(
Xie

−r(τi−1+θ∗)1{τi−1+θ∗≤t} > vx
)

=
n∑

i=1

∫ t

0
F(vxers)P(τi−1 + θ∗ ∈ ds)

≤ (1 + ε)
(
F∗
(
v−1
))−1 n∑

i=1

∫ t

0
F(xers)P(τi−1 + θ∗ ∈ ds)

= (1 + ε)
(
F∗
(
v−1
))−1 n∑

i=1

P
(
Xie

−r(τi−1+θ∗)1{τi−1+θ∗≤t} > x
)

∼ (1 + ε)
(
F∗
(
v−1
))−1 n∑

i=1

P
(
Xie

−rτi1{τi≤t} > x
)
.

(3.18)

Hence, we can derive by the arbitrariness of ε > 0 and 0 < v < 1 that

A4 � L−1
F

n∑

i=1

P
(
Xie

−rτi1{τi≤t} > x
)

(3.19)

holds uniformly for all t ∈ ΛT , where L−1
F is of sense from Lemma 3.1(1). For A5, it holds

uniformly for all t ∈ ΛT that

A5 = P

(
n∑

i=1

Xie
−rτi1{τi≤t} > x,

x

n
< max

1≤k≤n
Xke

−rτk1{τk≤t} ≤ vx
)

≤
n∑

k=1

P

⎛

⎝
n∑

i=1,i /= k

Xie
−rτi1{τi≤t} > (1 − v)x,Xke

−rτk1{τk≤t} >
x

n

⎞

⎠

≤
n∑

k=1

n∑

i=1,i /= k

P

(

Xie
−rτi1{τi≤t} >

(1 − v)x
n

,Xke
−rτk1{τk≤t} >

(1 − v)x
n

)

= o(1)
n∑

i=1

n∑

i=1,i /= k

(

P

(

Xie
−rτi1{τi≤t} >

(1 − v)x
n

)

+ P
(

Xke
−rτk1{τk≤t} >

(1 − v)x
n

))

= o(1)
n∑

i=1

P
(
Xie

−rτi1{τi≤t} > x
)
,

(3.20)
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where in the second last step we used Lemma 3.3, and in the last step we used F ∈ D and
Lemma 3.2(1). Hence, substituting (3.19) and (3.20) into (3.17), it holds uniformly for all
t ∈ ΛT that

P

(
n∑

i=1

Xie
−rτi1{τi≥t} > x

)

� L−1
F

n∑

i=1

P
(
Xie

−rτi1{τi≤t} > x
)
. (3.21)

This, along with (3.16), proves the uniformity of (3.12) for all t ∈ ΛT .
Additionally, if F ∈ C, then LF = 1, and thus we get the uniformity of (3.13) by (3.12).

Lemma 3.5. Under the conditions of Theorem 2.6, relation (2.8) holds for every fixed t ∈ Λ.
Additionally, if F ∈ C, then relation (2.6) holds for every fixed t ∈ Λ.

Proof. Clearly, for every integer i ≥ 2 and every fixed t ∈ Λ, Xie
−rτi1{τi≤t} ≤ Xie

−rτi−1 , where Xi

and e−rτi−1 are independent, note that, for any n ≥ 1 and all t ∈ ΛT ,

P

( ∞∑

i=n+1

Xie
−rτi1{τi≤t} > x

)

≤ P

( ∞∑

i=n+1

Xie
−rτi−1 > x

)

= P

( ∞⋃

i=n+1

(
Xie

−rτi−1 > x
)
)

+ P

( ∞∑

i=n+1

Xie
−rτi−1 > x,

∞⋂

i=n+1

(
Xie

−rτi−1 ≤ x)
)

≤
∞∑

i=n+1

P
(
Xie

−rτi−1 > x
)

+ P

( ∞∑

i=n+1

Xie
−rτi−11{Xie

−rτi−1≤x} > x

)

= A6 +A7.

(3.22)

For A6, it follows by (3.1) that, for all x ≥ D1,

A6 =
∞∑

i=n+1

∫1

0
F

(
x

y

)

dP
(
e−rτi−1 ≤ y) ≤ C−1

1 F(x)
∞∑

i=n

(
Ee−rp1τ1

)i
. (3.23)

Then for any given ε > 0, there exists some positive integer n0 such that for all n ≥ n0,

A6 ≤ εF(x). (3.24)
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For A7, by Markov’s inequality, we obtain that, for some p2 > J+F ,

A7 ≤ x−p2E

( ∞∑

i=n+1

Xie
−rτi−11{Xie

−rτi−1≤x}

)p2

. (3.25)

On the one hand when 0 < J+F < 1, applying the inequality |a + b|r ≤ |a|r + |b|r for 0 < r < 1
and any number a, b, we have

A7 ≤ x−p2
∞∑

i=n+1

E
(
Xie

−rτi−1)p21{Xie
−rτi−1≤x}

= x−p2
∞∑

i=n+1

∫∞

0

∫xers

0
yp2e−rsp2dF

(
y
)
dP(τi−1 ≤ s)

≤ x−p2
∞∑

i=n+1

∫∞

0

∫xers

0
p2e

−rsp2yp2−1F
(
y
)
dy dP(τi−1 ≤ s).

(3.26)

If xers < D2, then

∫xers

0
p2e

−rsp2yp2−1F
(
y
)
dy ≤ xp2 ≤ xp2 F(xe

rs)

F(D2)
. (3.27)

If xers ≥ D2, then by (3.2) we get that

∫xers

0
p2e

−rsp2yp2−1F
(
y
)
dy =

(∫D2

0
+
∫xers

D2

)

p2e
−rsp2yp2−1F

(
y
)
dy

≤ C2

F(D2)
xp2F(xers) + C2

∫xers

D2

p2x
p2F(xers)y−1dy

≤
(

C2

F(D2)
+ C2p2 ln

(
xers

D2

))

xp2F(xers).

(3.28)

Hence, combining (3.27) and (3.28) and letting C = max{1/F(D2), C2/F(D2) +
C2p2 ln(xert/D2)} can show that

∫xers

0
p2e

−rsp2yp2−1F
(
y
)
dy ≤ Cxp2F(xers). (3.29)

Substituting (3.29) into (3.26) and by (3.24), we deduce that, for all n ≥ n0,

A7 ≤ C
∞∑

i=n+1

P
(
Xie

−rτi−1 > x
) ≤ εF(x). (3.30)
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On the other hand when J+F > 1, by Minkowski’s inequality and along with the similar lines
of the proof of the case when 0 < J+F < 1, we also attain that, for some constant C > 0,

A7 ≤ x−p2
( ∞∑

i=n+1

(
E
(
Xie

−rτi−1)p21{Xie−rτi≤x}
)(1/p2)

)p2

≤ C

( ∞∑

i=n+1

(
P
(
Xie

−rτi−1 > x
))(1/p2)

)p2

≤ C

⎛

⎝
∞∑

i=n+1

(∫1

0
F

(
x

y

)

dP
(
e−rτi−1 ≤ y)

)(1/p2)
⎞

⎠

p2

≤ C

( ∞∑

i=n

(
C−1

1 F(x)
(
Ee−rp1τ1

)i
)(1/p2)

)p2

≤ CC−1
1 F(x)

( ∞∑

i=n

(
Ee−rτ1p1

)(i/p2)
)p2

,

(3.31)

where in the second last step we used (3.1). Therefore, for all n ≥ n0, it still holds that

A7 ≤ εF(x). (3.32)

Consequently, from (3.22), (3.24), (3.30), and (3.32), we prove that, for some positive integer
n0 and every fixed t ∈ Λ,

P

( ∞∑

i=n0+1

Xie
−rτi1{τi≤t} > x

)

≤ εF(x), (3.33)

∞∑

i=n0+1

P
(
Xie

−rτi1{τi≤t} > x
) ≤

∞∑

i=n0+1

P
(
Xie

−rτi−1 > x
) ≤ εF(x). (3.34)

Let n0 be fixed as above. Applying (3.12) in Lemma 3.4, (3.34), and Lemma 3.2 (2) in
turn, we find that, for every fixed t ∈ Λ,

P(Dr(t) > x) ≥ P

(
n0∑

i=1

Xie
−rτi1{τi≤t} > x

)

∼
( ∞∑

i=1

−
∞∑

i=n0+1

)

P
(
Xie

−rτi1{τi≤t} > x
)

≥ (1 − ε)
∞∑

i=1

P
(
Xie

−rτi1{τi≤t} > x
)
,

(3.35)
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which, along with (1.7) and (2.7), proves that for every fixed t ∈ Λ,

P(Dr(t) > x) � (1 − ε)
∫ t

0
F(xers)dλ̃(t). (3.36)

By contrast, for n0 as above and any fixed 0 < v < 1, we obtain from (3.12) and (3.33) that, for
every fixed t ∈ Λ,

P(Dr(t) > x) ≤ P

(
n0∑

i=1

Xie
−rτi1{τi≤t} > (1 − v)x

)

+ P

( ∞∑

i=n0+1

Xie
−rτi1{τi≤t} > vx

)

� L−1
F

n0∑

i=1

P
(
Xie

−rτi1{τi≤t} > (1 − v)x) + εF(vx)

= A8 +A9.

(3.37)

For A8, arguing as the proof of (3.19) leads to

A8 � L−2
F

∞∑

i=1

P
(
Xie

−rτi1{τi≤t} > x
)
. (3.38)

For A9, by Lemmas 3.2 (2) and 3.2 (1) successively, we have

A9 = εP
(
X1e

−rτ11{τ1≤t} > x
)
. (3.39)

From (3.37) to (3.39) and by the arbitrariness of ε > 0, we obtain that, for every fixed t ∈ Λ,

P(Dr(t) > x) � L−2
F

∞∑

i=1

P
(
Xie

−rτi1{τi≤t} > x
)

= L−2
F

∫ t

0
F(xers)dλ̃(t),

(3.40)

where in the last step we used (1.7) and (2.7) again. Hence, combining (3.36) and (3.40) can
yield that relation (2.8) holds for every fixed t ∈ Λ.

Additionally, if F ∈ C, then LF = 1, and so we attain by (2.8) that relation (2.6) holds
for every fixed t ∈ Λ.

4. Proofs of Main Results

Proof of Theorem 2.5. From the proof of Lemma 3.5, we can see that the relations (3.33)–(3.40)
still hold uniformly for all t ∈ ΛT , and then we get the uniformity of (2.8) for all t ∈ ΛT

immediately. As F ∈ C, the uniformity of (2.6) over all t ∈ ΛT is clear.
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Proof of Theorem 2.6. According to the proof of Lemma 4.2 of Hao and Tang [7] (or see the
proof of (4.3) of Tang [6]), we know that, for an arbitrarily fixed ε > 0, there exists some
T0 ∈ Λ such that

∫∞

T0

F(xers)dλ̃(s) ≤ ε
∫T0

0
F(xers)dλ̃(s). (4.1)

Combining with Theorem 2.5, it suffices to prove that relation (2.8) holds uniformly for all
t ∈ (T0,∞]. On the one hand, by Lemma 3.5 with t = T0 and (4.1), it holds uniformly for all
t ∈ (T0,∞] that

P(Dr(t) > x) ≥ P(Dr(T0) > x)

�
∫T0

0
F(xers)dλ̃(s)

≥
(∫ t

0
−
∫∞

T0

)

F(xers)dλ̃(s)

≥ (1 − ε)
∫ t

0
F(xers)dλ̃(s).

(4.2)

On the other hand, by Lemma 3.5 and (4.1), it holds uniformly for all t ∈ (T0,∞] that

P(Dr(t) > x) � L−2
F

∫∞

0
F(xers)dλ̃(s)

≤ L−2
F

(∫ t

0
+
∫∞

T0

)

F(xers)dλ̃(s)

≤ (1 + ε)L−2
F

∫ t

0
F(xers)dλ̃(s).

(4.3)

By relations (4.2), (4.3), and the arbitrariness of ε > 0, we get the uniformity of relation (2.8)
for all t ∈ (T0,∞].

As F ∈ C, we have LF = 1, and hence relation (2.6) holds uniformly for all t ∈ Λ.

Proof of Theorem 2.7. Recalling the insurer’s surplus process (1.2), we can attain its discounted
value as

Ũr(t) = e−rtUr(t) = x + C̃(t) −D(t), t ≥ 0. (4.4)
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Following the definition (1.4) of the finite-time ruin probability, we have

ψr(x, t) = P
(
Ũr(s) < 0 for some 0 < s ≤ t

)

= P

(

sup
0<s≤t

{
Dr(s) − C̃(s)

}
> x

)

.

(4.5)

Then, it follows that

ψr(x, t) ≤ P(Dr(t) > x), (4.6)

ψr(x, t) = P

(
⋃

0<s≤t

{
Dr(s) − C̃(s)

}
> x

)

≥ P
(
Dr(t) > x + C̃(t)

)
.

(4.7)

By Theorem 2.5 and (4.6), it holds uniformly for all t ∈ ΛT that

ψr(x, t) � L−2
F

∫ t

0
F(xers)dλ̃(s). (4.8)

In the following, we establish the uniform asymptotic lower bound of ψr(x, t) for all t ∈ ΛT .
Under the condition 1 of Theorem 2.7, we deduce from (4.7), Theorem 2.5, and F ∈ D that,
for any fixed 0 < w < 1 and any given ε > 0, there exists some x2 > 0 such that for all x ≥ x2
and uniformly for all t ∈ ΛT ,

ψr(x, t) ≥ P
(
Dr(t) > x + C̃(T)

)
=
∫∞

0
P
(
Dr(t) > x + y

)
P
(
C̃(T) ∈ dy

)

�
∫∞

0

∫ t

0
F
((
x + y

)
ers
)
dλ̃(s)P

(
C̃(T) ∈ dy

)

≥
∫∞

0

∫ t

0
F((1 +w)xers)dλ̃(s)P

(
C̃(T) ∈ dy

)

≥ (1 − ε)F∗(1 +w)
∫ t

0
F(xers)dλ̃(s),

(4.9)

which, along with the arbitrariness of ε > 0 and 0 < w < 1, can give that, uniformly for all
t ∈ ΛT ,

ψr(x, t) � LF

∫ t

0
F(xers)dλ̃(s). (4.10)
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Under the condition 2 of Theorem 2.7, it holds from (4.7) that, for any fixed 0 < δ < 1 and all
t ∈ ΛT ,

ψr(x, t) ≥ P(Dr(t) > (1 + δ)x) − P
(
C̃(T) > δx

)
= I1 − I2. (4.11)

For I1, using Theorem 2.5 and F ∈ D, there exists some x3 > 0 such that for all x ≥ x3 and
uniformly for all t ∈ ΛT ,

I1 �
∫ t

0
F((1 + δ)xers)dλ̃(s)

≥ (1 − ε)F∗(1 + δ)
∫ t

0
F(xers)dλ̃(s).

(4.12)

For I2, by the condition 2 of Theorem 2.7 and F ∈ D, we have

lim sup
x→∞

I2

F(x)
= lim sup

x→∞

I2

F(δx)
· F(δx)
F(x)

= 0. (4.13)

When t ∈ Λ, by (4.13) and (3.2) in Lemma 3.1, there exists some x4 > 0 such that for all
x ≥ max{D2, x4} and uniformly for all t ∈ ΛT ,

I2 ≤ εF(x) ≤ Cε
∫ t

0
F(xers)dλ̃(s) ≤ Cε

∫ t

0
F(xers)dλ̃(s), (4.14)

where C = C2e
rp2t/λ̃(t). When t /∈ Λ, choose some 0 < σ < 1 such that t + σ ≤ t, again by

(4.13), (3.2), and arguing as (4.14), there exists some x′
4 > 0 such that for all x ≥ max{D2, x

′
4}

and uniformly for all t ∈ ΛT ,

I2 ≤ εF(x) ≤ C′ε
∫ t+σ

0
F(xers)dλ̃(s) ≤ C′ε

∫ t

0
F(xers)dλ̃(s), (4.15)

where C′ = C2e
rp2(t+σ)/λ̃(t + σ). Hence, from (4.11) to (4.15) and by the the arbitrariness of

ε > 0 and 0 < δ < 1, we still obtain the uniformity of (4.10) for all t ∈ ΛT . This ends the proof
for the uniformity of (2.10) over all t ∈ ΛT .

If F ∈ C, then LF = 1. Therefore, we conclude from (2.10) that relation (2.12) uniformly
holds for all t ∈ ΛT .

Proof of Corollary 2.8. Clearly, by Theorem 2.7, we know that relation (2.13) holds uniformly
for all t ∈ ΛT . Note that for all finite t ∈ Λ,

λ̃(t)F
(
x + κλ̃(t)

)
≤ κ−1

∫x+κλ̃(t)

x

F
(
y
)
dy ≤ λ̃(t)F(x). (4.16)
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By F ∈ D, it follows that, for any given ε > 0 and any fixed 0 < α < 1, there exists some x5 > 0
such that for all x ≥ x5 and uniformly for all t ∈ ΛT ,

λ̃(t)F
(
x + κλ̃(t)

)
≥ λ̃(t)F

(
x + κλ̃(T)

)

≥ λ̃(t)F((1 + α)x)

≥ (1 − ε)F∗(1 + α)λ̃(t)F(x),

(4.17)

which, along with the arbitrariness of ε > 0 and 0 < α < 1, yields that

λ̃(t)F
(
x + κλ̃(t)

)
� LFλ̃(t)F(x) (4.18)

holds uniformly for all t ∈ ΛT . Thus, we obtain from (4.16) and (4.18) that, uniformly for all
t ∈ ΛT ,

LFλ̃(t)F(x) � κ−1
∫x+κλ̃(t)

x

F
(
y
)
dy � λ̃(t)F(x). (4.19)

So, combining (2.13) and (4.19) leads to the uniformity of (2.14) for all t ∈ ΛT .
If F ∈ C, then LF = 1, and hence the uniformity of (2.15) for all t ∈ ΛT is proved

immediately.

Proof of Theorem 2.9. Applying (4.6) and Theorem 2.6, relation (4.8) still holds uniformly for
all t ∈ Λ. On the other hand, by Theorem 2.7, we also attain that relation (4.10) holds
uniformly for all t ∈ ΛT under conditions 1 and 2 of Theorem 2.9. Hence, we only need
to show the uniformity of (4.10) for all t ∈ (T,∞]. Under the condition 1 of Theorem 2.9,
similarly to the proof of (4.9), we prove that, uniformly for all t ∈ (T,∞],

ψr(x, t) ≥ P
(
Dr(T) > x + C̃

)

=
∫∞

0
P
(
Dr(T) > x + y

)
P
(
C̃ ∈ dy

)

�
∫∞

0

∫T

0
F
((
x + y

)
ers
)
dλ̃(s)P

(
C̃ ∈ dy

)

≥
∫∞

0

∫T

0
F((1 +w)xers)dλ̃(s)P

(
C̃ ∈ dy

)

≥ (1 − ε)F∗(1 +w)
∫T

0
F(xers)dλ̃(s)

≥ (1 − 2ε)F∗(1 +w)
∫ t

0
F(xers)dλ̃(s),

(4.20)
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where the last step is due to (4.1). Because ε > 0 and 0 < w < 1 are arbitrary, the relation
(4.10) holds uniformly for all t ∈ (T,∞].

Under the condition 2 of Theorem 2.9, we derive from (4.7) that, for the fixed 0 < δ < 1
as above and all t ∈ (T,∞],

ψr(x, t) ≥ P
(
Dr(T) > x + C̃

)

≥ P(Dr(T) > (1 + δ)x) − P
(
C̃ > δx

)

= I3 − I4.

(4.21)

For I3, by Theorem 2.6 with t = T and the similar proof of (4.12), it holds uniformly for all
t ∈ (T,∞] that

I3 ∼
∫T

0
F((1 + δ)xers)dλ̃(s)

≥ (1 − ε)F∗(1 + δ)
∫T

0
F(xers)dλ̃(s)

≥ (1 − 2ε)F∗(1 + δ)
∫ t

0
F(xers)dλ̃(s),

(4.22)

where the last step is also due to (4.1). For I4, by condition 2 of Theorem 2.9 and F ∈ D, we
get that, for all t ∈ (T,∞],

lim sup
x→∞

I4
∫ t
0 F(xe

rs)dλ̃(s)
≤ lim sup

x→∞

I4
∫T
0 F(xe

rs)dλ̃(s)

≤ lim sup
x→∞

I4

F(δx)
· F(δx)

F
(
xerT

)
λ̃(T)

= 0,

(4.23)

which implies that, for all t ∈ (T,∞] and all large x,

I4 ≤ ε
∫ t

0
F(xers)dλ̃(s). (4.24)

Consequently, using (4.21)–(4.24) and by the arbitrariness of ε > 0 and 0 < δ < 1, we can
obtain the uniformity of (4.10) for all t ∈ (T,∞], and then we prove the uniformity of (2.10)
over all t ∈ Λ.

From F ∈ C and (2.10), it is easy that relation (2.12) holds uniformly for all t ∈ ΛT .
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