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1 Introduction
The purpose of life insurance is to relieve individuals of economic risk asso-
ciated with accidents, sickness etc. . . . The insurer covers the risk against a
fixed, risk-free premium. It works because in a sufficiently large portfolio of
independent risks, the gains and losses on the individuals will balance on av-
erage and the premium is set according to principle of equivalence: expected
discounted premium are equal to expected discounted benefits.

However, a presence of collective risk factors that effect all policies in the
portfolio, the indepence assumption may hold true conditionally, given the
outcome of these factors, but unconditionally the individual risks become
dependent. Examples:

• catastrophes

• uncertain economic development

• demographic development

Increasing the size of the portfolio exacerbates rather the mitigates such fors
of risk. How to manage the risk?

1. Internal risk management - design of individual contracts. Two cases:
with-profit insurance, where the premium as set sufficiently high to be
adequate under all likely economic-demographic scenarios, and system-
atic surpluses are redistributed to the policy-holders in arrears. Index-
linked insurance, where contractual payments depend, not only on the
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individual life events, but also on interest and mortality. Ideally equiv-
alence is attained under any economic-demographic scenario.

2. Reinsurance. Today they cover short term catastophes, but they do
not offer coverage of long term economic-demographic risk.

3. Securitization, tradeable derivative securities of with payoffs depending
on indices related to collective risk factors. This open hedging oppor-
tunities for insurers. For 15 years catastophic derivaties with pay-offs
linked to indices for natural catastrophes are traded. In 2003 Swiss Re
issued a USD 250m 4 year mortality bond with coupons following a sur-
vival function based on population statistics. A 25 year bond was also
launched with interest related to the mortality experience in pensions
but it was no success.

Three problem with securitization.

1. The contractual liabilities of an insurer cannot be transferred to a third
party that is not supervised by the insurance regulator.

2. Pension contracts are exceedingly longterm and any prediction of in-
terest and mortality is highly uncertain.

3. A mortality derivative must be based on a mortality index that can be
equally understood by market agents and the insurer.

Ragnar Norberg presented some different models under which he derived the
prospected reserves (or the future liability the insurer has to the insured).

2 Life is a process
Let the state of life at time t ∈ [0, T ] be

Z(t) ∈ Z = {0, 1, 2, . . . , J}, Z(0) = 0.

Introduce the indicator processes

Ig(t) = 1[Z(t) = g],

and the counting process

Ngh(t) = #{τ ; Z(τ−) = g, Z(τ) = h, τ ∈ (0, t)}
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(Ngh is the number of jumps from state g to h in the timeinterval (0, t]). We
will assumpe that Z is a Markov process and thus have transition probabili-
ties

pj,k(t, u) = P[Z(u) = k|Z(t) = j]

and intensities
µjk(t) = lim

h↓0

pjk(t, t + h)

h
.

The compensated counting processes are square integrable orthogonal mar-
tingales:

dMgh(t) = dNgh(t)− Ig(t)µgh(t)dt,

with expectation zero
E[dMgh(t)|Ft−] = 0

and covariance

E[dMgh(t)dMjk(t)|Ft−] = δgh,jkIg(t)µgh(t)dt,

where δ is the Krockner-delta.

2.1 Two states {
0, alive
1, dead

The ”usual” survival probability: p00(t, u) = e−
∫ u

t µdt.

2.2 Multiple decrement model{
0, alive
j, dead cause j, j = 1, 2, . . . , J

Total mortality intensity

µ(t) =
J∑

j=1

µj(t).

Probabiliy of death from cause j:

p0j(t, u) =

∫ u

t

e−
∫ τ

t µ︸ ︷︷ ︸
(i)

µj(τ) dτ.

(i) probability of being alive at time τ .
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2.3 Disability model

Three types of states: active, disabled, dead, where ”dead” is the only absorb-
ing state, in particular one can go from invalid to active with some intensity.

There is no closed form for this system, but one has to use Kolomogorov
forward equation

∂

∂t
pij(t) =

∑
g;g 6=j

pig(s, t)µgj(t)− pij(s, t)
∑
g;g 6=j

µjg(t),

or Kolmogorov backward differential equation

∂

∂t
pjk(t, u) = −

∑
g;g 6=j

µjg(t)pgk(t, u) +
∑
g;g 6=j

µjg(t)pjk(t, u),

both equipeed with zero-transition pjk(u, u) = δjk.
The idea is to look at a population and estimate the transitions and then

solve the differential equation numerically. Lax-Wendroff?

3 Insurance in Life
Consider individual multi-state policy issued at time 0 expiring at time T .
B(t) is total payment of benefits less premiums in [0, T ].

dB(t) =
∑

j

Ij(t)dBj(t) +
∑
j 6=k

bjk(t)dNjk(t),

where Bj is a general life annuity running during sojourns in state j and bjk

is a sum assured payable upon transition from state j to state k. The annuity
decomposes into a continuous part and a jump part:

dBj(t) = bj(t) dt + ∆Bj(t).

The life history is represeted as a filtration

H = {Ht}t≥0;Ht = σ{Z(τ); 0 ≤ τ ≤ t}.

Suppose payments are currently invested/withdrawn from an account that
bears interest at deterministic rate r(t) at any time t. The reserv (the sum
of future discounted liabilities) is

VH(t) = E
[∫ T

t

e−
∫ τ

t rdB(τ)
∣∣∣Ht

]
4



which in the Markov case reduces to

VZ(t)(t) = E
[∫ T

t

e−
∫ τ

t rdB(τ)
∣∣∣Zt

]
.

Thus, we need only the state-wise prospective reserves

Vj(t) = E
[∫ T

t

e−
∫ τ

t rdB(τ)
∣∣∣Z(t) = j

]
=

=

∫ T

t

e−
∫ τ

t r
∑

g

pjg(t, τ)

(
dB(τ) +

∑
h;h 6=g

bgh(τ)µgh(τ) dτ

)
.

The integralexpression is simple: it is the sum of all expected discounted
future payments. It is one part from going to state j to state g, and a second
part for continuing to another state h, i.e. j → g → h when lumpsum bgh(τ)
is paid.

Differentiating this we get

dVj(t)

dt
= −e−

∫ t
t

∑
g

pjg(t, t)

(
bj(t) +

∑
h;h 6=g

bgh(t)µgh(t)

)
+ r(t)Vj(t)+

+

∫ T

t

e−
∫ τ

t r(s) ds
∑

g

(
−
∑
k;k 6=j

µjk(t)(pgk(t, τ)− pj,g(t, τ))

)(
bj dt +

∑
h;h 6=g

bgh(τ)µgh(τ) dτ

)
=

= −

(
bj(t) +

∑
k;k 6=j

bjk(t)µjk(t)

)
+ r(t)Vj(t)+

+

∫ T

t

e−
∫ τ

t r(s) ds
∑

g

−(
∑
k;k 6=j

µjk(t) (pgk(t, τ)− pj,g(t, τ)))

(
bj dt +

∑
h;h 6=g

bgh(τ)µgh(τ) dτ

)
=

= r(t)Vj(t)− bj(t)−
∑
k 6=j

µjk(t)

(
bjk(t) +

∫ T

t

e−
∫ τ

t r(s) ds
∑

g

(pgk(t, τ)− pjk(t, τ))

)(
. . .
)

=

= r(t)Vj(t)− bj(t)−
∑
k;k 6=j

µjk(t)Rjk(t),

where
Rjk(t) = bjk(t) + Vk(t)− Vj(t)

′′sum at risk′′.
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Thus the differential equation is

V ′(t) = r(t)Vj(t)− bj(t)−
∑
k;k 6=j

µjk(t)Rjk(t)

which is Thieles differential equation.

3.1 The principle of equivalence

The principle state that the discounted benefits and the discounted premiums
should balance on average

E[e−
∫ τ
0 r(s) ds dB(τ)] = 0.

Recall that dB(t) is the change in annuity

dB(t) =
∑

j

Ij(t)dBj(t) +
∑
j 6=k

bjkdNjk(t).

Spelled out in integral form the principle of equivalence is∫
0−

e−
∫ τ
0 r(s)ds

∑
g

p0g(0, τ)

(
dBg(τ) +

∑
h;h 6=g

bgh(τ)µgh(τ) dτ

)
= 0.

In terms of the reserv it reads

∆B0(0) + V0(0) = 0.

Thus if no initial payments are made then V (0) = 0.

3.2 Semi-Markov model and path-dependent payments

Norberg now makes the model more general, i.e. by letting the transition
intensities (”death intensities”) depend on the state duration S(t) (which is
time elapsed since entry in the current state). For instance if we make a
model from being ill and be able to work probably those that have been ill
for 5 years has less probability to recover then those who has been ill just a
week. The model has the folloing setup

µjk(t, S(t)), intensity of transition
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bj(t, S(t)), rate of annuity payment

bjk(t, S(t−)), sum assured

∆Bj(S(T )), terminal endowment

(I think of T as fixed and non-stochastic). Vjs, t reserve in state jat polivcy
duration t and state duration S(t) = s. Taking the conditional expected
value of what happens in a small time interval (t, t + dt), gives

Vj(s, t) = (1− µj·dt)︸ ︷︷ ︸
stay in j

(
bj(s, t)dt + e−r(t)dtVj(s + dt, t + dt)

)
+

+
∑
k;k 6=j

µjk(s, t) dt(bjk(s, t) + Vk(0, t)) + o(dt)

This leads to the first order partial differential equations (have not checked
details)

∂

∂t
Vj(s, t) = r(t)Vj(s, t)−

∂

∂s
Vj(s, t)− bj(s, t)

−
∑
k;k 6=j

µjk(s, t)(bjk(s, t) + Vk(0, t)− Vj(s, t))

With the terminal condition Vj(s, T−) = ∆Bj(s). This can be solved with
numerical methods such as Lax-Wendroff.

4 Martingales in Life
Start with the martingale associated with the total discounted payments
under the contract:

M(t) = E[

∫ T

0−
e−

∫ τ
0 rdB(τ)|Ht] =

= [pastisknown] =

∫ t

0−
e−

∫ τ
0 rdB(τ) + e−

∫ t
0 rE[

∫ T

t

e−
∫ τ

t rdB(τ)|Ht] =

=

∫ t

0−
e−

∫ τ
0 rdB(τ) + e−

∫ t
0 rVZ(t)(t).
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Taking the differential using the Itô formula we get

dM(t) = e−
∫ t
0 rdB(t) + e−

∫ t
0 r(−r(t) dt)

∑
j

Ij(t)Vj(t)+

+ e−
∫ t
0 r
∑

j

Ij(t)dVj(t) + e−
∫ t
0 r
∑
j 6=k

dNjk(t)(Vk(t)− Vj(t−)) =

= e−
∫ t
0 r
∑

j

Ij(t)

(
dBj(t)− r(t)Vj(t)dt + dVj(t) +

∑
k; 6=j

µjkdtRjk(t)

)
︸ ︷︷ ︸

=0

+

+ e−
∫ t
0 r
∑
j 6=k

Rjk(t)dMjk(t).

The drift of a martingale should have expectation zero! We obtained the
ODE again, but with another method.

5 The markov chain market and demographic
hedging

The idea is to build a financial market model under the same framework as
the life history analysis.

The continuous time Markov chain. Let {Y (t)}t≥0 be a Markov chain on
Y = {1, . . . , n}. Transition probabilities

pef (t) = P[Y (τ + t) = f |Y (τ) = e]

and intensities
λef = lim

to↓0

pef (t)

t
, e 6= f.

λee = −λe· = −
∑

f ;f∈Ye

λef .

States directly accessible from state e:

Ye = {f ; λef > 0}, ne = |Ye|.

In this framework Norberg explaines optimal quadratic hedging, and hedging
mortality in particular.
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