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Abstract

We introduce a new point process, the dynamic contagion process, by generalising the Hawkes
process and Cox process with shot noise intensity. Our process includes both self-excited and
externally excited jumps, which could be used to model the dynamics of contagion impact from
endogenous and exogenous factors of the underlying system. We systematically analyse the theo-
retical distributional properties of this new process, based on the piecewise-deterministic Markov
process theory developed in Davis (1984), and the extension of the martingale methodology used in
Dassios and Embrechts (1989). The analytic expressions of the Laplace transform of the intensity
process and probability generating function of the point process are derived. A simulation algo-
rithm is provided for further industrial implementation and statistical analysis. Some extensions of
this process and comparison with other similar processes are also investigated. The major object of
this study is to produce a general mathematical framework for modelling the dependence structure
of arriving events with dynamic contagion, which has the potential to be applicable to a variety of
problems in economics, finance and insurance. We apply our research to the default probability of
credit risk and ruin probability of risk theory.



Notations

P original natural probability measure
P probability under probability measure P
E expectation under probability measure PeP equivalent probability measure eP ∼ PÜP probability under probability measure ePeE probability under probability measure eP
A operator of infinitesimal generator
L operator of Laplace transform
I indicator function
a constant rate of premium payment per time unit
c constant reversion level
ρ constant rate of a standard Poisson process
σ constant volatility
µi the ith moment of a distribution
Y (1) random externally excited jump size
T (1) random time of the externally excited jump
H(y) cumulative distribution function of random externally excited jump size Y (1)

h(y) density function of random externally excited jump size Y (1)

Y (2) random self-excited jump size
T (2) random time of the self-excited jump
G(y) cumulative distribution function of random self-excited jump size Y (2)

g(y) density function of random self-excited jump size Y (2)

Z random claim size
Z(z) cumulative distribution function of random claim size Z

z(z) density function of random claim size Z

τ∗ random time
t variable time
T fixed time / maturity time
τ T − t/ time to maturity
∆t sufficient small time interval
Nt point process
Mt point process
λt intensity process
Xt surplus process
Wt standard Brownian motion / Wiener process
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1

Introduction

The behavior of default contagion through business links is more obvious during a financial crisis,
especially after the collapse of Lehman Brothers in September 2008. The Greek sovereign debt
crisis starting from 2010 has the contagion impact spreading to EU members, such as Portugal,
Spain, Italy and even to United Kingdom. More recently, triggered by the United States debt
ceiling crisis in 2011, an even much bigger contagion risk seems to emerge.

From the mathematical perspective, a point process with its intensity dependent on the point
process itself could provide a more effective model to capture this contagion phenomenon of these
clustering ‘bad’ events. However, only a few examples exist in the literature. These include the
pioneering work of Jarrow and Yu (2001) and the more recent one of Errais, Giesecke and Goldberg
(2009). Jarrow and Yu (2001) pointed out that, a model with the default intensity only linearly de-
pending on a set of macroeconomic variables is not sufficient to explain the phenomena of clustering
defaults around an economic recession; therefore, they introduced the concept of credit contagion,
whereby upon default of a given name, the contagion jump shocks will impact immediately to the
counterpart’s default intensity. Furthermore, Errais, Giesecke and Goldberg (2009) found that, by
using the self-excited Hawkes process, originally introduced by Hawkes (1971) (see also Hawkes
and Oakes (1974), Oakes (1975) ), the clustering of defaults observed from real financial data
could be modelled more consistently. On the other hand, there are plenty of papers, including
Duffie and Gârleanu (2001), and Longstaff and Rajan (2008), suggesting that, the default intensity
could be impacted exogenously by multiple common factors, such as idiosyncratic, sector specific
or market-wide events.

In this thesis, we combine both ideas above and introduce a new point process, named a
“dynamic contagion process”, by generalising the Hawkes process (with exponential decay) and
the Cox process with shot noise intensity (with exponential decay), to include both the self-excited
and externally excited jumps. We use it to model the dynamics of contagion impact from both en-
dogenous (self-excited) and exogenous (externally excited) factors of the underlying system. This
approach also extends the idea of default contagion by Jarrow and Yu (2001), to have a richer set
of parameters, capable to capture some key aspects of the behavior of arriving events, such as the
frequency, magnitude of the impact, and the decay with time.

To define and characterise the dynamic contagion process mathematically, we give a cluster
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process representation, implement the piecewise deterministic Markov process theory developed
by Davis (1984) (and see also Davis (1993)), and then extend the martingale methodology used
by Dassios and Embrechts (1989) (see also Dassios and Jang (2003), Dassios and Jang (2005)), to
obtain the distributional properties for this new process. This process is analysed by deriving the
first and second moments and, more importantly, the Laplace transform of the intensity process
and the probability generating function of the point process. A possible way of change of measure
has been found via the infinitesimal generator. Furthermore, an explicit example of jumps with
exponential distributions and the simulation algorithm are provided for further industrial imple-
mentation and statistical analysis. An application to credit risk for a single company is given,
some possible approaches for the multiple-name case are also discussed.

Meanwhile, applications of the dynamic contagion process of course are not limited to the
areas of credit risk in finance. As substantially discussed in the literature of insurance world,
the classical Cramér-Lundberg risk model with the arrival of claims modelled by a Poisson pro-
cess is often not realistic in practice, and hence a variety of extensions have been studied. Many
researchers, such as Björk and Grandell (1988), Embrechts, Grandell and Schmidli (1993) had al-
ready suggested using the Cox process to model the arrival of claims, see also the book by Grandel
(1991). Schmidli (1996) investigated the case for a Cox process with a piecewise constant intensity.
More recently, Albrecher and Asmussen (2006) discussed a Cox process with shot noise intensity.
On the other hand, a few researchers have proposed risk models using self-excited processes, due to
the observation of the clustering arrival of claims in reality, a similar pattern in the credit risk from
the financial market, particularly during the current economic crisis. Stabile and Torrisi (2010)
looked at the ruin problem in a model using the Hawkes process, a self-excited point process intro-
duced by Hawkes (1971). To capture the clustering phenomenon as well as some common external
factors involved for the arrival of claims within one single consistent framework, we extend further
to use the dynamic contagion process and try to generalise results obtained for the classical model
of infinite horizon. Some classical ruin problems, such as the net profit condition, (generalised)
Lundberg’s fundamental equation, ruin probability, Cramér-Lundberg approximation have been
studied via the martingale approach and change of measure. Special attention is given to the case
of exponential jumps and two numerical examples are also provided.

During our previous distributional analysis and applications in finance and insurance for the
dynamic contagion process, we realise that many theoretical as well as applied results obtained
inevitably involve some inverse functions of inconvenient unexplicit forms, whereas the Cox process
with CIR intensity has explicit counterparts. Hence, by comparing some special cases of these two
processes, we find some interesting analogies and inequalities between them. The tools of super-
martingales and sub-martingales are deployed during this comparison analysis.

Moreover, we generalise the original dynamic contagion process to allow the intensity process
perturbed by diffusion. Then the new point process becomes a hybrid of the Cox process with CIR
intensity and Hawkes process with exponential decay. Some key distributional properties such as
the Laplace transform of the intensity process and the probability generating function of the point
process have been derived.

Interestingly, based on our analysis on the dynamic contagion process via a simple transfor-

16



mation, we discover a more general class of point processes. We name this new point process as
a “discretised dynamic contagion process” and obtain some fundamental distributional properties,
such as moments and probability generating functions. Finally, some special cases of this process
are particularly discussed and then applied to model the delayed claims of ruin problem.

This thesis is organised as follows:

Chapter 2 acts as the core chapter of the whole thesis and introduces a new point process named
dynamic contagion process, which has been mathematically defined as a branching process via
the cluster process representation and stochastic intensity representation. Key distributional
properties, such as moments, Laplace transforms and probability generating functions of the
intensity process and the point process have been derived. Simulation algorithm has also
been provided for future statistical analysis and implementation in practice.

Chapter 3 mainly applies the dynamic contagion process to model the credit risk for a single
company and the default probability can be derived. The potential approaches for financial
applications to multiple names in a portfolio level are also discussed and proposed as future
research.

Chapter 4 provides applications of the dynamic contagion process to ruin problem for an insurance
company. The classical problems, such as net profit condition, (generalised) Lundberg’s
fundamental equation, ruin probability, have been investigated. In addition, the approach of
change of measure is discussed and some numerical examples are also represented.

Chapter 5 compares some special cases of the dynamic contagion process with the Cox process
with CIR intensity, and discovers some interesting analogies as well as inequalities between
them.

Chapter 6 generalises the original dynamic contagion process to allow the intensity process per-
turbed by diffusion. Some key distributional properties are discussed.

Chapter 7 extends the original dynamic contagion process to a new class of point processes named
discretised dynamic contagion process. A fundamental transformation between the two pro-
cesses has been be found, and some key distributional properties of this process and connec-
tions to the dynamic contagion process have also been obtained.

Chapter 8 applies a special case of discretised dynamic contagion process and some generalisation
to model the delayed claims for ruin problem, and derives exact formulas for the asymptotics
of ruin probability.

Chapter 9 concludes this thesis.
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2

A Dynamic Contagion Process

We introduce a new point process, named a “dynamic contagion process”, by generalising the
Hawkes process (with exponential decay) and the Cox process with shot noise intensity (with
exponential decay), to include both the self-excited and externally excited jumps. It could be
used to model the dynamic contagion impact from both endogenous (self-excited) and exogenous
(externally excited) factors of the underlying system. To define and characterise the dynamic con-
tagion process mathematically, we give a cluster process representation, implement the piecewise
deterministic Markov process theory developed by Davis (1984), and then extend the martingale
methodology used by Dassios and Jang (2003), to obtain the distributional properties for this new
process. This process is analysed by deriving the first and second moments, and then more impor-
tantly the Laplace transform of the intensity process and the probability generating function of the
point process, respectively. A possible way of change of measure has been found via the infinitesi-
mal generator. Furthermore, an explicit example of jumps with exponential distributions, and the
simulation algorithm is provided for further industrial implementation and statistical analysis.

This chapter is organised as follows. Section 2.1 gives the mathematical definition of the
process. Section 2.2 as the main section, analyses and derives some key distributional proper-
ties. The joint Laplace transform - probability generating function of the intensity process and
the point process is derived in Section 2.2.1. The Laplace transform of the intensity process and
the probability generating function of the point process are obtained in Section 2.2.2 and Section
2.2.3, respectively; the Hawkes process with exponential decay is included as an important special
case and a brief summary of its distributional properties is also given. In Section 2.2.4, we obtain
the first and second moments of the intensity process and the point process. We also provide
an explicit example of jumps with exponential distributions in Section 2.3, and the algorithm for
simulating the process in Section 2.4.1.

2.1 Definition

The dynamic contagion process includes both the self-excited jumps, which are distributed ac-
cording to the branching structure of a Hawkes process with exponential fertility rate, and the
externally excited jumps, which are distributed according to a particular shot noise Cox process.



A Dynamic Contagion Process

Daley and Vere-Jones (2003) (see also Hawkes and Oakes (1974)) give a cluster process repre-
sentation for a general Hawkes process, now we extend it to represent the mathematical definition
for our process in Definition 2.1.1 as a cluster point process, additionally characterised by the
stochastic intensity representation and infinitesimal generator.

Definition 2.1.1. The dynamic contagion process is a cluster point process D on R+: The
number of points in the time interval (0, t] is defined by Nt = ND(0,t]. The cluster centers of D are
the particular points called immigrants, the other points are called offspring.They have the following
structure:

(a) The immigrants are distributed according to a Cox process A with points {Dm}m=1,2,... ∈ (0,∞)
and shot noise stochastic intensity process

a + (λ0 − a) e−δt +
X
i≥1

Y
(1)
i e−δ(t−T

(1)
i

)I
¦
T

(1)
i ≤ t

©
,

where

• a ≥ 0 is the constant reversion level;

• λ0 > 0 is a constant as the initial value of the stochastic intensity process (defined later
by (2.1));

• δ > 0 is the constant rate of exponential decay;

•
¦
Y

(1)
i

©
i=1,2,...

is a sequence of independent identical distributed positive (externally ex-

cited) jumps with distribution function H(y), y > 0, at the corresponding random times¦
T

(1)
i

©
i=1,2,...

following a homogeneous Poisson process with constant intensity ρ > 0;

• I is the indicator function.

(b) Each immigrant Dm generates a cluster Cm = CDm
, which is the random set formed by the

points of generations 0, 1, 2, ... with the following branching structure:

the immigrant Dm is said to be of generation 0. Given generations 0, 1, ..., j in Cm, each point
T (2) ∈ Cm of generation j generates a Cox process on (T (2),∞) of offspring of generation
j +1 with the stochastic intensity Y (2)e−δ(·−T (2)) where Y (2) is a positive (self-excited) jump
at time T (2) with distribution function G(y), y > 0, independent of the points of generation
0, 1, ..., j.

(c) Given the immigrants, the centered clusters

Cm −Dm =
§

T (2) −Dm : T (2) ∈ Cm

ª
, Dm ∈ A,

are independent identical distributed, and independent of A.

(d) D consists of the union of all clusters, i.e.

D =
[

m=1,2,...

CDm
.

Therefore, the dynamic contagion process can also be defined as a point process Nt ≡
¦
T

(2)
k

©
k≥1

on R+, with the non-negative Ft−stochastic intensity process λt following the piecewise determin-
istic dynamics with positive jumps, i.e.

λt = a + (λ0 − a) e−δt +
X
i≥1

Y
(1)
i e−δ(t−T

(1)
i

)I
¦
T

(1)
i ≤ t

©
+
X
k≥1

Y
(2)
k e−δ(t−T

(2)
k

)I
¦
T

(2)
k ≤ t

©
, (2.1)
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2.1 Definition

where

• {Ft}t≥0 is a history of the process Nt, with respect to which {λt}t≥0 is adapted,

•
¦
Y

(2)
k

©
k=1,2,...

is a sequence of independent identical distributed positive (self-excited) jumps

with distribution function G(y), y > 0, at the corresponding random times
¦
T

(2)
k

©
k=1,2,...

,

• the sequences
¦
Y

(1)
i

©
i=1,2,...

,
¦
T

(1)
i

©
i=1,2,...

and
¦
Y

(2)
k

©
k=1,2,...

are assumed to be independent
of each other.

From the definition above and because of the exponential decay, we can see that λt is a Markov
process. In particular, it decreases with rate δ (λt − a), and incurs additive upward (externally ex-
cited) jumps that have distribution function H with rate ρ, and additive upward (self-excited)
jumps that have distribution function G with rate λt. Moreover, when jumps of the latter type
occur, Nt increases by 1. Hence, (Nt, λt) is also a Markov process.

With the aid of piecewise deterministic Markov process theory and using the results in Davis
(1984), the infinitesimal generator of the dynamic contagion process (λt, Nt, t) acting on a function
f(λ, n, t) within its domain Ω(A) is given by

Af(λ, n, t) =
∂f

∂t
−δ (λ− a)

∂f

∂λ
+(ρ+λ)

�Z ∞

0
f(λ + y, n, t)d

�
ρ

ρ + λ
H(y) +

λ

ρ + λ
G(y)

�
− f(λ, n, t)

�
,

or,

Af(λ, n, t) =
∂f

∂t
− δ (λ− a)

∂f

∂λ
+ ρ

�Z ∞

0
f(λ + y, n, t)dH(y)− f(λ, n, t)

�
+λ

�Z ∞

0
f(λ + y, n + 1, t)dG(y)− f(λ, n, t)

�
, (2.2)

where Ω(A) is the domain for the generator A such that f(λ, n, t) is differentiable with respect to
λ, t for all λ, n and t, and ����Z ∞

0
f(λ + y, n, t)dH(y)− f(λ, n, t)

���� < ∞,����Z ∞

0
f(λ + y, n + 1, t)dG(y)− f(λ, n, t)

���� < ∞.

Remark 2.1.1. We could alternatively define the dynamic contagion process as a special case
(without the diffusion terms) of the general affine point processes by Duffie, Filipović and Schacher-
mayer (2003), with the infinitesimal generator specified by (2.2).

Remark 2.1.2. The dynamic contagion process is a point process Nt such that

P
¦
Nt+∆t −Nt = 1

��Nt

©
= λt∆t + o(∆t),

P
¦
Nt+∆t −Nt > 1

��Nt

©
= o(∆t),

where ∆t is a sufficient small time interval and λt is given by (2.1).

Remark 2.1.3. Note that, this point process is not a doubly stochastic Poisson process, or Cox
process, as the point process Nt conditional on λt is not a Poisson process, and it does not satisfy
its definition. In particular for all 0 ≤ t ≤ T ,

E
�
θ(NT−Nt)

����Ft

�
6= E

�
e−(1−θ)(ΛT−Λt)

����Ft

�
, (2.3)
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A Dynamic Contagion Process

where Λt =:
R t
0 λsds is the aggregated process, and the expectation E is based on the probability

space (Ω,F ,P) with the information set F = {Ft}t≥0. This is because, the infinitesimal generator
acting on a function f(λ, Λ, n) is given by

Af(λ, Λ, n) = λ
∂f

∂Λ
− δ (λ− a)

∂f

∂λ
+ ρ

�Z ∞

0
f(λ + y, Λ, n)dH(y)− f(λ, Λ, n)

�
+λ

�Z ∞

0
f(λ + y, Λ, n + 1)dG(y)− f(λ, Λ, n)

�
,

and the generators for the processes e−(1−θ)Λt and θNt are then given by

A
�
e−(1−θ)Λ

�
= −(1− θ)e−(1−θ)Λλ,

A (θn) = −(1− θ)θnλ,

where furthermore the generators for the processes e−(1−θ)Λtλt and θNtλt are given by

A
�
e−(1−θ)Λλ

�
= e−(1−θ)Λ

�
− (1− θ)λ2 + δ(a− λ) + ρµ1H

+ λµ1G

�
, (2.4)

A (θnλ) = θn

�
− (1− θ)λ2 + δ(a− λ) + ρµ1H

+ λµ1G
θ

�
. (2.5)

If it was an equality in (2.3) for all t, then (2.4) and (2.5) would have been the same equation.
However, (2.4) and (2.5) can not be the same as there is an extra term θ in (2.5). Therefore, the
intensity λt given here in (2.1) is different from the stochastic intensity of the Cox process.

Remark 2.1.4. Note that, the intensity process λt is always above the level a, i.e. λt ∈ E = [a,∞)
for any time t.

Remark 2.1.5. The parameters in the intensity process λt measure some key aspects of the events:
the long term mean-reverting effect, the frequency of the underlying events, the magnitude of the
impact from the events, and the time effect with exponential memory decay.

Remark 2.1.6. An economic interpretation from the perspective of the cluster process repre-
sentation for the dynamic contagion process is the following: For a certain company, there are
two classes of economic shocks: the primary shocks directly to this company and the common
market-wide shocks. The arrivals of these primary shocks to this company are modelled by the
generation 0 of the dynamic contagion process, i.e. the point process A (as described by (a))
with the intensity process modelled based on the external economic evolution including a stream
of market-wide shocks: a shock at time T

(1)
i has the magnitude of impact Y

(1)
i with distribution

H and decays exponentially with rate δ. In the aftermath of each primary shock to this company,
it could further trigger a series of subsidiary internal turbulences in this company following the
branching structure (as described by (b)): similarly a turbulence at time T

(2)
k has the magnitude

of impact Y
(2)
k with distribution G and decays exponentially with rate δ.

To give an intuitive picture of this right-continuous process from the perspective of the stochas-
tic intensity representation, we present Figure 2.1 for illustrating how the externally excited jumps¦
Y

(1)
i

©
i=1,2,...

(marked by single arrow ↓) and self-excited jumps
¦
Y

(2)
k

©
k=1,2,...

(marked by double

arrow l) in the intensity process λt interact with its dynamic contagion point process Nt.

Now, in this more general framework of the dynamic contagion process, the classic Cox
process with shot noise intensity (with exponential decay), used by Dassios and Jang (2003) for
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Fig. 2.1: Externally Excited and Self-excited Jumps in Intensity Process λt of Dynamic Contagion Pro-

cess Nt

pricing catastrophe reinsurance and derivatives, can be recovered, by setting reversion level a =
0 and eliminating the self-excited jumps

¦
Y

(2)
k

©
k=1,2,...

; the Hawkes process (with exponential

decay), used by Errais, Giesecke and Goldberg (2009) for modelling the portfolio credit risk, can
be recovered, by setting the intensity ρ = 0 of the externally excited jumps

¦
Y

(1)
i

©
i=1,2,...

.

2.2 Distributional Properties

2.2.1 Joint Laplace Transform - Probability Generating Function of (λT , NT )

We derive the joint Laplace transform - probability generating function of (λT , NT ) for a fixed
time T in Theorem 2.2.1 below, which leads to the key results of this paper, Laplace transform of
λT and probability generating function of NT in Section 2.2.2 and Section 2.2.3, respectively.

Theorem 2.2.1. For the constants 0 ≤ θ ≤ 1, v ≥ 0 and time 0 ≤ t ≤ T , the conditional joint
Laplace transform - probability generating function for the process λt (defined in Definition 2.1.1)
and the point process Nt is given by

E
�
θ(NT−Nt)e−vλT

����Ft

�
= e

−
�

c(T )−c(t)

�
e−B(t)λt , (2.6)

where B(t) is determined by the non-linear ODE

−B′(t) + δB(t) + θĝ
�
B(t)

�
− 1 = 0, (2.7)

ĝ(u) =:
Z ∞

0
e−uydG(y),
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A Dynamic Contagion Process

with boundary condition B(T ) = v; and c(t) is determined by

c(t) = aδ

Z t

0
B(s)ds + ρ

Z t

0

�
1− ĥ

�
B(s)

��
ds, (2.8)

ĥ(u) =:
Z ∞

0
e−uydH(y).

Proof. Consider a function f(λ, n, t) with an exponential affine form

f(λ, n, t) = ec(t)An(t)e−B(t)λ,

where A(t), B(t), c(t) are all deterministic functions of time t. Substitute into Af = 0 in (2.2), we
then have

A′(t)
A(t)

n +
�
−B′(t) + δB(t) + A(t)ĝ(B(t))− 1

�
λ +

�
c′(t) + ρĥ(B(t))− ρ− aδB(t)

�
= 0. (2.9)

Since this equation holds for any n and λ, it is equivalent to solving three separated equations8><>: A′(t)
A(t) = 0 (.1)

−B′(t) + δB(t) + A(t)ĝ(B(t))− 1 = 0 (.2)
c′(t) + ρĥ(B(t))− ρ− aδB(t) = 0 (.3)

. (2.10)

We have A(t) = θ immediately from (2.10.1); and substitute into (2.10.2) by adding the boundary
condition B(T ) = v, we have the ODE as (2.7); then, by (2.10.3) with boundary condition c(0) = 0,
the integration as (2.8) follows. Since ec(t)θNte−B(t)λt is a F−martingale by the property of the
infinitesimal generator, we have

E
�
ec(T )θNT e−B(T )λT

����Ft

�
= ec(t)θNte−B(t)λt . (2.11)

Then, by the boundary condition B(T ) = v, (2.6) follows.

2.2.2 Laplace Transform of λT

Theorem 2.2.2. The conditional Laplace transform λT given λ0 at time t = 0, under the condition
δ > µ1G

, is given by

E
�
e−vλT

��λ0

�
= exp

�
−
Z v

G−1
v,1(T )

aδu + ρ[1− ĥ(u)]
δu + ĝ(u)− 1

du

�
× exp

�
−G−1

v,1(T )λ0

�
, (2.12)

where
µ1G

=:
Z ∞

0
ydG(y),

Gv,1(L) =:
Z v

L

du

δu + ĝ(u)− 1
1. (2.13)

Proof. By setting t = 0 and θ = 1 in Theorem 2.2.1, we have

E
�
e−vλT

��F0

�
= e−c(T )e−B(0)λ0 , (2.14)

where B(0) is uniquely determined by the non-linear ODE

−B′(t) + δB(t) + ĝ
�
B(t)

�
− 1 = 0,

with boundary condition B(T ) = v. It can be solved, under the condition δ > µ1G
, by the following

steps:
1 It will be clear in the proof later that Gv,1(L) is a one by one function of L and hence its inverse function

G−1
v,1(T ) exists.
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2.2 Distributional Properties

1. Set B(t) = L(T − t) and τ = T − t, it is equivalent to the initial value problem

dL(τ)
dτ

= 1− δL(τ)− ĝ(L(τ)) =: f1(L), (2.15)

with initial condition L(0) = v; we define the right-hand side as the function f1(L).

2. Under the condition δ > µ1G
, we have

∂f1(L)
∂L

=
Z ∞

0
ye−LydG(y)− δ ≤

Z ∞

0
ydG(y)− δ = µ1G

− δ < 0, L ≥ 0,

then, f1(L) < 0 for L > 0, since f1(0) = 0.

3. Rewrite (2.15) as
dL

δL + ĝ(L)− 1
= −dτ,

by integrating both sides from time 0 to τ with initial condition L(0) = v > 0, we haveZ v

L

du

δu + ĝ(u)− 1
= τ,

where L ≥ 0, we define the function on left hand side as

Gv,1(L) =:
Z v

L

du

δu + ĝ(u)− 1
,

then,

Gv,1(L) = τ,

obviously L → v when τ → 0; by convergence test,

lim
u→0

1
u
1

δu+ĝ(u)−1

= δ + lim
u→0

ĝ(u)− 1
u

= δ − µ1G
> 0,

and we know that
R v
0

1
udu = ∞, then,Z v

0

du

δu + ĝ(u)− 1
= ∞,

hence, L → 0 when τ → ∞; the integrand is positive in the domain u ∈ (0, v] and also for
L ≤ v, Gv,1(L) is a strictly decreasing function; therefore, Gv,1(L) : (0, v] → [0,∞) is a well
defined (monotone) function, and its inverse function G−1

v,1(τ) : [0,∞) → (0, v] exists.

4. The unique solution is found by

L(τ) = G−1
v,1(τ),

or,

B(t) = G−1
v,1(T − t).

5. B(0) is obtained,

B(0) = L(T ) = G−1
v,1(T ).
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A Dynamic Contagion Process

Then, c(T ) is determined by

c(T ) = aδ

Z T

0
G−1

v,1(τ)dτ + ρ

Z T

0

�
1− ĥ

�
G−1

v,1(τ)
��

dτ, (2.16)

by the change of variable G−1
v,1(τ) = u, we have τ = Gv,1(u), andZ T

0

�
1− ĥ

�
G−1

v,1(τ)
��

dτ =
Z G−1

v,1(T )

G−1
v,1(0)

[1− ĥ(u)]
∂τ

∂u
du =

Z v

G−1
v,1(T )

1− ĥ(u)
δu + ĝ(u)− 1

du,

similarly, Z T

0
G−1

v,1(τ)dτ =
Z v

G−1
v,1(T )

u

δu + ĝ(u)− 1
du.

Finally, substitute B(0) and c(T ) into (2.14), and Theorem 2.2.2 follows.

Theorem 2.2.3. If δ > µ1G
, then the Laplace transform of the asymptotic distribution of λT is

given by

lim
T→∞

E
�
e−vλT

��λ0

�
= exp

�
−
Z v

0

aδu + ρ[1− ĥ(u)]
δu + ĝ(u)− 1

du

�
, (2.17)

and this is also the Laplace transform of the stationary distribution of the process {λt}t≥0.

Proof. Let T →∞ in Theorem 2.2.2, then G−1
v,1(T ) → 0 and the Laplace transform of the asymp-

totic distribution follows immediately as given by (2.17).

To further prove the stationarity, by Proposition 9.2 of Ethier and Kurtz (1986) (and see also
Costa (1990)), we need to prove that, for any function f within its domain Ω(A), we haveZ

E
Af(λ)Π(λ)dλ = 0, (2.18)

where E = [a,∞) is the domain for λ, Af(λ) is the infinitesimal generator of the dynamic contagion
process acting on f(λ), i.e.

Af(λ) = −δ (λ− a)
df(λ)

dλ
+ ρ

�Z ∞

0
f(λ + y)dH(y)− f(λ)

�
+λ

�Z ∞

0
f(λ + y)dG(y)− f(λ)

�
,

and Π(λ) is the density function of λ with the Laplace transform given by (2.17).

We will now try to solve equation (2.18). For the first term of (2.18), we haveZ
E

�
−δ(λ− a)

df(λ)
dλ

�
Π(λ)dλ = −δ

Z ∞

a
(λ− a)f ′(λ)Π(λ)dλ

= −δ

Z ∞

λ=a
f ′(λ)

Z λ

u=a

�
(u− a)Π(u)

�′
dudλ

= −δ

Z ∞

u=a

Z ∞

λ=u
f ′(λ)

�
(u− a)Π(u)

�′
dλdu

= δ

Z ∞

a
f(u)

�
(u− a)Π(u)

�′
du

= δ

Z ∞

a
f(λ)

�
(λ− a)Π(λ)

�′
dλ,
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2.2 Distributional Properties

since for a density function Π, obviously,

lim
u→a

(u− a)Π(u) = 0.

For the second term of (2.18), by change variable λ+ y = s (y ≤ s) in the double integral, we haveZ
E

�
ρ

Z ∞

0
f(λ + y)dH(y)

�
Π(λ)dλ = ρ

Z ∞

λ=a
Π(λ)

Z ∞

y=0
f(λ + y)dH(y)dλ

= ρ

Z ∞

s=a
f(s)

Z s

y=0
Π(s− y)dH(y)ds

= ρ

Z ∞

λ=a
f(λ)

Z λ

y=0
Π(λ− y)dH(y)dλ.

For the third term of (2.18), by change variable λ + y = s (y ≤ s) in the double integral, we haveZ
E

�
λ

�Z ∞

0
f(λ + y)dG(y)

��
Π(λ)dλ =

Z ∞

λ=a
λΠ(λ)

Z ∞

y=0
f(λ + y)dG(y)dλ

=
Z ∞

s=a
f(s)

Z s

y=0
(s− y)Π(s− y)dG(y)ds

=
Z ∞

λ=a
f(λ)

Z λ

y=0
(λ− y)Π(λ− y)dG(y)dλ.

Therefore,Z
E
Af(λ)Π(λ)dλ

=
Z

E

�
−δ (λ− a)

df(λ)
dλ

+ ρ

�Z ∞

0
f(λ + y)dH(y)− f(λ)

�
+ λ

�Z ∞

0
f(λ + y)dG(y)− f(λ)

��
Π(λ)dλ

=
Z ∞

a
f(λ)

�
δ

d
dλ

�
(λ− a)Π(λ)

�
+ ρ

�Z λ

0
Π(λ− y)dH(y)−Π(λ)

�
+
�Z λ

0
(λ− y)Π(λ− y)dG(y)− λΠ(λ)

��
dλ.

Set Z
E
Af(λ)Π(λ)dλ = 0,

for any function f(λ) ∈ Ω(A), then,

δ
d
dλ

�
(λ−a)Π(λ)

�
+ρ

�Z λ

0
Π(λ− y)dH(y)−Π(λ)

�
+
�Z λ

0
(λ− y)Π(λ− y)dG(y)− λΠ(λ)

�
= 0,

by the Laplace transform

Π̂(v) =: L{Π(λ)} =
Z

E
Π(λ)e−vλdλ,

we have

L
§

d
dλ

�
(λ− a)Π(λ)

�ª
= vL{(λ− a)Π(λ)} = v

�
−dΠ̂(v)

dv
− aΠ̂(v)

�
,

L
�Z λ

0
Π(λ− y)dH(y)

�
= L

�Z λ

0
Π(λ− y)h(y)dy

�
= Π̂(v)ĥ(v),

L
�Z λ

0
(λ− y)Π(λ− y)dG(y)

�
= L

�Z λ

0
(λ− y)Π(λ− y)g(y)dy

�
= L{λΠ(λ)} ĝ(v)

= −dΠ̂(v)
dv

ĝ(v),
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A Dynamic Contagion Process

then,

δv

�
−dΠ̂(v)

dv
− aΠ̂(v)

�
+ ρ[ĥ(v)− 1]Π̂(v) +

�
1− ĝ(v)

�
dΠ̂(v)

dv
= 0,

or, �
1− δv − ĝ(v)

�
dΠ̂(v)

dv
+
�
− aδv + ρ[ĥ(v)− 1]

�
Π̂(v) = 0,

which is an ODE with the solution given by

Π̂(v) = Π̂(0) exp

�
−
Z v

0

aδu + ρ[1− ĥ(u)]
δu + ĝ(u)− 1

du

�
.

Note that, given the initial condition

Π̂(0) =
Z

E
Π(λ)dλ = 1,

we have the unique solution

Π̂(v) = exp

�
−
Z v

0

aδu + ρ[1− ĥ(u)]
δu + ĝ(u)− 1

du

�
,

which is exactly given by (2.17).

Since Π is the unique solution to (2.18), we have the stationarity for the intensity process
{λt}t≥0.

Remark 2.2.1. The integral of (2.17) exists, since we have

lim
u→0

aδu + ρ[1− ĥ(u)]
δu + ĝ(u)− 1

= aδ lim
u→0

1

δ − 1−ĝ(u)
u

+ ρ lim
u→0

1− ĥ(u)
u

1

δ − 1−ĝ(u)
u

=
aδ + µ1H

ρ

δ − µ1G

> 0

Remark 2.2.2. We can also prove the Laplace transform of the distribution of the stationary
intensity process λt of (2.17) as follows.

Proof. Assume f(λ, n, t) = e−vλ and we have

A
�
e−vλ

�
= e−vλ

�
−aδv + ρ[ĥ(v)− 1] +

�
δv + ĝ(v)− 1

�
λ
�
,

then,

E
�
e−vλt

��F0

�
=

Z t

0
E
�
A
�
e−vλs

� ��F0

�
ds + e−vλ0

=
Z t

0

� �
−aδv + ρ[ĥ(v)− 1]

�
E
�
e−vλs

��F0

�
+ (δv + ĝ(v)− 1)E

�
λse

−vλs
��F0

� �
ds + e−vλ0 .

Differentiate two sides with respect to t, as

∂

∂t

Z t

0
E
�
λse

−vλs
��F0

�
= − ∂

∂v
E
�
e−vλs

��F0

�
,

we have

∂E
�
e−vλt

��F0

�
∂t

=
�
−aδv + ρ[ĥ(v)− 1]

�
E
�
e−vλt

��F0

�
− (δv + ĝ(v)− 1)

∂

∂v
E
�
e−vλs

��F0

�
.
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Denote Π̂(v, t) = E
�
e−vλt

��F0

�
, we have the first-order PDE

∂Π̂(v, t)
∂t

=
�
−aδv + ρ[ĥ(v)− 1]

�
u(v, t)− (δv + ĝ(v)− 1)

∂Π̂(v, t)
∂v

,

with the boundary conditions Π̂(0, t) = 1 and Π̂(v, 0) = e−vλ0 . Because of the stationarity, Π̂(v, t)
should be independent of time t, then,�

−aδv + ρ[ĥ(v)− 1]
�

Π̂(v)− (δv + ĝ(v)− 1)
dΠ̂(v)

dv
= 0,

with the boundary condition Π̂(0) = 1, and we have

Π̂(v) = exp

�
−
Z v

0

aδu + ρ[1− ĥ(u)]
δu + ĝ(u)− 1

du

�
,

which recovers (2.17).

Remark 2.2.3. For instance, if λ0 follows the distribution given by (2.17), then, based on Theorem
2.2.2 for any time T ≥ 0, we have

E
�
e−vλT

�
= E

�
E
�
e−vλT

��λ0

��
= exp

�
−
Z v

G−1
v,1(T )

aδu + ρ[1− ĥ(u)]
δu + ĝ(u)− 1

du

�
E
h
e−G

−1
v,1(T )λ0

i
= exp

�
−
Z v

G−1
v,1(T )

aδu + ρ[1− ĥ(u)]
δu + ĝ(u)− 1

du

�
× exp

�
−
Z G−1

v,1(T )

0

aδu + ρ[1− ĥ(u)]
δu + ĝ(u)− 1

du

�
= exp

�
−
Z v

0

aδu + ρ[1− ĥ(u)]
δu + ĝ(u)− 1

du

�
.

Alternative approaches for proving the stationarity for the special case of the Hawkes process
and other related processes can be found in Hawkes and Oakes (1974), Brémaud and Massoulié
(1996) and Massoulié (1998).

The self-excited Hawkes process was introduced theoretically by Hawkes (1971), and applied
to risk theory by Chavez-Demoulin, Davison and Mc Neil (2005), and then only very recently
applied to credit risk for modelling the default contagion by Errais, Giesecke and Goldberg (2009).
It can be considered as an important special case under this more general framework of dynamic
contagion process, all of the counterpart results can be obtained, by eliminating the impact from
the externally excited jumps, i.e. setting its intensity ρ = 0 in the corresponding results. Here
we give the Laplace transform of the stationary distribution of the intensity process λt for the
Hawkes process with exponential decay in Corollary 2.2.1. The probability generating function of
the Hawkes point process Nt will be given by Corollary 2.2.3 of Section 2.2.3.

Corollary 2.2.1. If δ > µ1G
, then the Laplace transform of the intensity λT of the Hawkes process

with exponential decay conditional on λ0 at time t = 0 is given by

E
�
e−vλT

��λ0

�
= exp

�
−aδ

Z v

G−1
v,1(T )

u

δu + ĝ(u)− 1
du

�
× exp

�
−G−1

v,1(T )λ0

�
,
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and the Laplace transform of the asymptotic distribution of λT is given by

lim
T→∞

E
�
e−vλT

��λ0

�
= exp

�
−aδ

Z v

0

u

δu + ĝ(u)− 1
du

�
, (2.19)

which is also the Laplace transform of the stationary distribution of the process {λt}t≥0.

Proof. By setting the intensity of the externally excited jumps ρ = 0 in Theorem 2.2.2 and Theorem
2.2.3, the results follow immediately.

The limit of the log-Laplace transform for Hawkes processes with a general fertility rate can
be found in Bordenave and Torrisi (2007) and Stabile and Torrisi (2010).

2.2.3 Probability Generating Function of NT

Theorem 2.2.4. The conditional probability generating function of NT given λ0 and N0 = 0 at
time t = 0, under the condition δ > µ1G

, is given by

E
�
θNT

��λ0

�
= exp

�
−
Z G−1

0,θ
(T )

0

aδu + ρ[1− ĥ(u)]
1− δu− θĝ(u)

du

�
× exp

�
−G−1

0,θ(T )λ0

�
,

where

G0,θ(L) =:
Z L

0

du

1− δu− θĝ(u)
, 0 ≤ θ < 1. (2.20)

Proof. By setting t = 0, v = 0 and assuming N0 = 0 in Theorem 2.2.1, we have

E
�
θNT

��F0

�
= e−c(T )e−B(0)λ0 ,

where B(0) is uniquely determined by the non-linear ODE

−B′(t) + δB(t) + θĝ
�
B(t)

�
− 1 = 0,

with boundary condition B(T ) = 0. It can be solved, under the condition δ > µ1G
, by the following

steps:

1. Set B(t) = L(T − t) and τ = T − t,

dL(τ)
dτ

= 1− δL(τ)− θĝ(L(τ)) =: f2(L), 0 ≤ θ < 1, (2.21)

with initial condition L(0) = 0; we define the right-hand side as the function f2(L).

2. There is only one positive singular point, denoted by v∗ > 0, obtained by solving the equation
f2(L) = 0. This is because, for the case 0 < θ < 1, the equation f2(L) = 0 is equivalent to

ĝ(u) =
1
θ
(1− δu), 0 < θ < 1,

note that ĝ(·) is a convex function, then it is clear that there is only one positive solution to
this equation; for the case θ = 0, there is only one singular point v∗ = 1

δ > 0; and for both
cases,

0 <
1− θ

δ
< v∗ ≤ 1

δ
; (2.22)

then, we have f2(L) > 0 for 0 ≤ L < v∗ and f2(L) < 0 for L > v∗.
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2.2 Distributional Properties

3. Rewrite (2.21) as
dL

1− δL− θĝ(L)
= dτ,

and integrate, Z L

0

du

1− δu− θĝ(u)
= τ,

where 0 ≤ L < v∗, we define the function on left-hand side as

G0,θ(L) =:
Z L

0

du

1− δu− θĝ(u)
, (2.23)

then,
G0,θ(L) = τ,

as L → 0 when τ → 0, and L → v∗ when τ → ∞; the integrand is positive in the domain
u ∈ [0, v∗) and L ≥ 0, G0,θ(L) is a strictly increasing function; therefore, G0,θ(L) : [0, v∗) →
[0,∞) is a well defined function, and its inverse function G−1

0,θ(τ) : [0,∞) → [0, v∗) exists.

4. The unique solution is found by
L(τ) = G−1

0,θ(τ),

or,
B(t) = G−1

0,θ(T − t).

5. B(0) is obtained,
B(0) = L(T ) = G−1

0,θ(T ).

Then, c(T ) is determined by

c(T ) = aδ

Z T

0
G−1

0,θ(τ)dτ + ρ

Z T

0

�
1− ĥ

�
G−1

0,θ(τ)
��

dτ, (2.24)

where, by the change of variable,Z T

0
G−1

0,θ(τ)dτ =
Z G−1

0,θ
(T )

0

u

1− δu− θĝ(u)
du,Z T

0

�
1− ĥ

�
G−1

0,θ(τ)
��

dτ =
Z G−1

0,θ
(T )

0

1− ĥ(u)
1− δu− θĝ(u)

du.

Finally, substitute B(0) and c(T ) into (2.14), and the result follows.

Remark 2.2.4. E
�
θNT

��λ0

�
is a strictly decreasing function of time T and

lim
T→0

E
�
θNT

��λ0

�
= 1, lim

T→∞
E
�
θNT

��λ0

�
= 0, 0 ≤ θ < 1.

Proof. The integrand is positive within its domain u ∈ [0, v∗), where v∗ is the only positive singular
point, such that 1−δv∗−θĝ(v∗) = 0. G−1

0,θ(T ) is a strictly increasing function of time T . G−1
0,θ(T ) → 0

when T → 0; and G−1
0,θ(T ) → v∗ when T →∞, andZ v∗

0

du

1− δu− θĝ(u)
= ∞,

also,

lim
u→v∗

aδu + ρ[1− ĥ(u)]
1− δu− θĝ(u)

Á
1

1− δu− θĝ(u)
= aδv∗ + ρ[1− ĥ(v∗)] > 0.
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Therefore,

lim
T→∞

Z G−1
0,θ

(T )

0

aδu + ρ[1− ĥ(u)]
1− δu− θĝ(u)

du = ∞,

and
lim

T→∞
E
�
θNT

��λ0

�
= exp(−∞)× exp (−v∗λ0) = 0.

Corollary 2.2.2. If δ > µ1G
and the intensity process λt is stationary, then the probability gen-

erating function of NT given N0 = 0 is given by

E
�
θNT

�
= exp

 
−(1− θ)

Z G−1
0,θ

(T )

0

ĝ(u)
�
aδu + ρ[1− ĥ(u)]

�
(1− δu− θĝ(u)) (δu + ĝ(u)− 1)

du

!
.

Proof. Since the process λt is stationary, the Laplace transform of λ0 is give by (2.17), by Theorem
2.2.4, we have

E
�
θNT

�
= E

�
E
�
θNT

��λ0

��
= exp

�
−
Z G−1

0,θ
(T )

0

aδu + ρ[1− ĥ(u)]
1− δu− θĝ(u)

du

�
× E

�
exp

�
−G−1

0,θ(T )λ0

��
= exp

�
−
Z G−1

0,θ
(T )

0

aδu + ρ[1− ĥ(u)]
1− δu− θĝ(u)

du

�
× E

�
e−vλ0

� ����
v=G−1

0,θ
(T )

= exp

�
−
Z G−1

0,θ
(T )

0

aδu + ρ[1− ĥ(u)]
1− δu− θĝ(u)

du

�
× exp

�
−
Z G−1

0,θ
(T )

0

aδu + ρ[1− ĥ(u)]
δu + ĝ(u)− 1

du

�
= exp

 
−(1− θ)

Z G−1
0,θ

(T )

0

ĝ(u)
�
aδu + ρ[1− ĥ(u)]

�
(1− δu− θĝ(u)) (δu + ĝ(u)− 1)

du

!
.

Corollary 2.2.3. If δ > µ1G
, then the probability generating function of NT of the Hawkes process

with exponential decay conditional on λ0 and N0 = 0 is given by

E
�
θNT

��λ0

�
= exp

�
−aδ

Z G−1
0,θ

(T )

0

u

1− δu− θĝ(u)
du

�
× e−G

−1
0,θ

(T )λ0 ;

and if the intensity process λt is stationary, then,

E
�
θNT

�
= exp

�
−(1− θ)aδ

Z G−1
0,θ

(T )

0

uĝ(u)
(1− δu− θĝ(u)) (δu + ĝ(u)− 1)

du

�
.

Proof. By setting the intensity of the externally excited jumps ρ = 0 in Theorem 2.2.4 and Corol-
lary 2.2.2, the results follow immediately.

The probability P{NT = 0
��λ0} can be derived by simply letting θ = 0 in the probability

generating function of NT in Theorem 2.2.4.

Corollary 2.2.4. The conditional probability of no jump given λ0 and N0 = 0, under the condition
δ > µ1G

, is given by

P
¦
NT = 0

��λ0

©
= exp

�
−
Z uT

0

aδu + ρ[1− ĥ(u)]
1− δu

du

�
× e−uT λ0 , (2.25)
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2.2 Distributional Properties

where
uT =:

1
δ

�
1− e−δT

�
.

Proof. Since

P
¦
NT = 0

��λ0

©
= E

�
θNT

��λ0

� ����
θ=0

,

and

G0,0(L) =: G0,θ(L)
����
θ=0

=
Z L

0

1
1− δu

du = −1
δ

ln (1− δL) ,

then, the inverse function

uT = G−1
0,0(T ) =

1
δ

�
1− e−δT

�
,

by letting θ = 0 in Theorem 2.2.4, (2.25) follows.

Remark 2.2.5. Note that, since there is no jump in the point process Nt from time t = 0 to t = T ,
the conditional probability P

¦
NT = 0

��λ0

©
is not dependent on the distribution of the self-excited

jumps, and the result is similar to the non-self-excited case by Dassios and Jang (2003).

Remark 2.2.6. P
¦
NT = 0

��λ0

©
is a strictly decreasing function of time T and

lim
T→0

P
¦
NT = 0

��λ0

©
= 1, lim

T→∞
P
¦
NT = 0

��λ0

©
= 0.

Proof. Rewrite (2.25) as

P
¦
NT = 0

��λ0

©
= exp

 
−
Z uT

0

aδ + ρ 1−ĥ(u)
u

1
u − δ

du

!
× e−uT λ0 .

Since 0 < u < uT < 1
δ and

1− ĥ(u)
u

> 0,
1
u
− δ > 0,

the integrand is positive, and also uT is a strictly increasing function of time T , therefore,
P {NT = 0} is a strictly decreasing function of T . When T → 0, uT → 0, then P {NT = 0} →
exp(−0) = 1; when T →∞, uT → 1

δ , sinceZ 1
δ

0

1
1− δu

du = ∞,

and

lim
u→ 1

δ

aδu + ρ[1− ĥ(u)]
1− δu

Á
1

1− δu
= a + ρ

�
1− ĥ

�
1
δ

��
> 0,

then,

lim
T→0

Z uT

0

aδu + ρ[1− ĥ(u)]
1− δu

du = ∞,

and
lim
T→0

P {NT = 0} = exp(−∞)× e−
1
δ λ0 = 0.

Theoretically, the probability P
¦
NT = n

��λ0

©
for any natural number n ∈ N can be derived

by

P
¦
NT = n

��λ0

©
=

∂n

∂θn
E
�
θNT

��λ0

� ����
θ=0

,

here, we derive the result of P
¦
NT = 1

��λ0

©
in Corollary 2.2.5, for instance.
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Corollary 2.2.5. The conditional probability of exactly one jump given λ0 and N0 = 0, under the
condition δ > µ1G

, is given by

P
¦
NT = 1

��λ0

©
= P

¦
NT = 0

��λ0

©
×
§�

a
�
1− e−δT

�
+ ρ[1− ĥ(uT )] + λ0e

−δT
�

×
Z uT

0

ĝ(u)
(1− δu)2

du−
Z uT

0

ĝ(u)
(1− δu)2

�
aδu + ρ[1− ĥ(u)]

�
du

ª
,

where
uT =

1
δ

�
1− e−δT

�
.

Proof. To simplify the notation, we define

ϕ(u, θ) =:
aδu + ρ[1− ĥ(u)]
1− δu− θĝ(u)

.

Then,

P
¦
NT = 1

��λ0

©
=

∂

∂θ
exp

�
−
Z G−1

0,θ
(T )

0
ϕ(u, θ)du− G−1

0,θ(T )λ0

� ����
θ=0

= P
¦
NT = 0

��λ0

©
× (−1)

�Z G−1
0,θ

(T )

0

∂ϕ(u, θ)
∂θ

du +
�
ϕ
�
G−1

0,θ(T ), θ
�

+ λ0

� ∂

∂θ
G−1

0,θ(T )

� ����
θ=0

= P
¦
NT = 0

��λ0

©
× (−1)

�Z uT

0

∂ϕ(u, θ)
∂θ

����
θ=0

du +
�
ϕ (uT , 0) + λ0

� ∂

∂θ
G−1

0,θ(T )
����
θ=0

�
,

where

∂ϕ(u, θ)
∂θ

����
θ=0

=
ĝ(u)

�
aδu + ρ[1− ĥ(u)]

��
1− δu− θĝ(u)

�2 ����
θ=0

=
ĝ(u)

�
aδu + ρ[1− ĥ(u)]

�
(1− δu)2

,

ϕ(uT , 0) = eδT
�
a
�
1− e−δT

�
+ ρ(1− ĥ(uT ))

�
,

and ∂
∂θG−1

0,θ(T )
����
θ=0

can be derived as below. Since L(T ; θ) = G−1
0,θ(T ), we have the non-linear ODE

of L(τ ; θ),
L(τ ; θ)′ = 1− δL(τ ; θ)− θĝ(L(τ ; θ)), 0 ≤ θ < 1,

with the initial condition L(0; θ) = 0, differentiate both sides with respect to θ,

L(1)(τ ; θ)′ = −δL(1)(τ ; θ)−
�
ĝ(L(τ ; θ)) + θĝ(1)(L(τ ; θ))

�
, 0 ≤ θ < 1,

where

L(1)(τ ; θ) =
∂

∂θ
L(τ ; θ),

ĝ(1)(L(τ ; θ)) =
∂

∂θ
ĝ(L(τ ; θ)),

by setting θ = 0, we have the ODE for L(1)(τ ; 0),

L(1)(τ ; 0)′ = −δL(1)(τ ; 0)− ĝ(L(τ ; 0)),

with the initial condition L(1)(0; 0) = 0, given L(τ ; 0) = 1
δ

�
1− e−δτ

�
, then, L(1)(τ ; 0) can be

uniquely solved,

∂

∂θ
G−1

0,θ(T )
����
θ=0

= L(1)(τ ; 0) = −e−δT

Z T

0
ĝ

�
1− e−δs

δ

�
eδsds < 0;
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equivalently, by the change of variable u = 1−e−δs

δ ,Z T

0
ĝ

�
1− e−δs

δ

�
eδsds =

Z uT

0

ĝ(u)
(1− δu)2

du.

Remark 2.2.7. P
¦
NT = 1

��λ0

©
is positive, sinceZ uT

0

ĝ(u)
(1− δu)2

�
aδu + ρ[1− ĥ(u)]

�
du

≤
Z uT

0

ĝ(u)
(1− δu)2

du

Z uT

0

�
aδu + ρ[1− ĥ(u)]

�
du

<
�
a
�
1− e−δT

�
+ ρ[1− ĥ(uT )] + λ0e

−δT
� Z uT

0

ĝ(u)
(1− δu)2

du.

P
¦
NT = 1

��λ0

©
is not a strictly monotonous function of time T , since

lim
T→0

P
¦
NT = 1

��λ0

©
= 0, lim

T→∞
P
¦
NT = 1

��λ0

©
= 0.

Similarly to the point process Nt, the probability generating function of the size of a cluster
generated by a point of any generation can also be derived as follows.

Theorem 2.2.5. For the size of a cluster generated by a point of any generation, Ňt, under the
condition δ > µ1G

, we have

E
�
θŇT

��λ̌0

�
= e−G

−1
0,θ

(T )λ̌0 , (2.26)

E
�
θŇ∞

��λ̌0

�
= e−v∗λ̌0 , (2.27)

where G0,θ(·) and v∗ are given by (2.20) and (2.22), respectively, and λ̌0 is the value of one of the
associated externally excited or self-excited jumps. In particular, for a cluster generated by a point
of generation 0, we have

E
�
θŇ∞

�
= ĥ(v∗);

for a cluster generated by a point of subsequent generations, we have

E
�
θŇ∞

�
=

1− δv∗

θ
. (2.28)

Proof. For the size of a cluster generated by a point of any generation, the infinitesimal generator
of the process (λ̌t, Ňt, t) acting on a function f(λ̌, ň, t) within its domain Ω(A) is given by

Af(λ̌, ň, t) =
∂f

∂t
− δλ̌

∂f

∂λ̌
+ λ̌

�Z ∞

0
f(λ̌ + y, ň + 1, t)dG(y)− f(λ̌, ň, t)

�
,

as it is just a special case of Theorem 2.2.1 and Theorem 2.2.4. By setting a = 0 and ρ = 0, we
can derive (2.26) immediately. By the proof of Theorem 2.2.4, we know that

lim
T→∞

G−1
0,θ(T ) = v∗,

then,
E
�
θŇ∞

��λ̌0

�
= lim

T→∞
E
�
θŇT

��λ̌0

�
= lim

T→∞
e−G

−1
0,θ

(T )λ̌0 = e−v∗λ̌0 .

35



A Dynamic Contagion Process

In particular, for a cluster generated by a point of generation 0, we have

E
�
θŇ∞

�
= E

�
E
�
θŇ∞

��λ̌0

��
= E

�
e−v∗λ̌0

�
= E

�
e−v∗Y

(1)
1

�
= ĥ(v∗);

for a cluster generated by a point of subsequent generations, we have

E
�
θŇ∞

�
= E

�
e−v∗Y

(2)
1

�
= ĝ(v∗) =

1− δv∗

θ
.

Remark 2.2.8. The size of a cluster generated by a point of any generation actually is a pure
Hawkes process with the reversion level a = 0, a special case of dynamic contagion process. As
time t → ∞, the distribution of λ̌t converges to the distribution of a degenerate random variable
at 0.

Remark 2.2.9. Based on the decaying distributional property of the intensity process λ̌t in
Remark 2.2.8, we have an alternative approach to prove (2.27): By Theorem 2.2.1 with the general
boundary condition B(T ) = v (0 < v < v∗) and using the similar method as given in the proof of
Theorem 2.2.4, we have

E
�
θŇT e−vλ̌T

��λ̌0

�
= e−B(0)λ̌0 ,

where

B(t) = G−1
v,θ(T − t),

Gv,θ(L) =:
Z L

v

du

1− δu− θĝ(u)
, 0 ≤ θ < 1, 0 < v < v∗,

and

lim
T→∞

B(0) = lim
T→∞

G−1
v,θ(T ) = v∗.

Then, as the intensity process decays, we have

E
�
θŇ∞

��λ̌0

�
= lim

T→∞
E
�
θŇT e−vλ̌T

��λ̌0

�
= lim

T→∞
e−B(0)λ̌0 = e−v∗λ̌0 .

Remark 2.2.10. (2.28) can also be derived from the perspective of the cluster process definition
given by Definition 2.1.1, and we observe that each subcluster has the same distribution

E(θ) =: E
�
θŇ∞

�
as its ancestor (for a cluster generated by a point of subsequent generation 1, 2, ...), and hence E(θ)
satisfies the functional equation

E(θ) = ĝ

�
1− θE(θ)

δ

�
which also leads to (2.28).

We also provide an explicit example for Theorem 2.2.5 in Theorem 2.3.3 by assuming the
jumps with the exponential distributions.
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2.2.4 Moments of λt and Nt

Any moment of λt and Nt can be obtained by differentiating the Laplace transform of λt and the
probability generating function of Nt with respect to v and θ, and then setting v and θ equal to
zero, respectively. Alternatively, we can obtain the first and second moments of λt and Nt directly
by solving ODEs, and also this method is slightly easier to generalise to derive higher moments
beyond the condition δ > µ1G

, therefore we will proceed with this method here.

Theorem 2.2.6. The conditional expectation of the process λt given λ0 at time t = 0, is given by

E
�
λt

��λ0

�
=

µ1H
ρ + aδ

δ − µ1G

+
�

λ0 − µ1H
ρ + aδ

δ − µ1G

�
e−(δ−µ1G)t, δ 6= µ1G

, (2.29)

E
�
λt

��λ0

�
= λ0 + (µ1H

ρ + aδ) t, δ = µ1G
, (2.30)

where
µ1H

=:
Z ∞

0
ydH(y).

Proof. By the martingale property of the infinitesimal generator as given in (2.2), we have a
F−martingale

f(λt, Nt, t)− f(λ0, N0, 0)−
Z t

0
A(λs, Ns, s)ds

for f ∈ Ω(A). Now, by particularly setting f(λ, n, t) = λ, we have

Aλ = −(δ − µ1G
)λ + µ1H

ρ + aδ,

then, λt − λ0 −
R t
0 Aλsds is a F−martingale, and we have

E
�
λt −

Z t

0
Aλsds

����λ0

�
= λ0.

Hence,

E
�
λt

��λ0

�
= λ0 + E

�Z t

0
Aλsds

����λ0

�
= λ0 − (δ − µ1G

)
Z t

0
E
�
λs

��λ0

�
ds + (µ1H

ρ + aδ) t,

by differentiating with respect to t, we obtain the non-linear inhomogeneous ODE,

du(t)
dt

= − (δ − µ1G
)u(t) + µ1H

ρ + aδ,

where u(t) = E
�
λt

��λ0

�
, with the initial condition u(0) = λ0. This ODE has the solution given by

(2.29) and (2.30).

Lemma 2.2.1. The second moment of the process λt given λ0 at time t = 0, is given by

E
�
λ2

t

��λ0

�
= λ2

0e
−2(δ−µ1G

)t +
2(µ1H

ρ + aδ) + µ2G

δ − µ1G

�
λ0 − µ1H

ρ + aδ

δ − µ1G

��
e−(δ−µ1G

)t − e−2(δ−µ1G
)t
�

+
�

(2(µ1H
ρ + aδ) + µ2G

)(µ1H
ρ + aδ)

2(δ − µ1G
)2

+
µ2H

ρ

2(δ − µ1G
)

��
1− e−2(δ−µ1G

)t
�

, δ 6= µ1G
, (2.31)

E
�
λ2

t

��λ0

�
= λ2

0 +
�

2(µ1H
ρ + aδ) + µ2G

��
λ0t +

1
2

(µ1H
ρ + aδ) t2

�
+ µ2H

ρt, δ = µ1G
, (2.32)
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where
µ2H

=:
Z ∞

0
y2dH(y); µ2G

=:
Z ∞

0
y2dG(y).

Proof. By setting f(λ, n, t) = λ2 in (2.2), we have

Aλ2 = −2(δ − µ1G
)λ2 +

�
2(µ1H

ρ + aδ) + µ2G

�
λ + µ2H

ρ.

Since λ2
t − λ2

0−
R t
0 Aλ2

sds is a F−martingale by the martingale property of the generator, we have

E
�
λ2

t −
Z t

0
Aλ2

sds

����λ0

�
= λ2

0.

Hence,

E
�
λ2

t

��λ0

�
= λ2

0 − 2(δ − µ1G
)
Z t

0
E
�
λ2

s

��λ0

�
ds +

�
2(µ1H

ρ + aδ) + µ2G

� Z t

0
E
�
λs

��λ0

�
ds + µ2H

ρt,

by differentiating with respect to t, we have the ODE,

du(t)
dt

+ 2(δ − µ1G
)u(t) =

�
2(µ1H

ρ + aδ) + µ2G

��
λ0 − µ1H

ρ + aδ

δ − µ1G

�
e−(δ−µ1G

)t

+
(2(µ1H

ρ + aδ) + µ2G
) (µ1H

ρ + aδ)
δ − µ1G

+ µ2H
ρ,

where u(t) = E
�
λ2

t

��λ0

�
, with the initial condition u(0) = λ2

0. This ODE has the solution given by
(2.31) and (2.32).

Theorem 2.2.7. The conditional variance of the process λt given λ0 at time t = 0, is given by

Var
�
λt

��λ0

�
=

1
2(δ − µ1G

)

�
µ2G

(µ1H
ρ + aδ)

δ − µ1G

− µ2H
ρ− 2µ2G

λ0

�
e−2(δ−µ1G

)t

+
µ2G

δ − µ1G

�
λ0 − µ1H

ρ + aδ

δ − µ1G

�
e−(δ−µ1G

)t

+
1

2(δ − µ1G
)

�
µ2H

ρ +
µ2G

(µ1H
ρ + aδ)

δ − µ1G

�
, δ 6= µ1G

, (2.33)

Var
�
λt

��λ0

�
=

1
2
µ2G

(µ1H
ρ + aδ) t2 + (µ2G

λ0 + µ2H
ρ) t, δ = µ1G

. (2.34)

Proof. By Var
�
λt

��λ0

�
= E

�
λ2

t

��λ0

�
−
�
E
�
λt

��λ0

��2
based on Theorem 2.2.6 and Lemma 2.2.1, the

result follows.

Corollary 2.2.6. Assume δ > µ1G
, then the first and second moments and the variance of the

stationary distribution of the process λt are given by

E [λt] =
µ1H

ρ + aδ

δ − µ1G

, (2.35)

E
�
λ2

t

�
=

(2(µ1H
ρ + aδ) + µ2G

)(µ1H
ρ + aδ)

2(δ − µ1G
)2

+
µ2H

ρ

2(δ − µ1G
)
, (2.36)

Var [λt] =
1

2(δ − µ1G
)

�
µ2H

ρ +
µ2G

(µ1H
ρ + aδ)

δ − µ1G

�
.

Proof. By setting time t →∞ in (2.29), (2.30), (2.31), (2.32), and (2.33), (2.34), respectively, then
the results follow.
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2.2 Distributional Properties

We will now derive the moments for the point process Nt assuming that δ > µ1G
.

Theorem 2.2.8. For the stationary distribution of the process λt, given the condition δ > µ1G

and N0 = 0, the expectation of the point process Nt is given by

E [Nt] =
µ1H

ρ + aδ

δ − µ1G

t. (2.37)

Proof. By setting f(λ, n, t) = n in (2.2), we have An = λ. Since Nt−N0−
R t
0 λsds is a martingale

by the martingale property of the intensity process λt of the point process Nt given by the definition
(2.1), we have

E
�
Nt −N0

��F0

�
= E

�Z t

0
λsds

����F0

�
,

and also we know E [λt] from Corollary 2.2.6, then, by assuming N0 = 0, we have

E [Nt] = E [Nt −N0] =
Z t

0
E [λs] ds =

µ1H
ρ + aδ

δ − µ1G

t.

Lemma 2.2.2. For the stationary distribution of the process λt, given the condition δ > µ1G
and

N0 = 0, we have

E [λtNt] = k̄
�
1− e−(δ−µ1G)t

�
+
�

µ1H
ρ + aδ

δ − µ1G

�2

t, (2.38)

where

k̄ =:
2µ1G

(µ1H
ρ + aδ) + µ2H

ρ

2 (δ − µ1G
)2

+
µ2G

(µ1H
ρ + aδ)

2 (δ − µ1G
)3

. (2.39)

Proof. By setting f(λ, n, t) = λn in (2.2), we have

A (λn) = −(δ − µ1G
)λn + (µ1H

ρ + aδ) n + λ2 + µ1G
λ.

Since λtNt−λ0N0−
R t
0 A (λsNs) ds is a F−martingale by the martingale property of the generator,

given N0 = 0, we have the ODE,

du(t)
dt

= − (δ − µ1G
) u(t) + (µ1H

ρ + aδ)E [Nt] + E
�
λ2

t

�
+ µ1G

E [λt] ,

where u(t) = E [λtNt], with the initial condition u(0) = 0. Note that, E [Nt], E
�
λ2

t

�
and E [λt] are

already given by (2.37), (2.36) and (2.35), respectively, therefore, this ODE has the solution given
by (2.38).

Theorem 2.2.9. For the stationary distribution of the process λt, given the condition δ > µ1G

and N0 = 0, the second moment and the variance of the point process Nt are given by

E
�
N2

t

�
=

2
δ − µ1G

�
e−(δ−µ1G)t − 1

�
+ 2k̄t +

�
µ1H

ρ + aδ

δ − µ1G

�2

t2,

Var [Nt] =
2

δ − µ1G

�
e−(δ−µ1G)t − 1

�
+ 2k̄t,

where constant k̄ is given by (2.39).
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Proof. By setting f(λ, n, t) = n2 in (2.2), we have A �n2
�

= (2n + 1)λ. Since N2
t − N2

0 −R t
0 (2Ns + 1) λsds is a F−martingale by the martingale property of the generator, given N0 = 0,

we have

E
�
N2

t

�
= 2

Z t

0
E [λsNs] ds +

Z t

0
E [λs] ds,

where E [λtNt] and E [λt] are given by(2.38) and (2.35), respectively, then E
�
N2

t

�
follows. Since

Var [Nt] = E
�
N2

t

�− E [Nt]
2 given E [Nt] in (2.37), Var [Nt] follows.

The moments for the special case Hawkes process and other similar processes can also be found
in Oakes (1975) and Azizpour and Giesecke (2008), and more generally in Brémaud, Massoulié
and Ridolfi (2002).

2.3 Example: Jumps with Exponential Distributions

To give an explicit example for the key distributional properties derived above, in this section we
assume both externally excited and self-excited jumps follow exponential distributions, i.e. the
density functions

h(y) = αe−αy; g(y) = βe−βy, where y, α, β > 0, (2.40)

the Laplace transforms have the explicit forms

ĥ(u) =
α

α + u
; ĝ(u) =

β

β + u
. (2.41)

Then the corresponding Laplace transform of λT , conditional probability generating function of NT ,
conditional probability P

¦
NT = 0

��λ0

©
and P

¦
NT = 1

��λ0

©
are obtained respectively as below.

Note that, there are parameters (a, ρ, δ;α, β;λ0) for the general dynamic contagion process and
(a, δ;β;λ0) for the Hawkes process.

2.3.1 Laplace Transform of λT

Lemma 2.3.1. If both the self-excited and externally excited jumps follow exponential distributions,
i.e. the density functions are specified by (2.40), then the conditional Laplace transform of λT given
λ0 at time t = 0, under the condition δβ > 1, is given by

E
�
e−vλT

��λ0

�
= e

−
�
C1(v)−C1(G−1

v,1(T ))
�
e−G

−1
v,1(T )λ0 ,

where

C1(u) =:

(
au + ρ(α−β)

δ(α−β)+1 ln(α + u) + 1
δ

�
a + ρ

δ(α−β)+1

�
ln
�
u + δβ−1

δ

�
, α 6= β − 1

δ

au + ρβ
δβ−1 ln(α + u)− αρ

δ(δβ−1)
1

α+u + 1
δ

�
a− ρ

δβ−1

�
ln
�
u + δβ−1

δ

�
, α = β − 1

δ

,

(2.42)
and

Gv,1(L) =
1

δ(δβ − 1)

�
δβ ln

� v

L

�
− ln

�
δv + (δβ − 1)
δL + (δβ − 1)

��
.

Proof. By Theorem 2.2.2 and µ1G
= 1

β , the condition is δ > 1
β ; and substitute (2.41), into Theorem

2.2.2, we have

Gv,1(L) =
Z v

L

u + β

δu
�
u + δβ−1

δ

�du =
1

δ(δβ − 1)

�
δβ lnu− ln

�
u +

δβ − 1
δ

�� ����u=v

u=L

,
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and

C1(v)− C1

�
G−1

v,1(T )
�

=
Z v

G−1
v,1(T )

�
a + ρ

δ
1

u+α

�
(β + u)

u + δβ−1
δ

du.

Note that, when calculating the integral, we need consider the special case when α = β− 1
δ . Then,

the result follows.

Theorem 2.3.1. If both the externally excited and self-excited jumps follow exponential distri-
butions, i.e. the density functions are specified by (2.40), then, under the condition δβ > 1, the
stationary distribution of the process {λt}t≥0 is given by

λt
D=

8><>: a + Γ̃1 + Γ̃2, α ≥ β

a + Γ̃3 + B̃, α < β and α 6= β − 1
δ

a + Γ̃4 + P̃ , α = β − 1
δ

,

where independent random variables

Γ̃1 ∼ Gamma
�

1
δ

�
a +

ρ

δ(α− β) + 1

�
,
δβ − 1

δ

�
;

Γ̃2 ∼ Gamma
�

ρ(α− β)
δ(α− β) + 1

, α

�
;

Γ̃3 ∼ Gamma
�

a + ρ

δ
,
δβ − 1

δ

�
;

Γ̃4 ∼ Gamma
�a + ρ

δ
, α
�

;

B̃
D=

N1X
i=1

X
(1)
i , N1 ∼ NegBin

�
ρ

δ

β − α

γ1 − γ2
,
γ2

γ1

�
, X

(1)
i ∼ Exp(γ1),

γ1 = max
§

α,
δβ − 1

δ

ª
, γ2 = min

§
α,

δβ − 1
δ

ª
;

P̃
D=

N2X
i=1

X
(2)
i , N2 ∼ Poisson

� ρ

δ2α

�
, X

(2)
i ∼ Exp (α) .

B̃ follows a compound negative binomial distribution with underlying exponential jumps; P̃ follows
a compound Poisson distribution with underlying exponential jumps.

Proof. By Lemma 2.3.1, Theorem 2.2.3, and as G−1
v,1(T ) → 0 when T → ∞, we use the explicit

function C1(u) in (2.42) to derive the Laplace transform of the stationary distribution of the process
{λt}t≥0 by Π̂(v) = e−(C1(v)−C1(0)), then,

Π̂(v) =

8>>>><>>>>: e−va
�

α
α+v

� ρ(α−β)
δ(α−β)+1

� δβ−1
δ

v+ δβ−1
δ

� 1
δ

�
a+ ρ

δ(α−β)+1

�
, α ≥ β

e−va
� δβ−1

δ

v+ δβ−1
δ

� a+ρ
δ
� γ2

γ1

1−
�
1− γ2

γ1

�
γ1

γ1+v

� ρ
δ

β−α
γ1−γ2

, α < β and α 6= β − 1
δ

e−va
�

α
α+v

� ρ+a
δ exp

�
ρ

δ2α

�
α

α+v − 1
��

, α = β − 1
δ

. (2.43)

If α ≥ β, it is obvious that, (2.43) is the Laplace transform of two independent Gamma distributions
Γ̃1 and Γ̃2 shifted by a constant a. If α < β and α 6= β − 1

δ , then always γ1 > γ2, and the second
term is the Laplace transform of Gamma distribution with two parameters a+ρ

δ and δβ−1
δ ; the third

term is the Laplace transform of a compound negative binomial distribution with two parameters
ρ
δ

β−α
γ1−γ2

and γ2
γ1

, and the underlying jumps follows an exponential distribution with parameter γ1,
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since we know that the Laplace transform of negative binomial distribution N1 with two parameters
(r, p) is

E
�
e−vN1

�
=
�

p

1− (1− p)e−v

�r

.

Then

E
�
e−vB̃

�
= E

�
E
�
e−v

PN1
i=1

X
(1)
i

� ����N1

�
= E

��
γ1

γ1 + v

�N1
�

= E
h
e− ln

�
γ1+v

γ1

�
N1
i

=

 
p

1− (1− p)e− ln
�

γ1+v

γ1

�!r

=

�
p

1− (1− p) γ1
γ1+v

�r

,

where
p =

γ1

γ2
∈ (0, 1); r =

ρ

δ

β − α

γ1 − γ2
∈ R+.

Also, it is also easy to identify the corresponding Laplace transforms for the case when α =
β − 1

δ .

We discuss some important special cases below.

Remark 2.3.1. If both jumps follows the same exponential distribution, i.e. α = β, then Γ̃1 and
Γ̃2 combine as one single Gamma random variable Γ̃3, since

Π̂(v) = e−va

�
δβ−1

δ

v + δβ−1
δ

� a+ρ
δ

.

Remark 2.3.2. For the non-self-excited case, i.e. when β = ∞, we have the Laplace transform
of the stationary distribution of the process {λt}t≥0 given by

Π̂(v) = e−va

�
α

α + v

� ρ
δ

,

then, λt follows a shifted Gamma distribution,

λt
D= a + Γ̃5,

where
Γ̃5 ∼ Gamma

�ρ

δ
, α
�

,

which recovers the result by Dassios and Jang (2003) by setting a = 0.

Remark 2.3.3. For the Hawkes process, i.e. the non-externally-excited case when α = ∞, or
ρ = 0, we have the Laplace transform of the stationary distribution of the process {λt}t≥0 given
by

Π̂(v) = e−va

�
δβ−1

δ

v + δβ−1
δ

� a
δ

, (2.44)
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then, λt follows a shifted Gamma distribution,

λt
D= a + Γ̃6,

where
Γ̃6 ∼ Gamma

�
a

δ
,
δβ − 1

δ

�
.

The result for the particular case α = β − 1
δ is actually the limit version of the result for

the case when α < β and α 6= β − 1
δ . In the following sections, we only focus on the main case

when α 6= β − 1
δ , with the Laplace transform of the stationary distribution of the process {λt}t≥0

specified by (2.43).

2.3.2 Probability Generating Function of NT

Theorem 2.3.2. If both the externally excited and self-excited jumps follow exponential distribu-
tions, i.e. the density functions are specified as (2.40), then the conditional probability generating
function of NT given λ0 and N0 = 0 at time t = 0, under the condition δβ > 1, is given by

E
�
θNT

��λ0

�
= e

−
�
C2(G−1

0,θ
(T ))−C2(0)

�
e−G

−1
0,θ

(T )λ0 , α 6= −v∗−,

where

C2(u) =: −au +
α(β − α)ρ

δ
�
α + v∗−

�
(α + v∗)

ln(u + α)

+
1

δ(v∗ − v∗−)

§�
a
�
v∗− + (1− θ)β

�
+ ρv∗−

β + v∗−
α + v∗−

�
ln
�
u− v∗−

�
−
�
a
�
v∗ + (1− θ)β

�
+ ρv∗

β + v∗

α + v∗

�
ln (v∗ − u)

ª
,

and
G0,θ(L) = K(L)−K(0), 0 ≤ L < v∗,

where

K(u) =: − 1
δ
�
v∗ − v∗−

�� (v∗ + β) ln (v∗ − u)− �v∗− + β
�
ln
�
u− v∗−

� �
, 0 ≤ u < v∗,

v∗ =
√

∆− (δβ − 1)
2δ

> 0, (2.45)

−β ≤ v∗− = −
√

∆ + (δβ − 1)
2δ

< 0,

∆ = (δβ + 1)2 − 4θδβ > 0, 0 ≤ θ < 1.

Proof. Since 0 < u < v∗, by substituting the explicit results of (2.41) into Theorem 2.2.4, we have

G0,θ(L) =
Z L

0

β + u

−δu2 − (δβ − 1)u + (1− θ)β
du = K(L)−K(0),

and

C2(u) = −a

�
u−K(u)− θβ

δ

1
v∗ − v∗−

ln
v∗ − u

u− v∗−

�
+ρ

�
K(u) +

α

δ

1
v∗ − v∗−

�
ln

v∗ − u

u− v∗−
+ (β − α)

�
1

α + v∗
ln

v∗ − u

u + α
− 1

α + v∗−
ln

u− v∗−
u + α

���
,
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and also,

v∗ =
√

∆− δβ − 1
2δ

=

È
(δβ − 1)2 + 4(1− θ)δβ − (δβ − 1)

2δ
>

(δβ − 1)− (δβ − 1)
2δ

= 0;

−v∗− =
√

∆ +
δβ − 1

2δ
=

È
(δβ + 1)2 − 4θδβ + (δβ − 1)

2δ
≤ (δβ + 1) + (δβ − 1)

2δ
= β,

where v∗− = −β only when θ = 0.

Remark 2.3.4. We need to assume α 6= −v∗− in Theorem 2.3.2, since

−v∗− =

È
(δβ + 1)2 − 4θδβ + (δβ − 1)

2δ
,

and, for each θ ∈ [0, 1) we have the unique v∗−, where

−v∗− ∈
�

β − 1
δ
, β

�
.

Therefore, if α ∈
�
β − 1

δ , β
�
, there exists the unique θ ∈ [0, 1), such that α + v∗− = 0.

α = −v∗− is a very particular case, and we will not consider it here and assume α 6= −v∗− in
the sequel.

Now we derive the probability P
¦
NT = 0

��λ0

©
in Corollary 2.3.1, and P

¦
NT = 1

��λ0

©
for

case α 6= β in Corollary 2.3.2, a discussion for the special case α = β is given in Remark 2.3.5.

Corollary 2.3.1. If both the externally excited and self-excited jumps follow exponential distribu-
tions, i.e. the density functions are specified by (2.40), then the conditional probability of no jump
given λ0 and N0 = 0, under the condition δβ > 1, is given by

P
¦
NT = 0

��λ0

©
= e−(a+ ρ

1+δα )T e
a−λ0

δ (1−e−δT )
�

1− e−δT + δα

δα

� αρ
1+δα

.

Proof. By Theorem 2.3.2 and setting θ = 0, then, ∆ = (δβ + 1)2, v∗ = 1
δ , v∗− = −β,

G−1
0,0(T ) =

1
δ

�
1− e−δT

�
,

K(u) = −1
δ

ln(1− δu), 0 ≤ u <
1
δ
,

C2(u) = −au +
α(β − α)ρ

δ
�
α + v∗−

�
(α + v∗)

ln(u + α)− 1
δ(v∗ − v∗−)

�
a +

ρv∗

v∗ + α

�
(v∗ + β) ln (v∗ − u)

= −au− αρ

δα + 1
ln (u + α)− 1

δ

�
a +

ρ

δα + 1

�
ln
�

1
δ
− u

�
,

and the result follows.

Corollary 2.3.2. If both the externally excited and self-excited jumps follow exponential distribu-
tions, i.e. the density functions are specified by (2.40) (α 6= β), then the conditional probability of
exactly one jump given λ0 and N0 = 0, under the condition δβ > 1, is given by

P
¦
NT = 1

��λ0

©
= P

¦
NT = 0

��λ0

©
×
�

(HT + aδβ − ρ)QT − aβ
�
eδT − 1

�
+ρ

αβ

1 + δβ

�
ā ln

�α + uT

α

�
− b̄ ln

�
β + uT

β

�
+ c̄T + d̄

�
eδT − 1

�� �
,
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where

HT =
�

a +
ρ

δα + 1− e−δT

��
1− e−δT

�
+ λ0e

−δT ,

QT =
β

1 + δβ

�
1

1 + δβ
ln
�

β + uT

β

�
+ δT +

�
eδT − 1

��
,

uT =
1
δ

�
1− e−δT

�
,

ā =
1

1 + δβ

1
β − α

+
δ

1 + δα

�
1

1 + δβ
+

1
1 + δα

�
,

b̄ =
1

1 + δβ

1
β − α

,

c̄ =
δ2

1 + δα

�
1

1 + δβ
+

1
1 + δα

�
,

d̄ =
δ

1 + δα
.

Proof. By Corollary 2.2.5, and

1
(β + u)(1− δu)2

=
1

1 + δβ

�
1

1 + δβ

�
1

β + u
+

δ

1− δu

�
+

δ

(1− δu)2

�
,

we have QT byZ uT

0

ĝ(u)
(1− δu)2

du = β

Z uT

0

1
(β + u)(1− δu)2

du

=
β

1 + δβ

§
1

1 + δβ

�
ln
�

β + uT

β

�
+ δT

�
+ eδT − 1

ª
,

and Z uT

0

ĝ(u)u
(1− δu)2

du =
β

δ

�
eδT − 1

�
− βQT ,

also, when α 6= β,Z uT

0

ĝ(u)ĥ(u)
(1− δu)2

du = αβ

Z uT

0

1
(α + u)(β + u)(1− δu)2

du

=
αβ

1 + δβ

�
ā ln

�α + uT

α

�
− b̄ ln

�
β + uT

β

�
+ c̄T + d̄

�
eδT − 1

��
,

then, the result follows.

Remark 2.3.5. In particular, if α = β, then,

P
¦
NT = 1

��λ0

©
= P

¦
NT = 0

��λ0

©
×
§

(HT + aδβ − ρ)ZT − aβ
�
eδT − 1

�
+ρ

�
β

1 + δβ

�2 � uT

β(β + uT )
+ δ

�
eδT − 1

�
+

2δ

δβ + 1

�
ln
�

β + uT

β

�
+ δT

��ª
,

where

HT =
�

a +
ρ

δβ + 1− e−δT

��
1− e−δT

�
+ λ0e

−δT ,

QT =
β

1 + δβ

�
1

1 + δβ
ln
�

β + uT

β

�
+ δT +

�
eδT − 1

��
.
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Note that, when α = β,Z uT

0

ĝ(u)ĥ(u)
(1− δu)2

du = β2

Z uT

0

�
1

(β + u)(1− δu)

�2

du

=
�

β

1 + δβ

�2 � uT

β(β + uT )
+ δ

�
eδT − 1

�
+

2δ

δβ + 1

�
ln
�

β + uT

β

�
+ δT

��
.

Remark 2.3.6. For the Hawkes process, we have the conditional probability of no jump and
exactly one jump, by setting ρ = 0 in Corollary 2.3.1 and Corollary 2.3.2, respectively,

P
¦
NT = 0

��λ0

©
= e−aT e

a−λ0
δ (1−e−δT ),

P
¦
NT = 1

��λ0

©
= P

¦
NT = 0

��λ0

©
×β

�
a(1− e−δT + δβ) + λ0e

−δT

1 + δβ

�
1

1 + δβ
ln
�

β + uT

β

�
+ δT +

�
eδT − 1

��
− a(eδT − 1)

�
.

We will state and prove the results for the size of clusters based on Theorem 2.2.5 for this
exponential distribution case as below.

Theorem 2.3.3. If both the externally excited and self-excited jumps follow exponential distribu-
tions, i.e. the density functions are specified as (2.40), then for the size of a cluster generated by
a point of any generation, Ňt, under the condition δβ > 1, we have

E
�
θŇ∞

��λ̌0

�
= exp

�
−
È

(δβ − 1)2 + 4δβ(1− θ)− (δβ − 1)

2δ
λ̌0

�
; (2.46)

and Ň∞ conditional on λ̌0 actually follows a mixed Poisson distribution,

P
¦
Ň∞ = k

��λ̌0

©
=
Z ∞

0

vke−v

k!
m(v)dv, k = 0, 1, 2, ... (2.47)

where m(v) is the density function of the mixing distribution,

m(v) = e
δβ−1

2δ λ̌0e−( δβ−1
2δ )2 δ

β v

È
β
2δ λ̌0√
2πv

3
2
e−

β
2δ

λ̌2
0

2v , (2.48)

which is an inverse Gaussian distribution with parameters
�

β
δβ−1 λ̌0,

β
2δ λ̌2

0

�
.

Proof. By substituting the explicit exponential distribution functions of (2.41) and the constant
v∗ of (2.45) into Theorem 2.2.5, we obtain (2.46) immediately.

To prove that Ň∞ follows a mixed Poisson distribution, we rewrite (2.46) by

E
�
θŇ∞

��λ̌0

�
= e

δβ−1
2δ λ̌0e−

√
2ξλ̌0 ,

where

ξ =
1
2

�
δβ − 1

2δ

�2

+
β

2δ
(1− θ),

and identify that

e−
√

2ξλ̌0 = E
h
e−ξÜIGi =

Z ∞

0
e−ξu

�
λ̌2

0

� 1
2

√
2πu

3
2
e−

λ̌2
0

2u du,
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where fIG follows the (infinite mean) inverse Gaussian distribution with parameters
�
∞, λ̌2

0

�
, then,

we have

E
�
θŇ∞

��λ̌0

�
= e

δβ−1
2δ λ̌0

Z ∞

0
e−ξu

�
λ̌2

0

� 1
2

√
2πu

3
2
e−

λ̌2
0

2u du

=
Z ∞

0
e−
�

1
2 ( δβ−1

2δ )2
+ β

2δ (1−θ)
�
ue

δβ−1
2δ λ̌0

�
λ̌2

0

� 1
2

√
2πu

3
2
e−

λ̌2
0

2u du,

=
Z ∞

0
e−

β
2δ (1−θ)ue

δβ−1
2δ λ̌0e−

1
2 ( δβ−1

2δ )2
u

�
λ̌2

0

� 1
2

√
2πu

3
2
e−

λ̌2
0

2u du

and let v = β
2δ u,

E
�
θŇ∞

��λ̌0

�
=

Z ∞

0
e−(1−θ)ve

δβ−1
2δ λ̌0e−( δβ−1

2δ )2 δ
β v

�
β
2δ λ̌2

0

� 1
2

√
2πv

3
2

e−
β
2δ

λ̌2
0

2v dv

=
Z ∞

0
e−(1−θ)vm(v)dv = m̂(θ − 1),

where
m̂(u) =

Z ∞

0
e−uvm(v)dv.

Hence, by the definition of the mixed Poisson distribution, we have (2.47) and (2.48); set u = 1−θ,
we have

m̂(u) = exp

�
−
È

(δβ − 1)2 + 4δβu− (δβ − 1)

2δ
λ̌0

�
= exp

264 β
2δ λ̌2

0
β

δβ−1 λ̌0

�
1−

Ì
1 + 2

�
β

2δ−1 λ̌0

�2
β
2δ λ̌2

0

u

�375 ,

which is exactly the Laplace transform of an inverse Gaussian distribution with parameters
�

β
δβ−1 λ̌0,

β
2δ λ̌2

0

�
.

Corollary 2.3.3. In particular, for a cluster generated by a point of generation 0, we have

E
�
θŇ∞

�
=

2δα

δ(2α− β) + 1 +
È

(δβ − 1)2 + 4δβ(1− θ)
; (2.49)

for a cluster generated by a point of subsequent generations, we have

E
�
θŇ∞

�
=

2δβ

1 +
q

1− 4δβ
(δβ+1)2 θ

, (2.50)

and

P
¦
Ň∞ = k

©
=

(δβ)k+1

(δβ + 1)2k

(2k)!
k!(k + 1)!

, k = 0, 1, .... (2.51)

Proof. By substituting the explicit exponential distribution functions of (2.41) and the constant
v∗ of (2.45) into Theorem 2.2.5, we obtain (2.49). In particular, by setting α = β in (2.46) we
have (2.50); by stationarity condition δ > 1

β we have

0 <
4δβ

(δβ + 1)2
< 1,
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and additionally 0 ≤ θ < 1, we have

0 ≤ 4δβ

(δβ + 1)2
θ < 1.

Then, by referring the formula provided by Gradshteyn and Ryzhik (2007), (2.50) can be expanded
explicitly as given by (2.51).

Remark 2.3.7. We can also expand (2.46) explicitly for some other special cases. For instance,
if 2δα + (1− δβ) = 0, we have

E
�
θŇ∞

�
=

αÈ
α2 + β

δ

 
1− θ

δ
β α2 + 1

!− 1
2

,

and

P
¦
Ň∞ = k

©
=

δβ − 1
2
√

δβ

(2k)!

(k!2k)2

�
(δβ + 1)2

4δβ

�−(k+ 1
2 )

, k = 0, 1, . . . .

Remark 2.3.8. For the general case, we can expand (2.49) with respect to θ by Taylor expansion
function in Matlab. An example with the parameter setting (δ;α, β) = (2.0; 2.0, 1.5) for P{Ň∞ =
k} is given by Table 2.1.

Tab. 2.1: Probability P{Ň∞ = k} for k = 0, 1, 2, ...; (δ; α, β) = (2.0; 2.0, 1.5)

k P{Ň∞ = k} (%) k P{Ň∞ = k} (%)

0 80.0000 13 0.0124

1 12.0000 14 0.0083

2 4.0500 15 0.0056

3 1.7888 16 0.0039

4 0.9043 17 0.0026

5 0.4956 18 0.0018

6 0.2866 19 0.0013

7 0.1722 20 0.0009

8 0.1064 21 0.0006

9 0.0672 22 0.0004

10 0.0432 23 0.0003

11 0.0282 24 0.0002

12 0.0186 25 0.0001

The corresponding moments of λt and Nt based on exponential jump distributions are omit-
ted as they can be easily obtained using the results in Section 2.2.4.

2.4 Simulation

We also provide the simulation algorithm for the dynamic contagion process (Nt, λt)

• to make easier for further practical implementation and industrial applications;

• for statistical analysis, such as parameter calibration;

• to validate the theoretical results we have derived;
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2.4 Simulation

• for investigating more complex situations where there could be no analytic result, such as the
cases when the jump sizes follow various heavy-tailed distributions (e.g. log-normal, Pareto,
Weibull distributions).

2.4.1 Simulation Algorithm

Algorithm 2.4.1. The simulation algorithm for one sample path
¦
(Nt, λt)

©
t≥0

of the dynamic
contagion process conditional on λ0 and N0 = 0, with m jump times {T ∗1 , T ∗2 , ..., T ∗m} in the process
λt:

1. Set the initial conditions T ∗0 = 0, λT∗±0
= λ0 > a, N0 = 0 and i ∈ {0, 1, 2, ..., m− 1}.

2. Simulate the (i + 1)th externally excited jump waiting time E∗
i+1 by

E∗
i+1 = −1

ρ
lnU, U ∼ U[0, 1].

3. Simulate the (i + 1)th self-excited jump waiting time S∗i+1 by

S∗i+1 =

¨
S
∗(1)
i+1 ∧ S

∗(2)
i+1 , di+1 > 0

S
∗(2)
i+1 , di+1 < 0

,

where
di+1 = 1 +

δ lnU1

λT∗+
i
− a

, U1 ∼ U[0, 1],

and
S
∗(1)
i+1 = −1

δ
ln di+1; S

∗(2)
i+1 = −1

a
lnU2, U2 ∼ U[0, 1].

4. Record the (i + 1)th jump time T ∗i+1 in the process λt by

T ∗i+1 = T ∗i + S∗i+1 ∧ E∗
i+1.

5. Record the change at the jump time T ∗i+1 in the process λt by

λT∗+
i+1

=

8<: λT∗−
i+1

+ Y
(2)
i+1, Y

(2)
i+1 ∼ G(y)

�
S∗i+1 ∧ E∗

i+1 = S∗i+1

�
λT∗−

i+1
+ Y

(1)
i+1, Y

(1)
i+1 ∼ H(y)

�
S∗i+1 ∧ E∗

i+1 = E∗
i+1

� , (2.52)

where
λT∗−

i+1
=
�
λT∗+

i
− a
�

e−δ(T∗i+1−T∗i ) + a.

6. Record the change at the jump time T ∗i+1 in the point process Nt by

NT∗+
i+1

=

(
NT∗−

i+1
+ 1

�
S∗i+1 ∧ E∗

i+1 = S∗i+1

�
NT∗−

i+1

�
S∗i+1 ∧ E∗

i+1 = E∗
i+1

� . (2.53)

Proof. Given T ∗i , the ith jump time in λt.

• Case E∗
i+1: The (i + 1)th jump in λt is caused by an externally-excited jump, then it follows

a Poisson distribution with constant intensity ρ, and E∗
i+1 is the (i+1)th waiting time, where

E∗
i+1 ∼ Exp(ρ), or,

E∗
i+1

D= − 1
ρ

lnU.

Hence, the (i + 1)th jump time is T ∗i + E∗
i+1.
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• Case S∗i+1: The (i+1)th jump in λt is caused by a self-excited jump, then S∗i+1 is the (i+1)th

waiting time and can be derived as follows:

Between time T ∗i and T ∗i + S∗i+1, the intensity process
¦
λt

©
T∗

i
≤t<T∗

i
+S∗

i+1

follows the ODE

dλt

dt
= −δ (λt − a) ,

with the initial condition λt

��
t=T∗

i

= λT∗
i
. It has the unique solution

λt =
�
λT∗+

i
− a
�

e−δ(t−T∗i ) + a, T ∗i ≤ t < T ∗i + S∗i+1,

and then, the cumulative distribution function of the waiting time S∗i+1 in the point process
Nt is given by

FS∗
i+1

(s) = P
�
S∗i+1 ≤ s

	
= 1− P

�
S∗i+1 > s

	
= 1− P

¦
NT∗

i
+s −NT∗

i
= 0
©

= 1− exp

�
−
Z T∗i +s

T∗
i

λudu

�
= 1− exp

�
−
Z s

0
λT∗+

i
+vdv

�
= 1− exp

�
−
�
λT∗+

i
− a
� 1− e−δs

δ
− as

�
.

By the inverse transformation method, we have

S∗i+1
D=F−1

S∗
i+1

(U).

However, we can avoid inverting the function FS∗
i+1

(·) by separating S∗i+1 into two simpler

and independent random variables S
∗(1)
i+1 and S

∗(2)
i+1 as

S∗i+1
D=S

∗(1)
i+1 ∧ S

∗(2)
i+1 ,

where

P
¦
S
∗(1)
i+1 > s

©
= exp

�
−
�
λT∗+

i
− a
� 1− e−δs

δ

�
,

P
¦
S
∗(2)
i+1 > s

©
= e−as,

since

P{S∗i+1 > s} = exp
�
−
�
λT∗+

i
− a
� 1− e−δs

δ

�
× e−as

= P
¦
S
∗(1)
i+1 > s

©
× P

¦
S
∗(2)
i+1 > s

©
= P

¦
S
∗(1)
i+1 ∧ S

∗(2)
i+1 > s

©
.

– For S
∗(1)
i+1 , since

F
S
∗(1)
i+1

(s) = P
¦
S
∗(1)
i+1 ≤ s

©
= 1− exp

�
−
�
λT∗+

i
− a
� 1− e−δs

δ

�
,
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we have

exp

 
−
�
λT∗+

i
− a
� 1− e−δS

∗(1)
i+1

δ

!
D=U1,

by inverting the function, then we have

S
∗(1)
i+1

D= − 1
δ

ln

 
1 +

δ lnU1

λT∗+
i
− a

!
. (2.54)

Note that, S
∗(1)
i+1 is a defective random variable as

lim
s→∞

F
S
∗(1)
i+1

(s) = P
¦
S
∗(1)
i+1 ≤ ∞

©
= 1− exp

�
−

λT∗+
i
− a

δ

�
< 1,

and the condition for simulating S
∗(1)
i+1 is

di+1 =: 1 +
δ lnU1

λT∗+
i
− a

> 0.

– For S
∗(2)
i+1 , since S

∗(2)
i+1 ∼ Exp(a), we have

S
∗(2)
i+1

D= − 1
a

lnU2. (2.55)

Hence, for S∗i+1, we have

S∗i+1
D=

¨
S
∗(1)
i+1 ∧ S

∗(2)
i+1 , di+1 > 0

S
∗(2)
i+1 , di+1 < 0

,

where S
∗(1)
i+1 and S

∗(2)
i+1 are given by (2.54) and (2.55), respectively.

Based on the two cases discussed above, T ∗i+1, the (i + 1)th jump time in λt, is given by

T ∗i+1 = T ∗i + S∗i+1 ∧ E∗
i+1,

and the changes in λt and Nt at time T ∗i+1 then can be easily derived as given by (2.52) and (2.53),
respectively.

Remark 2.4.1. Note that, this simulation procedure given by Algorithm 2.4.1 applies to the gen-
eral distribution assumption for externally and self-excited jump-sizes H(y) and G(y), respectively.

2.4.2 Example: Jumps with Exponential Distributions

By the simulation algorithm Algorithm 2.4.1 and assuming both the externally excited and self-
excited jump sizes follow exponential distributions with density functions specified by (2.40), we
provide the some simulated examples below with parameter setting

(a, ρ, δ;α, β;λ0) = (0.5; 1.0, 1.5; 0.5, 1.0; 1.5).

One Simulated Sample Path

For instance, one simulated sample path (Nt, λt) with T = 50 is provided in Figure 2.2. For
comparison, the theoretical expectations E[λt], E[λt|λ0] and E[Nt] (derived by Corollary 2.2.6,
Theorem 2.2.6 and Theorem 2.2.8, respectively) are also plotted.
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Fig. 2.2: One Simulated Sample Path of the Dynamic Contagion Process (Nt, λt)

Simulation Mean and Variance v.s. Theoretical Results for Intensity λt

To compare the simulated results with their theoretical counterparts, for instance, we calculate
the simulation mean and the theoretical expectation E[λt|λ0] (given by Theorem 2.2.6) in Figure
2.3, and the simulation variance and the theoretical variance Var[λt|λ0] (given by Theorem 2.2.7)
in Figure 2.4, respectively. Every point (marked by a star ∗) is based on 10000 simulate sample
paths of dynamic contagion process (Nt, λt).

2.5 Change of Measure

In this section, we provide one way to change measure for the dynamic contagion process (λt, Nt)
via Esscher transform and scaling for the jump-size distributions.

By Theorem 2.2.1, Theorem 2.2.2 and Theorem 2.2.4, we have a FPt −martingale

ec(t)θNte−B(t)λt , (2.56)

where parameters c(t) and B(t) follow the equations¨
−B′(t) + δB(t) + θĝ(B(t))− 1 = 0 (.1)
c′(t) + ρĥ(B(t))− ρ− aδB(t) = 0 (.2)

, (2.57)

and can be uniquely determined for the two cases (I, II ) under the stationarity condition δ > µ1G

for 0 ≤ t ≤ T :
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I. θ = 1, B(T ) = v > 0:

B(t) ∈ (0, v], c(t) ∈
�
0,

Z v

0

aδu + ρ[1− ĥ(u)]
δu + ĝ(u)− 1

du

�
, t ∈ [0, T = ∞), (2.58)

II. 0 ≤ θ < 1, B(T ) = v = 0:

B(t) ∈ [0, v∗), c(t) ∈
�
0,

Z v∗

0

aδu + ρ[1− ĥ(u)]
1− δu− θĝ(u)

du

�
, t ∈ [0, T = ∞), (2.59)

where v∗ is the unique positive solution to 1− δu− θĝ(u) = 0.

Theorem 2.5.1. Define an equivalent probability measure eP, via the Radon-Nikodym derivative

deP
dP

=: ec(t)−c(0)θNt−N0e−(B(t)λt−B(0)λ0), 0 ≤ θ ≤ 1,

then, we have the parameter transformation for the dynamic contagion process (Nt, λt) from P→ eP
by

• a → θĝ(B(t))a,

• δ → δ,

• ρ → ĥ(B(t))ρ,

• h(u) → eh� 1
θĝ(B(t)) u

�
θĝ(B(t)) ,

• g(u) → eg� 1
θĝ(B(t)) u

�
θĝ(B(t)) .

Proof. We use the martingale given by (2.56) to define an equivalent martingale probability mea-
sure eP, via the Radon-Nikodym derivative

deP
dP

=: Lt =:
ec(t)θNte−B(t)λt

E
�
ec(t)θNte−B(t)λt

� = ec(t)−c(0)θNt−N0e−(B(t)λt−B(0)λ0),

which is a FPt −martingale with mean value 1. Assume

f(λ, n, t) = ec(t)θne−B(t)λ ef(λ, n, t),

and set Af(λ, n, t) = 0 for all λ, n and t in (2.2), we have�
c′(t)−B′(t)λ

� ef +
∂ ef
∂t

+ δ (a− λ)

�
−B(t) ef +

∂ ef
∂λ

�
+ρ

�Z ∞

0

ef(λ + y, n, t)e−B(t)ydH(y)− ef(λ, n, t)
�

+λ

�
θ

Z ∞

0

ef(λ + y, n + 1, t)e−B(t)ydG(y)− ef(λ, n, t)
�

= 0.

Given the parameter relationship by (2.57) (without explicitly solving the equations) and Esscher
Transform

dÜH(y) =:
e−B(t)y

ĥ(B(t))
dH(y); dÜG(y) =:

e−B(t)y

ĝ(B(t))
dG(y),
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we have

∂ ef
∂t

+ δ (a− λ)
∂ ef
∂λ

+ ĥ(B(t))ρ
�Z ∞

0

ef(λ + y, n, t)dÜH(y)− ef(λ, n, t)
�

+ θĝ(B(t))λ
�Z ∞

0

ef(λ + y, n + 1, t)dÜG(y)− ef(λ, n, t)
�

= 0.

Let eλ = θĝ(B(t))λ, we have

∂ ef
∂t

+ δ

�
θĝ(B(t))a− eλ�∂ ef

∂eλ + ĥ(B(t))ρ
�Z ∞

0

ef �eλ + θĝ(B(t))y, n, t
�

dÜH(y)− ef(eλ, n, t)
�

+ eλ�Z ∞

0

ef �eλ + θĝ(B(t))y, n + 1, t
�

dÜG(y)− ef(eλ, n, t)
�

= 0.

Change variable by u = θĝ(B(t))y, we have

∂ ef
∂t

+ δ

�
θĝ(B(t))a− eλ�∂ ef

∂eλ + ĥ(B(t))ρ
�Z ∞

0

ef �eλ + u, n, t
�

dÜH(y)− ef(eλ, n, t)
�

+ eλ�Z ∞

0

ef �eλ + u, n + 1, t
�

dÜG(y)− ef(eλ, n, t)
�

= 0.

Since
dÜH(y) = eh(y)dy; dÜG(y) = eg(y)dy,

we finally have

∂ ef
∂t

+ δ

�
θĝ(B(t))a− eλ�∂ ef

∂eλ + ĥ(B(t))ρ

�Z ∞

0

ef �eλ + u, n, t
� eh � 1

θĝ(B(t))u
�

θĝ(B(t))
du− ef(eλ, n, t)

�
+ eλ�Z ∞

0

ef �eλ + u, n + 1, t
� eg � 1

θĝ(B(t))u
�

θĝ(B(t))
du− ef(eλ, n, t)

�
= 0.

Therefore, by comparing with (2.2), we have the parameter transform from the original measure
P→ to the new measure eP as given by Theorem 2.5.1.

Remark 2.5.1. Base on Theorem 2.5.1, for any event S ∈ Ft, we haveÜP {S} = E
�
LtI{S}

�
,

and inversely,

P
¦
S��N0 = n, λ0 = λ

©
= eE � 1

Lt
I{A}

����N0 = n, λ0 = λ

�
= ec(0)θne−B(0)λeE �e−c(t)θ−NteB(t)λtI{A}

����N0 = n, λ0 = λ

�
.

Stationarity Condition

Theorem 2.5.2. If the stationarity condition holds under the original measure P, i.e.

δ > µ1G
,

then, it still holds under the new measure eP, i.e.eδ > µ1eG .
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A Dynamic Contagion Process

Proof. Under the new measure eP, by the parameter transformation given by Theorem 2.5.1 and
change variable y = 1

θĝ(B(t))u we have

µ1eG =
Z ∞

0
u
eg � 1

θĝ(B(t))u
�

θĝ(B(t))
du

=
Z ∞

0
u

1
θĝ(B(t))

e−B(t) 1
θĝ(B(t)) u

ĝ(B(t))
g

�
1

θĝ(B(t))
u

�
du

= θ

Z ∞

0
ye−B(t)ydG(y).

Since 0 ≤ θ ≤ 1 and B(T ) = v ≥ 0 as given by (2.58) and (2.59) and the stationarity condition
holds under the measure P, we haveeδ = δ > µ1G

=
Z ∞

0
ydG(y) > θ

Z ∞

0
ye−B(t)ydG(y) = µ1eG .

Example: Jumps with Exponential Distributions

Assume the jump-sizes follows essential distributions, H ∼ Exp(α) and G ∼ Exp(β) as given by
(2.40), by Theorem 2.5.1 we have the parameter transform from the measure P to the new measureeP as follows:

• a → θβ
β+B(t)a,

• δ → δ,

• ρ → α
α+B(t)ρ,

• H ∼ Exp(α) → Exp
�

(α+B(t))(β+B(t))
θβ

�
,

• G ∼ Exp(β) → Exp
�

(β+B(t))2

θβ

�
.
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3

Applications to Finance: Credit

Risk

The dynamic contagion process introduced by Chapter 2 provides us a new and proper tool for
modelling the contagion and clustering of the arrivals of events. In this chapter, we mainly apply
the dynamic contagion process to model the default credit risk of a single name (company) in
Section 3.1. We also have a brief investigation and discussion on possible applications to portfolio
credit risk in Section 3.2.

3.1 Single-Name Default Probability

Our motivation of applying the dynamic contagion process to model the credit risk in this section
is a combination of Duffie and Singleton (1999) and Lando (1998). Duffie and Singleton (1999)
introduced the affine processes to model the default intensity. Lando (1998), the extension of Jar-
row, Lando and Turnbull (1997), used the state of credit ratings as an indicator of the likelihood
of default, and modelled the underlying credit rating migration driven by a probability transition
matrix with Cox processes in a finite-state Markov process framework. However, we go beyond
this and model the bad events that can possibly lead to credit default, and the number and the
intensity of these events are modelled by the dynamic contagion process.

Based on this idea, we proceed with the following modification of the intensity models. We
assume that the final default or bankruptcy is caused by a number of bad events relating to the
underlying company. The bad events are not only restricted to the credit rating downgrades an-
nounced by rating agencies, but also could be other bad news relevant to this company, such as bad
corporate financial reports. The frequency of these bad events is dependent both on the common
bad news in the market exogenously and the company’s bad events endogenously. Each company
has a certain level of capability or resistance to overcome some its bad events to avoid bankruptcy,
for example, if we use the credit rating system as the indicator to quantify this level, usually the
higher rated companies have higher capability level. We provide an application in credit risk for
this idea by using the dynamic contagion process, based on the explicit results obtained in Section
2.3 for the case of exponential jumps.

The point process Nt is to model the number of bad events released from the underlying
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Fig. 3.1: Survival Probability Ps(T ); (a, ρ, δ; α, β; λ0) = (0.7, 0.5, 2.0; 2.0, 1.5; 0.7)

company. It is driven by a series of bad events
¦
Y

(2)
j

©
j=1,2,...

from itself and the common bad

events
¦
Y

(1)
i

©
i=1,2,...

widely in the whole market via its intensity process λt. The impact of each
event decays exponentially with constant rate δ. We assume each jump, or bad event, can result
to default with a constant probability d, 0 < d ≤ 1, which measures and quantifies the resistance
level. Therefore, the survival probability conditional on the (initial) current intensity λ0 at time
T is given by

Ps(T ) = E
�
(1− d)NT

��λ0

�
(3.1)

which can be calculated simply by letting θ = 1 − d in the conditional probability generating
function derived in Theorem 2.3.2.

By setting the parameters (a, ρ, δ;α, β;λ0) = (0.7, 0.5, 2.0; 2.0, 1.5; 0.7) in (3.1), the term struc-
ture of the survival probabilities ps(T ) based on d = 2%, 10%, 20% and 100% are shown in Figure
3.1, with the corresponding numerical results in Table 3.1.

Tab. 3.1: Survival Probability Ps(T ); (a, ρ, δ; α, β; λ0) = (0.7, 0.5, 2.0; 2.0, 1.5; 0.7)

Time T 1 2 3 4 5 6

d = 2% 98.15% 95.92% 93.65% 91.40% 89.21% 87.06%

d = 10% 91.26% 81.78% 72.99% 65.07% 58.01% 51.70%

d = 20% 83.66% 67.91% 54.78% 44.13% 35.54% 28.63%

d = 100% 46.73% 21.10% 9.48% 4.26% 1.92% 0.86%

Alternatively, by using the same parameter setting, we can regenerate the survival proba-
bilities Ps(T ) in Table 3.2 based on 10000 simulated sample paths (truncated at time T ), which
are very close to the analytical results in Table 3.1. One of the underlying simulated sample
paths is provided in Figure 3.2. For comparison, the theoretical expectations E[λt], E[λt|λ0] and
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Fig. 3.2: One Simulated Sample Path of the Dynamic Contagion Process (Nt, λt)

E[Nt] (derived by Corollary 2.2.6, Theorem 2.2.6 and Theorem 2.2.8, respectively) are also plotted.

Tab. 3.2: Survival Probability Ps(T ) by 10000 Simulated Sample Paths

Time T 1 2 3 4 5 6

d = 2% 98.13% 95.89% 93.60% 91.46% 89.18% 87.04%

d = 10% 91.18% 81.71% 72.97% 65.24% 58.00% 51.67%

d = 20% 83.65% 67.85% 54.83% 43.85% 35.26% 28.81%

d = 100% 46.66% 21.68% 9.98% 4.39% 1.77% 0.84%

As in Lando (1998), we could consider different values of d correspond to different credit
ratings, by assuming these bad events are all related to the company’s credit ratings.

We also provide a comparison for the survival probabilities based on three main processes
discussed in this paper: dynamic contagion process, Hawkes process (by setting ρ = 0) and non-
self-excited process (by setting β = ∞), with the same parameter setting and fixed d = 10%. The
results are shown in Figure 3.3, with numerical output in Table 3.3.
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Tab. 3.3: Survival Probability Comparison for the Dynamic Contagion, Hawkes and Non-self-excited

Process

Time T 1 2 3 4 5 6

Dynamic Contagion Process 91.26% 81.78% 72.99% 65.07% 58.01% 51.70%

Hawkes Process 91.99% 83.68% 75.92% 68.84% 62.40% 56.57%

Non-self-excited Process 92.59% 85.34% 78.62% 72.41% 66.70% 61.72%

We can see that, the dynamic contagion process, as the most general case of the three pro-
cesses, generates the lowest survival probability, and the differences between the other two processes
explain the impact from the endogenous and exogenous factors respectively. This process is capa-
ble to capture more aspects of the risk, which is particularly useful for modelling the risks during
the economic downturn involving more clusters of bad economic events.

3.2 Multiple-Name Default Probability

For applications to portfolio credit risk involving multiple underlying names, such as pricing CDO,
it is crucial to find the quantity P{NT = k}, i.e. the probability of k names of default in the
portfolio up to time t. Theoretically, we can obtain it explicitly by simply differentiating k times
to the probability generating function of Nt derived in Theorem 2.2.4, however, in practice, the
result could become extremely messy for a large number of k. Therefore, in this section, we propose
three alternative methods below as future research to estimate this probability.

Monte Carlo Simulation under the Original Measure The probabilities P{NT = k} can be es-
timated based on the crude Monte Carlo simulation (CMC) by using Algorithm 2.4.1, and an
example is provided as below.

With parameter setting (a, ρ, δ;α, β;λ0) = (0.7, 0.5, 2.0; 2.0, 1.5; 0.7), we estimate P{NT = k}
for time T = 1, T = 5, T = 10 and T = 20, respectively, based on 1, 000, 000 sample paths for each
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point as represented in Figure 3.4 and Table 3.4.

Remark 3.2.1. This CMC approach becomes difficult to estimate precisely the rare event proba-
bilities P{NT = k} when k is very large (> 50), and it should be better if we could make a suitable
change of measure and simulate with importance sampling.

Faà di Bruno’s Formula Rather than differentiating k times to the probability generating function
of Nt directly, we could differentiate the Riccati ordinary differential equations of the probability
generating function of Nt, with aid of Faà di Bruno’s Formula. This approach is also adopted by
Errais, Giesecke and Goldberg (2010) for pricing CDO via a Hawkes-process model.

We slightly modify Theorem 2.2.4 to be the Riccati ordinary differential equations of the
probability generating function of Nt.

Theorem 3.2.1. The probability generating function of NT conditional on Ft, under the condition
δ > µ1G

, is given by

E
�
θ(NT−Nt)

��Ft

�
= e

−
�

c(T )−c(t)

�
e−B(t)λt , 0 ≤ θ < 1,

where B(t) is uniquely determined by the non-linear ODE

B′(t) = δB(t) + θĝ(B(t))− 1,

with the boundary condition B(T ) = 0; and c(T ) is uniquely determined by

c′(t) = aδB(t) + ρ
�
1− ĥ(B(t))

�
,

with the boundary condition c(0) = 0.
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Tab. 3.4: Probability P{NT = k} by Monte Carlo Simulation (1, 000, 000 Samples)

k P{NT=1 = k} P{NT=5 = k} P{NT=10 = k} P{NT=20 = k}
0 46.68% 1.92% 0.03% 0.00%

1 29.75% 5.75% 0.21% 0.00%

2 13.69% 9.66% 0.67% 0.00%

3 5.72% 12.10% 1.47% 0.01%

4 2.37% 12.76% 2.62% 0.03%

5 1.02% 12.11% 3.98% 0.07%

6 0.44% 10.52% 5.30% 0.14%

7 0.19% 8.71% 6.51% 0.26%

8 0.08% 6.86% 7.45% 0.46%

9 0.04% 5.27% 7.98% 0.72%

10 0.02% 3.98% 8.03% 1.05%

11 0.01% 2.89% 7.81% 1.49%

12 0.00% 2.13% 7.34% 1.94%

13 0.00% 1.56% 6.66% 2.49%

14 0.00% 1.11% 5.91% 3.05%

15 0.00% 0.79% 5.14% 3.58%

16 0.00% 0.56% 4.41% 4.04%

17 0.00% 0.40% 3.69% 4.51%

18 0.00% 0.27% 3.04% 4.85%

19 0.00% 0.19% 2.48% 5.08%

20 0.00% 0.14% 2.01% 5.29%

Define B(t) = B(t; θ), c(t) = c(t; θ), and

Et(k, T ; θ) =:
∂k

∂θk
E
�
θ(NT−Nt)

��Ft

�
=

∂k

∂θk
exp

�
−
�
c(T ; θ)− c(t; θ)

�
−B(t; θ)λt

�
,

and we need calculate

P{NT −Nt = k
��λt} =

1
k!
Et(k, T ; 0),

where ¨
B(t; θ)′ = δB(t; θ) + θĝ(B(t; θ))− 1 (0 ≤ θ < 1, δ > µ1G

) (.1)
c(t; θ)′ = aδB(t; θ) + ρ

�
1− ĥ(B(t; θ))

�
(.2)

, (3.2)

with boundary conditions B(T ; θ) = 0 and c(0; θ) = 0. Note that, we have the expansion for the
probability generating function

E
�
θ(NT−Nt)

��Ft

�
= exp

�
−
�
c(T ; θ)− c(t; θ)

�
−B(t; θ)λt

�
=

∞X
k=0

θkP{NT −Nt = k
��λt},

and {Et(k, T ; 0)}k=0,1,... can be obtained as follows.

• Et(0, T ; 0): We have

∂0

∂θ0

����
θ=0

: B(t; 0)′ = δB(t; 0)− 1,

c(t; 0)′ = aδB(t; 0) + ρ
�
1− ĥ(B(t; 0))

�
,

with boundary conditions B(T ; 0) = 0 and c(0; 0) = 0. The solution is given by

B(t; 0) =
1
δ

�
1− e−δ(T−t)

�
,

c(t; 0) =
Z t

0

�
a
�
1− e−δ(T−s)

�
+ ρ

�
1− ĥ

�
1
δ

�
1− e−δ(T−s)

����
ds,
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hence,

∂0

∂θ0
E
�
θ(NT−Nt)

��Ft

�����
θ=0

= exp
�
−
�
c(T ; 0)− c(t; 0)

�
−B(t; 0)λt

�
= exp

�
−a(T − t) +

1
δ

�
1− e−δ(T−t)

�
a− 1

δ

�
1− e−δ(T−t)

�
λt

�
.

• Et(1, T ; 0): We have

∂1

∂θ1
: B(1)(t; θ)′ = δB(1)(t; θ) +

�
ĝ(B(t; θ)) + θĝ(1)(B(t; θ))

�
,

c(1)(t; θ)′ = aδB(1)(t; θ)− ρĥ(1)(B(t; θ)),

with boundary condition B(1)(T ; θ) = 0 and c(1)(0; θ) = 0,

∂1

∂θ1

����
θ=0

: B(1)(t; 0)′ = δB(1)(t; 0) + ĝ(B(t; 0)),

c(1)(t; 0)′ = aδB(1)(t; 0)− ρĥ(1)(B(t; 0)),

with boundary conditions B(1)(T ; 0) = 0 and c(1)(0; 0) = 0. The solution is given by

B(1)(t; 0) =
Z t

0
ĝ(B(s; 0))eδ(t−s)ds,

c(1)(t; 0) =
Z t

0

�
aδB(1)(s; 0)− ρĥ(1)(B(s; 0))

�
ds,

hence,

∂1

∂θ1
E
�
θ(NT−Nt)

��Ft

�����
θ=0

=
�
−
�
c(1)(T ; 0)− c(1)(t; 0)

�
−B(1)(t; 0)λt

�
exp

�
−
�
c(T ; 0)− c(t; 0)

�
−B(t; 0)λt

�
.

• Et(k, T ; 0): for larger k, we can use Faà di Bruno’s Formula for differentiating multiple times
w.r.t. θ.

Proposition 3.2.1. Faà di Bruno’s Formula:

∂k

∂θk
g
�
f(θ)

�
=
X k!

b1!b2! · · · bk!
g(b1+···+bk)

�
f(θ)

��f ′(θ)
1!

�b1 �f ′′(θ)
2!

�b2

· · ·
�

f (k)(θ)
k!

�bk

,

where the sum is over all different solutions in non-negative integers b1, · · · , bk of b1 + 2b2 + · · ·+
kbk = k. Alternatively, this formula above can be expressed by

∂k

∂θk
g
�
f(θ)

�
=

kX
d=1

Skdf
(d)
�
g(θ)

�
,

where the coefficients

Skd =
X

(b1,··· ,bk)∈Bkd

k!
b1!b2! · · · bk!

�
f ′(θ)

1!

�b1 �f ′′(θ)
2!

�b2

· · ·
�

f (k)(θ)
k!

�bk

,

Bkd =
§

(b1, · · · , bk) :
kX

i=1

bi = d,
kX

i=1

ibi = k, bi ∈ N0

ª
.
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It is key to efficiently generate all vectors (b1, b2, · · · , bk) in the set

Bk =
k[

d=1

Bkd,

and we adopt the algorithm of Klimko (1973) to generate all indices in Faà di Bruno’s Formula.
Solutions as vectors (b1, b2, · · · , bk) stored in the matrices Mk from case k = 1 to case k = 8
are provided for instance. We can observe from Figure 3.5, Table 3.5 and the matrices Mk, the
cardinality of Bk, i.e. the total number of vectors (b1, b2, · · · , bk), increases exponentially with
respect to k, and also the recursive structure in the ODEs, so we do not adopt this method for
calculating P{NT = k} as it has inconvenience for processing in practice particularly when k is
very large (k > 50).

Mk =:

2664 b1 · · · · · ·
...

... · · ·
bk · · · · · ·

3775
k×Cardinality of Bk

Mk=2 =

�
0 2
1 0

�
2×2

Mk=3 =

264 0 1 3
0 1 0
1 0 0

375
3×3

Mk=4 =

26664 0 1 0 2 4
0 0 2 1 0
0 1 0 0 0
1 0 0 0 0

37775
4×5

Mk=5 =

26666664 0 1 0 2 1 3 5
0 0 1 0 2 1 0
0 0 1 1 0 0 0
0 1 0 0 0 0 0
1 0 0 0 0 0 0

37777775
5×7

Mk=6 =

2666666664
0 1 0 2 1 1 0 0 0 0 6
0 0 1 0 0 1 0 3 2 1 0
0 0 0 0 2 1 1 0 0 0 0
0 0 1 1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0

3777777775
6×11

Mk=7 =

266666666664
0 1 0 2 0 1 0 0 0 2 1 1 1 1 7
0 0 1 0 0 1 0 0 2 1 0 3 2 1 0
0 0 0 0 1 0 0 2 1 1 1 0 0 0 0
0 0 0 0 1 1 1 0 0 0 0 0 0 0 0
0 0 1 1 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

377777777775
7×15
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Fig. 3.5: The Cardinality of Bk

Mk=8 =

266666666666664
0 1 0 2 0 1 0 0 1 0 2 1 1 1 1 3 2 2 2 2 2 8
0 0 1 0 0 1 0 0 0 2 1 0 1 0 2 1 0 4 3 2 1 0
0 0 0 0 1 0 0 0 1 0 0 0 2 2 1 1 1 0 0 0 0 0
0 0 0 0 0 0 0 2 1 1 1 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

377777777777775
8×22

Tab. 3.5: The Cardinality of Bk

k 2 3 4 5 10 20 30 40 50 60 80 100 125

Cardinality 2 3 5 7 42 627 5,604 37,338 204,226 966,467 15,796,476 190,569,292 3,163,127,352

Asymptotic Approximation The major difficulty we meet in two aprroaches above is estimating
the probability P{Nt = k} precisely for a larger k, although in variety of situations of applica-
tions in practice, we would not meet the case when k is very large above 50, or, the probability is
extremely small and could be neglected. For future research, we suggest to investigate the asymp-
totic property of P{NT = k} or P{Nt < k} when k → ∞ for a fixed time T by using Tauberian
Theorem, Monotone Density Theorem or Large Deviation Theory.
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4

Applications to Insurance: Ruin

by Dynamic Contagion Claims

To capture the clustering phenomenon as well as some common external factors involved for the
arrival of claims within one single consistent framework, we extend further to use the dynamic
contagion process and try to generalise results obtained for the classical model of infinite hori-
zon. In this chapter, we consider a risk process with the arrival of claims modelled by a dynamic
contagion process. We derive results for the infinite horizon model that are generalisations of the
Cramér-Lundberg approximation, Lundberg’s fundamental equation, some asymptotics as well as
bounds for the probability of ruin. Special attention is given to the case of exponential jumps and
a numerical example is provided.

We organise this chapter as follows. Section 4.1 formulates the problem. It also provides a
numerical example and some asymptotics that are based on simulations. In Section 4.2, we use the
martingale method and generalise Lundberg’s fundamental equation. We derive bounds for the
ruin probability in Section 4.3. In Section 4.4, we derive all results via a change of measure. This
makes simulations more efficient as ruin is certain under the new measure. Section 4.5 concentrates
on exponentially distributed claims. Our results are illustrated by a numerical example.

4.1 Ruin Problem

We consider a company with its surplus process Xt in continuous time on a probability space
(Ω,F ,P),

Xt = x + ct−
NtX
i=1

Zi, t ≥ 0, (4.1)

where

• X0 = x ≥ 0 is the initial reserve at time t = 0;

• c > 0 is the constant rate of premium payment per time unit;

• Nt is a point process (N0 = 0) counting the number of cumulative arrived claims in the time
interval (0, t], driven by a dynamic contagion process with its stochastic intensity process λt

and the initial intensity λ0 = λ > 0;
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•
¦
Zi

©
i=1,2,...

is a sequence of independent identical distributional positive random variables

(claim sizes) with distribution function Z(z), z > 0, and also independent of Nt; the mean,
Laplace transform of density function and tail are denoted respectively by

µ1Z
=:
Z ∞

0
zdZ(z), ẑ(u) =:

Z ∞

0
e−uzdZ(z), Z(x) =:

Z ∞

x
dZ(s).

The surplus process Xt is a right-continuous function of time t.

Definition 4.1.1 (Ruin Time). The ruin (stopping) time τ∗ is defined by

τ∗ =:

¨
inf
¦
t > 0

��Xt ≤ 0
©

inf {∅} = ∞ if Xt > 0 for all t;

in particular, τ∗ = ∞ means ruin does not occur.

We are interested in the ruin probability in finite time,

P
¦
τ∗ < t

��X0 = x, λ0 = λ
©

;

in particular, the ultimate ruin probability in infinite time,

P
¦
τ∗ < ∞��X0 = x, λ0 = λ

©
=: lim

t→∞
P
¦
τ∗ < t

��X0 = x, λ0 = λ
©

;

and also the ultimate ruin probability in infinite time when the intensity process λt has stationary
distribution,

P
¦
τ∗ < ∞

��X0 = x, λ0 ∼ Π
©

,

where Π is the stationary distribution of λt given by Theorem 2.2.3.

4.1.1 Net Profit Condition

Theorem 4.1.1. If δ > µ1G
and the arrival of claims is driven by a dynamic contagion process,

then, the net profit condition is given by

c >
µ1H

ρ + aδ

δ − µ1G

µ1Z
. (4.2)

Proof. Obviously, we have the expectation of surplus process Xt defined by (4.1),

E [Xt] = x + ct− µ1Z
E [Nt] ,

since the sequence {Zi}i=1,2,... and the process Nt are independent,

E

"
NtX
i=1

Zi

#
= E

"
E

"
NtX
i=1

Zi

# ����Nt

#
=

∞X
n=0

E
�
Z1 + · · ·+ ZNt

����Nt = n

�
P{Nt = n}

=
∞X

n=0

E
�
Z1 + · · ·+ Zn

����Nt = n

�
P{Nt = n}

=
∞X

n=0

E [Z1 + · · ·+ Zn]P{Nt = n}

=
∞X

n=0

nµ1Z
P{Nt = n}

= µ1Z
E [Nt] .
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Fig. 4.1: Ruin Probability P
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τ∗ < t
��X0 = x, λ0 = λ

©
by 50, 000 Simulated Dynamic Contagion Pro-

cesses

If δ > µ1G
and the net profit condition holds, by Corollary 2.2.6 and Theorem 2.2.8, we have

lim
t→∞

E [Xt]
t

= c− µ1H
ρ + aδ

δ − µ1G

µ1Z
> 0.

4.1.2 Simulation Examples

Before giving mathematical proofs, we can have a first glance at this ruin problem via Monte Carlo
simulation. Assume the stationarity condition for λt and net profit condition for Xt both hold, and
the two types of jump sizes and claim sizes all follow exponential distributions, i.e. H ∼ Exp(α),
G ∼ Exp(β) and Z ∼ Exp(γ). We implement the simulation algorithm for a dynamic contagion
process provided by Algorithm 2.4.1, with parameters set by

(a, λ0, ρ, δ;α, β, γ;X0, c) = (0.7, 0.7, 0.5, 2.0; 2.0, 1.5, 1.0; 10, 1.5).

In Figure 4.1, we plot the ruin probability P
¦
τ∗ < t

��X0 = x, λ0 = λ
©

against the time from
t = 0 to t = 400. We can observe that the probability increases and converges around 30%
when time t increases. Note that, each point is calculated based on 50, 000 replications of dynamic
contagion processes. For instance, one example of simulated surplus process Xt with the underlying
point process of claim arrival Nt and intensity process λt from time t = 0 to t = 100 is represented
by Figure 4.2, and the pattern of clustering arrival of claims generated by a dynamic contagion
process is also shown in the histogram. For comparison, the theoretical expectations of λt and
Nt (given by Corollary 2.2.6) are plotted together with their simulated paths. More numerical
examples are provided later by Section 4.5.3.

Remark 4.1.1. It is impossible to simulate infinitely long (t = ∞) paths for estimating the
ultimate ruin probability P

¦
τ∗ < t = ∞

��X0 = x, λ0 = λ
©
. However, thanks to the convergence

of simulation observed in Figure 4.1, we can truncate the simulated paths at a large time (say,
t = 400) as an approximation to t = ∞.
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Fig. 4.2: Example: Ruin Problem by One Simulated Dynamic Contagion Process

70



4.2 Exponential Martingales and Generalised Lundberg’s Fundamental Equation

4.2 Exponential Martingales and Generalised Lundberg’s Fundamental Equation

In this section, we find some useful exponential martingales which link to the generalised Lundberg’s
fundamental equation. More importantly, they are crucial for deriving some key results of the ruin
problem in the later sections.

Theorem 4.2.1. Assume δ > µ1G
and the net profit condition (4.2), we have a martingale

e−vrXteηrλte−rt, r ≥ 0,

where constants r, vr and ηr satisfy a generalised Lundberg’s fundamental equation¨ −δηr + ẑ(−vr)ĝ(−ηr)− 1 = 0
ρ
�
ĥ(−ηr)− 1

�
− r + aδηr − cvr = 0

�
c >

µ1H
ρ + aδ

δ − µ1G

µ1Z
, δ > µ1G

�
. (4.3)

If 0 ≤ r < r∗, then (4.3) has a unique positive solution (v+
r > 0, η+

r > 0), where

r∗ =: ρ
�
ĥ(−η∗)− 1

�
+ aδη∗, (4.4)

and η∗ is the unique positive solution to

1 + δηr = ĝ(−ηr). (4.5)

Proof. The (Model-1 type) infinitesimal generator of the process (Xt, λt, t) acting on a function
f(x, λ, t) ∈ Ω(A) is given by

Af(x, λ, t) =
∂f

∂t
− δ(λ− a)

∂f

∂λ
+ c

∂f

∂x
+ λ

�Z ∞

y=0

Z ∞

z=0
f(x− z, λ + y, t)dZ(z)dG(y)− f(x, λ, t)

�
+ρ

�Z ∞

0
f(x, λ + y, t)dH(y)− f(x, λ, t)

�
. (4.6)

For the classification of Model-1 type and Model-2 type generators for ruin problem, see Dassios
and Embrechts (1989).

Assume the form
f(x, λ, t) = e−vrxeηrλe−rt,

and plug into the generator (4.6). To be a martingale, set Af(x, λ, t) = 0, then,

−r − δ(λ− a)ηr − cvr + λ

�Z ∞

y=0

Z ∞

z=0
evrzeηrydZ(z)dG(y)− 1

�
+ ρ

�Z ∞

0
eηrydH(y)− 1

�
= 0,

and rewrite as�
− δηr + ẑ(−vr)ĝ(−ηr)− 1

�
λ +

�
ρ
�
ĥ(−ηr)− 1

�
− r + aδηr − cvr

�
= 0,

holding for any λ. Hence, we have (4.3). The proofs of the uniqueness and the associated conditions
for the solution to (4.3) are given by Lemma 4.2.1 and Lemma 4.2.2 as below.

Lemma 4.2.1. Under δ > µ1G
and the net profit condition (4.2), there are unique positive solution

η+
r and unique negative solution η−r to ηr of the generalised Lundberg’s fundamental equation (4.3);

In particular, for r = 0, there is a unique positive solution η+
0 and the solution zero.
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Fig. 4.3: Generalised Lundberg Fundamental Equation

Proof. Rewrite the generalised Lundberg’s fundamental equation (4.3) w.r.t. ηr,8>><>>: ẑ

 
r−aδηr+ρ

�
1−ĥ(−ηr)

�
c

!
ĝ(−ηr) = 1 + δηr

−vr =
r−aδηr+ρ

�
1−ĥ(−ηr)

�
c

�
c >

µ1H
ρ + aδ

δ − µ1G

µ1Z
, δ > µ1G

�
.

Consider the first equation above, i.e.

f(ηr) = l(ηr), r > 0,

where

f(ηr) =: ẑ

 
r − aδηr + ρ

�
1− ĥ(−ηr)

�
c

!
ĝ(−ηr),

l(ηr) =: 1 + δηr.

Obviously, f(ηr) is a strictly increasing and strictly convex function of ηr, since

∂ĥ(−u)
∂u

> 0,
∂ĝ(−u)

∂u
> 0,

∂ẑ(u)
∂u

< 0,

∂2ĥ(−u)
∂u2

> 0,
∂2ĝ(−u)

∂u2
> 0,

∂2ẑ(u)
∂u2

> 0,
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and

∂f(ηr)
∂ηr

=
−aδ − ρ∂ĥ(−ηr)

∂ηr

c

∂ẑ(u)
∂u

����
u=

r−aδηr+ρ

�
1−ĥ(−ηr)

�
c

ĝ(−ηr)

+ẑ

 
r − aδηr + ρ

�
1− ĥ(−ηr)

�
c

!
∂ĝ(−ηr)

∂ηr
> 0,

∂2f(ηr)
∂η2

r

= −ρ

c

∂2ĥ(−ηr)
∂η2

r

∂ẑ(u)
∂u

����
u=

r−aδηr+ρ

�
1−ĥ(−ηr)

�
c

ĝ(−ηr)

+
−aδ − ρ∂ĥ(−ηr)

∂ηr

c

"−aδ − ρ∂ĥ(−ηr)
∂ηr

c

∂2ẑ(u)
∂u2

����
u=

r−aδηr+ρ

�
1−ĥ(−ηr)

�
c

+2
∂ẑ(u)
∂u

����
u=

r−aδηr+ρ

�
1−ĥ(−ηr)

�
c

∂ĝ(−ηr)
∂ηr

#
+ẑ

 
r − aδηr + ρ

�
1− ĥ(−ηr)

�
c

!
∂2ĝ(−ηr)

∂η2
r

> 0.

Furthermore, we have f(ηr) > 0, f(−∞) = 0, f(+∞) = +∞, and also l(ηr) is a strictly linearly
increasing function of ηr.

We discuss the solutions for the two cases r > 0 and r = 0 separately as below.

• For r > 0, we have
0 < f(0) = ẑ

�r

c

�
< 1 = l(0),

and the slope of the tangent at ηr = 0,

∂l(ηr)
∂ηr

����
ηr=0

>
∂f(ηr)

∂ηr

����
ηr=0

> 0.

By the stationarity condition δ > µ1G
and the net profit condition (4.2), we have

∂f(ηr)
∂ηr

����
ηr=0

=
−aδ − µ1H

ρ

c

∂ẑ(u)
∂u

����
u= r

c

+ ẑ
�r

c

�
µ1G

<
−aδ − µ1H

ρ

c

∂ẑ(u)
∂u

����
u=0

+ ẑ (0)µ1G

=
aδ + µ1H

ρ

c
µ1Z

+ µ1G

< δ =
∂l(ηr)
∂ηr

����
ηr=0

.

It is clear that there is a unique positive solution η+
r and a unique negative solution η−r by

plotting f(ηr) and l(ηr), see Figure 4.3.

• For r = 0, we have
0 < f(0) = ẑ (0) = 1 = l(0),

and the slope of the tangent at ηr = 0,

∂l(ηr)
∂ηr

����
ηr=0

>
∂f(ηr)

∂ηr

����
ηr=0

> 0.
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By the stationarity condition and the net profit condition, we have

∂f(ηr)
∂ηr

����
ηr=0

<
aδ + µ1H

ρ

c
µ1Z

+ µ1G
< δ =

∂l(ηr)
∂ηr

����
ηr=0

.

It is clear that there are unique positive solution η+
0 and solution 0 by plotting f(ηr) and

l(ηr).

In order to find the positive solution to vr, we will only consider the unique positive solution
η+

r for r ≥ 0 in the sequel.

Lemma 4.2.2. If 0 ≤ r < r∗,

r∗ =: ρ
�
ĥ(−η∗)− 1

�
+ aδη∗, (4.7)

where the constant η∗ is the unique positive solution to

1 + δηr = ĝ(−ηr), δ > µ1G
,

then, there exists a unique positive solution v+
r to vr of the generalised Lundberg’s fundamental

equation (4.3),

v+
r = −

r − aδη+
r + ρ

�
1− ĥ(−η+

r )
�

c
. (4.8)

Proof. By substituting η+
r (from Lemma 4.2.1) into the second equation of the generalised Lund-

berg’s fundamental equation (4.3), we have the solution to vr, i.e. (4.8). Define

V (ηr) =: −
r − aδηr + ρ

�
1− ĥ(−ηr)

�
c

.

Obviously, V (ηr) is a strictly increasing and strictly convex function of ηr, as ∂V (ηr)
∂ηr

> 0 and
∂2V (ηr)

∂η2
r

> 0; also, V (−∞) = −∞, V (+∞) = +∞; v(0) = − r
c < 0; hence, there is unique (positive)

root ηo
r > 0 such that V (ηo

r) = 0, also see Figure 4.3.
In order to find the unique positive solution v+

r , such that v+
r = V (η+

r ) > 0, we have the
condition η+

r > ηo
r , which also is equivalent to the condition

l (ηo
r) > f (ηo

r) , ηo
r > 0,

or,
1− δηo

r > ĝ(−ηo
r), ηo

r > 0,

note that, f (ηo
r) = ĝ (−ηo

r). Under the stationarity condition δ > µ1G
, the equation 1 + δηr =

ĝ(−ηr) has the unique positive solution η∗ (independent from r > 0) and the solution 0. Therefore,
we have the condition

0 < ηo
r < η∗,

such that
1 + δηo

r > ĝ(−ηo
r), ηo

r > 0.

We discuss the two cases r > 0 and r = 0 separately as below.
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• If r = 0, we have ηo
0 = ηo

r

��
r=0

= 0, and it is clear that η+
0 > ηo

0 > 0 holds, therefore, v+
0 > 0

exists without any condition.

• If r > 0, then the condition η∗ > ηo
r > 0 is also equivalent to the condition V (η∗) > 0 since

V (·) is a strictly increasing function, i.e.

V (η∗) = −
r − aδη∗ + ρ

�
1− ĥ(−η∗)

�
c

> 0.

Hence, we can obtain the upper bound r∗ for r > 0 explicitly, i.e. 0 < r < r∗, where r∗ is
given by (4.7), note that, r∗ > 0 as η∗ > 0, also see Figure 4.3.

Remark 4.2.1. Given the existence and uniqueness of solution (η+
r , v+

r ) to the generalised Lund-
berg’s fundamental equation (4.3), we have η∗ > η+

r , since

1 + δη+
r = ẑ

�
−v+

r

�
ĝ
�
−η+

r

�
> ĝ(−η+

r ),

we know that, if δ > µ1G
the equation 1+δηr = ĝ(−ηr) has solution 0 and η∗ > 0, then, η+

r should
be between them, i.e. η∗ > η+

r > 0, also see Figure 4.3. Therefore, we have the full ranking

0 < ηo
r < η+

r < η∗.

Remark 4.2.2. In particular, for r = 0, we have a martingale e−v+
0 Xteη+

0 λt , where (v+
0 , η+

0 ) is the
unique positive solution to the equations(

δη+
0 = ẑ

�
−v+

0

�
ĝ
�
−η+

0

�
− 1

cv+
0 = aδη+

0 + ρ
�
ĥ(−η+

0 )− 1
� �

c >
µ1H

ρ + aδ

δ − µ1G

µ1Z
, δ > µ1G

�
.

The martingales and generalised Lundberg’s fundamental equation derived in this section are
the building blocks of the martingale method and change of measure, two key approaches adopted
in the following sections.

4.3 Ruin Probability via Original Measure

Theorem 4.3.1. The ruin probability conditional on λ0 and X0 is given by

P
¦
τ∗ < ∞��X0 = x, λ0 = λ

©
=

e−v+
0 xeη+

0 λ

E
�
e−v+

0 Xτ∗ eη+
0 λτ∗

��τ∗ < ∞;X0 = x, λ0 = λ
� . (4.9)

Proof. By the optional stopping theorem, a bounded martingale stopped at a stopping time is still
a martingale. Now we consider the martingale found by Theorem 4.2.1 stopped at the ruin time,
i.e.

e−v+
r X(τ∗∧t)eη+

r λ(τ∗∧t)e−r(τ∗∧t), 0 ≤ r < r∗.

By the martingale property, we have

E
�
e−v+

r X(τ∗∧t)eη+
r λ(τ∗∧t)e−r(τ∗∧t)

�
= E

�
e−v+

r X(τ∗∧t)eη+
r λ(τ∗∧t)e−r(τ∗∧t)

����X0 = x, λ0 = λ

�
= e−v+

r xeη+
r λ,
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and

E
�
e−v+

r Xτ∗ eη+
r λτ∗ e−rτ∗

����τ∗ ≤ t

�
P{τ∗ ≤ t}+ E

�
e−v+

r Xteη+
r λte−rt

����τ∗ > t

�
P{τ∗ > t} = e−v+

r xeη+
r λ,

or,

E
�
e−v+

r Xτ∗ eη+
r λτ∗ e−rτ∗

����τ∗ ≤ t

�
P{τ∗ ≤ t}+ e−rtE

�
e−v+

r Xteη+
r λt

����τ∗ > t

�
P{τ∗ > t} = e−v+

r xeη+
r λ,

(4.10)
where

E
�
e−v+

r Xteη+
r λt

����τ∗ > t

�
P{τ∗ > t} = E

�
e−v+

r Xteη+
r λtI (τ∗ > t)

�
≤ E

�
eη+

r λt

�
.

Note that, by Theorem 2.2.3, we have

lim
t→∞

E
�
eη+

r λt

�
= exp

�Z 0

−η+
r

aδu + ρ[1− ĥ(u)]
δu + ĝ(u)− 1

du

�
< ∞,

since by Remark 4.2.1, for 0 < r < r∗, we have −η∗ < −η+
r < 0 where −η∗ is the negative singular

point of the integrand function above, i.e. the unique negative solution to δu+ ĝ(u)−1 = 0. Hence,
for the second term in (4.10),

lim
t→∞

e−rtE
�
e−v+

r Xteη+
r λt

����τ∗ > t

�
P{τ∗ > t} = 0.

Let t →∞ in (4.10), then, {τ∗ ≤ t} → {τ∗ < ∞}, and

E
�
e−v+

r Xτ∗ eη+
r λτ∗ e−rτ∗

����τ∗ < ∞
�

P{τ∗ < ∞} = e−v+
r xeη+

r λ.

Let r → 0, we have

E
�
e−v+

0 Xτ∗ eη+
0 λτ∗

����τ∗ < ∞
�

P{τ∗ < ∞} = e−v+
0 xeη+

0 λ,

then (4.9) follows.

Corollary 4.3.1. If Z ∼ Exp (γ), then,

P
¦
τ∗ < ∞��X0 = x, λ0 = λ

©
=

γ − v+
0

γ

eη+
0 λe−v+

0 x

E
�
eη+

0 λτ∗
��τ∗ < ∞;X0 = x, λ0 = λ

� .
Proof. If Z ∼ Exp (γ), due to the memoryless property of the exponential distribution, the over-
shoot −Xτ∗ > 0 then follows the same exponential distribution, i.e. −Xτ∗ ∼ Exp (γ). Hence, for
(4.9) we have

E
�
e−v+

0 Xτ∗ eη+
0 λτ∗

��τ∗ < ∞
�

= E
�
e−v+

0 Xτ∗
�
E
�
eη+

0 λτ∗
��τ∗ < ∞

�
=

γ

γ − v+
0

E
�
eη+

0 λτ∗
��τ∗ < ∞

�
.

Remark 4.3.1. Note that, the overshoot −Xτ∗ > 0, λτ∗ > 0, then, e−v+
0 Xτ∗ > 1, eη+

0 λτ∗ > 1, we
have an inequality for the ruin probability,

P
¦
τ∗ < ∞��X0 = x, λ0 = λ

©
<

eη+
0 λe−v+

0 x

E
�
eη+

0 λτ∗
��τ∗ < ∞;X0 = x, λ0 = λ

� < eη+
0 λe−v+

0 x.
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eη+
0 λe−v+

0 x is a rough up bound of ruin probability, as it could be greater than one when λ0 is
relatively large. In order to obtain a more precise upper bound, it is better to find the distribution
property of E

�
eη+

0 λτ∗
��τ∗ < ∞

�
but it would be not easy and we leave it as future research.

If Z ∼ Exp (γ), then,

P
¦
τ∗ < ∞��X0 = x, λ0 = λ

©
<

γ

γ − v+
0

eη+
0 λe−v+

0 x.

For instance, the comparison between the bounds and the ruin probability P
¦
τ∗ < ∞��X0 = 10, λ0 = λ

©
simulated by 50, 000 sample paths with parameter setting

(a; ρ, δ;α, β, γ;X0, c) = (0.7; 0.5, 2.0; 2.0, 1.5, 1.0; 10, 1.5), (η+
0 , v+

0 ) = (0.0842, 0.0932),

is given by Table 4.1 and Figure 4.4.

Tab. 4.1: Example: The Comparison between the Bounds and the Simulated Ruin Probability

λ0 = λ P
¦

τ∗ < ∞
��X0 = 10, λ0 = λ

©
Up Bound eη+

0 λ0e−v+
0 X0 Up Bound

γ−v+
0

γ
eη+

0 λ0e−v+
0 X0

1 28.83% 42.84% 38.84%

2 31.34% 46.60% 42.26%

3 34.39% 50.69% 45.97%

4 37.34% 55.15% 50.01%

5 40.01% 59.99% 54.40%

6 43.46% 65.26% 59.18%

7 46.67% 70.99% 64.38%

8 50.45% 77.23% 70.03%

9 53.34% 84.01% 76.18%

10 56.83% 91.39% 82.88%

11 60.56% 99.42% 90.16%

12 63.66% 108.16% 98.08%

4.4 Ruin Probability via Change of Measure

In this section, we investigate the ruin probability and asymptotics by change of measure via the
martingale derived by Theorem 4.2.1. We will find that under this new measure the ruin becomes
certain, and this makes the simulation more efficient than under the original measure where the
ruin is not certain and even rare. Similar ideas of improving simulation of rare events by a change
of measure can also be found in Asmussen (1985) and more recently Asmussen and Glynn (2007).

4.4.1 Ruin Probability by Change of Measure

Theorem 4.4.1. The ruin probability conditional on X0 and λ0 can be expressed under new
measure P̃ by

P
¦
τ∗ < ∞��X0 = x, λ0 = λ

©
= e−v+

0 xem+
0 λ̃Ẽ

24Ψ
�
Xτ∗−

� e
−m+

0 λ̃τ∗−

ĝ(−η+
0 )

�����X0 = x, λ̃0 = λ̃

35 , (4.11)
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Fig. 4.4: Simulated Ruin Probability P
¦

τ∗ < ∞
��X0 = 10, λ0 = λ

©
v.s. Up Bounds

where λ̃ =: (1 + δη+
0 )λ, m+

0 =: η+
0

δη+
0 +1

,

Ψ(x) =:
Z(x)ev+

0 xR∞
x ev+

0 zdZ(z)
, (4.12)

assuming the net profit condition holds under the original measure P, and the stationarity condi-
tion holds under both measures P and P̃. The parameter setting for the process (Xt, λt) under P
transforms to the new parameter setting for the process

�
Xt, λ̃t

�
under P̃ as follows:

• a ↗ ã =:
�
1 + δη+

0

�
a,

• c → c̃ =: c,

• δ → δ̃ =: δ,

• ρ ↗ ρ̃ =: ĥ(−η+
0 )ρ,

• Z(z) → Z̃(z),

• g(u) → ˜̃g(u) =:
g̃

�
u

1+δη
+
0

�
1+δη+

0
,

• h(u) → ˜̃
h(u) =:

h̃

�
u

1+δη
+
0

�
1+δη+

0
,

where

dZ̃(z) =:
ev+

0 zdZ(z)

ẑ
�
−v+

0

� , dG̃(u) =:
eη+

0 udG(u)

ĝ
�
−η+

0

� , dH̃(u) =:
eη+

0 udH(u)

ĥ
�
−η+

0

� , (4.13)

and dH̃(u) =: h̃(u)du, dG̃(u) =: g̃(u)du; d ˜̃H(u) =: ˜̃
h(u)du, d ˜̃G(u) =: ˜̃g(u)du.
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Proof. We consider the (Model-2 type) generator

Af(x, λ) = −δ(λ− a)
∂f

∂λ
+ c

∂f

∂x
+ λ

�Z ∞

y=0

Z x

z=0
f(x− z, λ + y)dZ(z)dG(y) + Z(x)− f(x, λ)

�
+ρ

�Z ∞

0
f(x, λ + y)dH(y)− f(x, λ)

�
, x > 0. (4.14)

The solution of the integro-differential equation Af(x, λ) = 0 is the ruin probability

f(x, λ) = P
¦
τ∗ < ∞��X0 = x, λ0 = λ

©
.

Change Measure from P to P̃ Substituting the function

f(x, λ) = e−v+
0 xeη+

0 λf̃(x, λ)

into the generator (4.14), we have

− δ(λ− a)

�
η+
0 f̃ +

∂f̃

∂λ

�
+ c

�
−v+

0 f̃ +
∂f̃

∂x

�
+ λ

�Z ∞

0

Z x

0
f̃(x− z, λ + y)ev+

0 zeη+
0 ydZ(z)dG(y) + Z(x)ev+

0 xe−η+
0 λ − f̃

�
+ ρ

�Z ∞

0
f̃(x, λ + y)eη+

0 ydH(y)− f̃

�
= 0. (4.15)

Remind that, by Theorem 4.2.1 for r = 0, we have a FPt −martingale e−v+
0 Xteη+

0 λt where (v+
0 , η+

0 )
is the unique positive solution to the equations(

δη+
0 = ẑ

�
−v+

0

�
ĝ
�
−η+

0

�
− 1

cv+
0 = aδη+

0 + ρ
�
ĥ(−η+

0 )− 1
� �

c >
µ1H

ρ + aδ

δ − µ1G

µ1Z
, δ > µ1G

�
.

Substitute cv+
0 = aδη+

0 + ρ
�
ĥ(−η+

0 )− 1
�

and δη+
0 = ẑ

�
−v+

0

�
ĝ
�
−η+

0

�
− 1 into (4.15), we have

− δ(λ− a)
∂f̃

∂λ
+ c

∂f̃

∂x

+ λ

�Z ∞

0

Z x

0
f̃(x− z, λ + y)ev+

0 zeη+
0 ydZ(z)dG(y) + Z(x)ev+

0 xe−η+
0 λ − ẑ

�
−v+

0

�
ĝ
�
−η+

0

�
f̃

�
+ ρ

�Z ∞

0
f̃(x, λ + y)eη+

0 ydH(y)− ĥ(−η+
0 )f̃

�
= 0.

Change measure (Esscher transform) by (4.13), and rewrite as

− δ(λ− a)
∂f̃

∂λ
+ c

∂f̃

∂x

+ ẑ
�
−v+

0

�
ĝ
�
−η+

0

�
λ

 Z ∞

0

Z x

0
f̃(x− z, λ + y)dZ̃(z)dG̃(y) + Z(x)

ev+
0 xe−η+

0 λ

ẑ
�
−v+

0

�
ĝ
�
−η+

0

� − f̃

!
+ ĥ(−η+

0 )ρ
�Z ∞

0
f̃(x, λ + y)dH̃(y)− f̃

�
= 0.

Since ẑ
�
−v+

0

�
ĝ
�
−η+

0

�
= 1 + δη+

0 , we have

− δ(λ− a)
∂f̃

∂λ
+ c

∂f̃

∂x

+ (1 + δη+
0 )λ

 Z ∞

0

Z x

0
f̃(x− z, λ + y)dZ̃(z)dG̃(y) + Z(x)

ev+
0 xe−η+

0 λ

ẑ
�
−v+

0

�
ĝ
�
−η+

0

� − f̃

!
+ ĥ(−η+

0 )ρ
�Z ∞

0
f̃(x, λ + y)dH̃(y)− f̃

�
= 0.
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Note that,

Z̃(x) =:
Z ∞

x
dZ̃(z) =

Z ∞

x

ev+
0 zdZ(z)

ẑ
�
−v+

0

� =
R∞

x ev+
0 zdZ(z)

ẑ
�
−v+

0

� ,

we have

Z(x)
ev+

0 xe−η+
0 λ

ẑ(−v+
0 )ĝ(−η+

0 )
=

Z(x)ev+
0 xR∞

x ev+
0 zdZ(z)

R∞
x ev+

0 zdZ(z)

ẑ
�
−v+

0

� e−η+
0 λ

ĝ(−η+
0 )

= Ψ(x)
e−η+

0 λ

ĝ(−η+
0 )

Z̃(x),

where Ψ(x) is defined by (4.12). Hence, we have

− δ(λ− a)
∂f̃

∂λ
+ c

∂f̃

∂x

+ (1 + δη+
0 )λ

�Z ∞

0

Z x

0
f̃(x− z, λ + y)dZ̃(z)dG̃(y) + Ψ(x)

e−η+
0 λ

ĝ(−η+
0 )

Z̃(x)− f̃

�
+ ĥ(−η+

0 )ρ
�Z ∞

0
f̃(x, λ + y)dH̃(y)− f̃

�
= 0. (4.16)

This integro-differential equation has the solution

f̃(x, λ) = Ẽ

24Ψ(Xτ∗−)
e
−η+

0 λτ∗−

ĝ(−η+
0 )
I (τ∗ < ∞)

�����λ0 = λ,X0 = x

35 .

It is similar to the expectation of a Gerber-Shiu penalty function (see Gerber and Shiu (1998)).
Therefore, by comparing (4.16) with (4.14), we have the parameters for the process (Xt, λt) under
P transformed to the parameters for the process (Xt, λt) under P̃ as follows:

• a → ã = a,

• c → c̃ = c,

• δ → δ̃ = δ,

• ρ → ρ̃ = ĥ(−η+
0 )ρ,

• Z(z) → Z̃(z),

• G(y) → G̃(y),

• H(y) → H̃(y),

and the ruin probability is given by

P
¦
τ∗ < ∞��X0 = x, λ0 = λ

©
= e−v+

0 xeη+
0 λẼ

24Ψ(Xτ∗−)
e
−η+

0 λτ∗−

ĝ(−η+
0 )
I (τ∗ < ∞)

�����X0 = x, λ0 = λ

35 .

Expression by λ̃ Alternatively, we can express the results above w.r.t. λ̃ where λ̃ = (1 + δη+
0 )λ.

Consider 1
1+δη+

0
λ̃ as a process, redefine the function f̃(λ̃, x) = f̃

�
1

1+δη+
0

λ̃, x
�
, and rewrite (4.16) as

− δ
�
λ̃− (1 + δη+

0 )a
� ∂f̃

∂λ̃
+ c

∂f̃

∂x

+ λ̃

�Z ∞

0

Z x

0
f̃
�
x− z, λ̃ + (1 + δη+

0 )y
�

dZ̃(z)dG̃(y) + Ψ(x)
e
− η

+
0

δη
+
0

+1
λ̃

ĝ(−η+
0 )

Z̃(x)− f̃

�
+ ĥ(−η+

0 )ρ
�Z ∞

0
f̃
�
x, λ̃ + (1 + δη+

0 )y
�

dH̃(y)− f̃

�
= 0.
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Given dH̃(y) = h̃(y)dy and dG̃(y) = g̃(y)dy, change variable by u = (1 + δη+
0 )y, we have the

equation of f̃
�
λ̃, x

�
,

− δ
�
λ̃− (1 + δη+

0 )a
� ∂f̃

∂λ̃
+ c

∂f̃

∂x

+ λ̃

�Z ∞

0

Z x

0
f̃
�
x− z, λ̃ + u

�
dZ̃(z)

g̃
�

u
1+δη+

0

�
1 + δη+

0

du + Ψ(x)
e
− η

+
0

δη
+
0

+1
λ̃

ĝ(−η+
0 )

Z̃(x)− f̃

�
+ ĥ(−η+

0 )ρ

�Z ∞

0
f̃
�
x, λ̃ + u

� h̃
�

u
1+δη+

0

�
1 + δη+

0

du− f̃

�
= 0. (4.17)

This integro-differential equation has the solution

f̃(x, λ̃) = Ẽ

2664Ψ
�
Xτ∗−

� e
− η

+
0

δη
+
0

+1
λ̃τ∗−

ĝ(−η+
0 )

I (τ∗ < ∞)

�����λ0 = λ,X0 = x

3775 .

Therefore, by comparing (4.17) with (4.14), we have the parameters for the process (Xt, λt) under
P transformed to the parameters for the process

�
Xt, λ̃t

�
under P̃ as follows:

• a ↗ ã =
�
1 + δη+

0

�
a,

• c → c̃ = c,

• δ → δ̃ = δ,

• ρ ↗ ρ̃ = ĥ(−η+
0 )ρ,

• Z(z) → Z̃(z),

• g(u) → ˜̃g(u) =
g̃

�
u

1+δη
+
0

�
1+δη+

0
,

• h(u) → ˜̃
h(u) =

h̃

�
u

1+δη
+
0

�
1+δη+

0
,

and the ruin probability is given by

P
¦
τ∗ < ∞��X0 = x, λ0 = λ

©
= e−v+

0 xeη+
0 λẼ

24Ψ
�
Xτ∗−

� e
−m+

0 λ̃τ∗−

ĝ(−η+
0 )
I (τ∗ < ∞)

�����X0 = x, λ0 = λ

35
= e−v+

0 xem+
0 λ̃Ẽ

24Ψ
�
Xτ∗−

� e
−m+

0 λ̃τ∗−

ĝ(−η+
0 )
I (τ∗ < ∞)

�����X0 = x, λ̃0 = λ̃

35 , m+
0 =

η+
0

δη+
0 + 1

.

By Theorem 4.4.3 (derived later in this section), if the net profit condition holds under P and the
stationarity condition holds under P and P̃, then the net profit condition cannot hold under P̃, i.e.
I (τ∗ < ∞) = 1, hence, we have the ruin probability (4.11).
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Remark 4.4.1. If Z ∼ Exp(γ), then, the expression of the ruin probability (4.11) can be greatly
simplified, as Ψ(x) is a constant, i.e.

Ψ(x) =
e−γxev+

0 xR∞
x ev+

0 zγe−γzdz
=

γ − v+
0

γ
.

4.4.2 Generalised Cramér-Lundberg Approximation for Exponentially Distributed Claims

Based on Theorem 4.4.1, if Z ∼ Exp(γ) and the initial intensity follows the stationary distribution
under eP, i.e. eλ ∼ Π, then, the ruin probability is given by

P
¦
τ∗ < ∞

��X0 = x
©

=
γ − v+

0

γĝ(−η+
0 )
eE�em+

0 eλ�eE �e−m+
0 eλτ∗−

����X0 = x

�
e−v+

0 x. (4.18)

Assumption 4.4.1. Assume limx→∞ eE�e−m+
0 eλτ∗−

��X0 = x, λ0 = λ
�

exists and independent of λ.

Remark 4.4.2. Assumption 4.4.1 intuitively should hold as τ∗ is long time in the future when
x → ∞, however, we leave it as an open problem to find the conditions under which it is true.

Moreover, since eE�e−m+
0 eλτ∗−

��X0 = x
�

given by (4.18) is bounded, then, there exists a sequence of

x1 < x2 < ... < xn < ... with xn →∞, n →∞ such that limn→∞ eE�e−m+
0 eλτ∗−

��X0 = xn

�
exists.

Remark 4.4.3. Under Assumption 4.4.1 and by (4.18), there exists a constant C such that
P
¦
τ∗ < ∞��X0 = x

©
∼ Ce−v+

0 x, x →∞, and we obtain C in Theorem 4.4.2.

Theorem 4.4.2. Under Assumption 4.4.1, if the claim sizes follows exponential distribution and
the initial intensity follows the stationary distribution under eP, i.e. eZ ∼ Exp(eγ) and eλ ∼ Π, then,
the generalised Cramér-Lundberg approximation is given by

P
¦
τ∗ < ∞��X0 = x

©
∼ Ce−v+

0 x, x →∞,

where

C =:
γ − v+

0

γĝ(−η+
0 )
eE�em+

0 eλ� 1eγ eE he−m+
0 eλeλi− eceE �e−m+

0 eλτ∗−

����X0 = 0
�

1eγ eE[eλ]− ec . (4.19)

Proof. Use the new set of parameters under eP given by Theorem 4.4.1, and rewrite (4.17) as

− δ
�eλ− ea� ∂ ef

∂eλ + ec∂ ef
∂x

+ eλ Z ∞

0

Z x

0

ef �x− z, eλ + u
�

d eZ(z)dÜÜG(u) + Ψ(x)
e−m+

0 eλ
ĝ(−η+

0 )
eZ(x)− ef!

+ eρ�Z ∞

0

ef �x, eλ + u
�

dffH(u)− ef� = 0.

If eZ ∼ Exp(eγ), eγ = γ − v+
0 under eP (equivalent to Z ∼ Exp(γ) under P), then, by Remark 4.4.1,

we have

− δ
�eλ− ea� ∂ ef

∂eλ + ec∂ ef
∂x

+ eλ Z ∞

0

Z x

0

ef �x− z, eλ + u
� eγe−eγzdzdÜÜG(u) +

γ − v+
0

γ

e−m+
0 eλ

ĝ(−η+
0 )

e−eγx − ef!
+ eρ�Z ∞

0

ef �x, eλ + u
�

dffH(u)− ef� = 0.
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Take Laplace transform w.r.t. x, i.e.Ü̂f(w, eλ) =: L
¦ ef(x, eλ)

©
=
Z ∞

0

ef(u, eλ)e−wudu,

we have

L
¨

∂ ef(x, eλ)
∂x

«
= wÜ̂f(w, eλ)− ef(0, eλ),

L
§Z x

0

ef(x− z, eλ + u)eγe−eγzdz

ª
=

eγeγ + w
Ü̂f(w, eλ + u),

L
n

e−eγx
o

=
1eγ + w

,

then,

− δ
�eλ− ea� ∂ Ü̂f(w, eλ)

∂eλ + ec�wÜ̂f(w, eλ)− ef(0, eλ)
�

+ eλ eγeγ + w

Z ∞

0

Ü̂f(w, eλ + u)dÜÜG(u) +
γ − v+

0

γ

e−m+
0 eλ

ĝ(−η+
0 )

1eγ + w
− Ü̂f(w, eλ)

!
+ eρ�Z ∞

0

Ü̂f(w, eλ + u)dffH(u)− Ü̂f(w, eλ)
�

= 0,

or,ÜAÜ̂f(w, eλ) + ec�wÜ̂f(w, eλ)− ef(0, eλ)
�

+ eλ − weγ + w

Z ∞

0

Ü̂f(w, eλ + u)dÜÜG(u) +
γ − v+

0

γ

e−m+
0 eλ

ĝ(−η+
0 )

1eγ + w

!
= 0.

If eλ ∼ Π, then,eE" ÜAÜ̂f(w, eλ) + ec�wÜ̂f(w, eλ)− ef(0, eλ)
�

+ eλ − weγ + w

Z ∞

0

Ü̂f(w, eλ + u)dÜÜG(u) +
γ − v+

0

γ

e−m+
0 eλ

ĝ(−η+
0 )

1eγ + w

!#
= 0,

and

lim
w→0

eE" ÜAÜ̂f(w, eλ) + ec�wÜ̂f(w, eλ)− ef(0, eλ)
�

+ eλ − weγ + w

Z ∞

0

Ü̂f(w, eλ + u)dÜÜG(u) +
γ − v+

0

γ

e−m+
0 eλ

ĝ(−η+
0 )

1eγ + w

!#
= 0.

Since under Assumption 4.4.1, ÜC =: lim
x→∞

ef(x, eλ) = lim
w→0

wÜ̂f(w, eλ),

lim
w→0

weγ + w

Z ∞

0

Ü̂f(w, eλ + u)dÜÜG(u) =
Z ∞

0
lim
w→0

weγ + w
Ü̂f(w, eλ + u)dÜÜG(u) =

Z ∞

0

1eγ ÜCdÜÜG(u) =
ÜCeγ ,

and by the property (2.18), we also have E
� ÜAÜ̂f(0, eλ)

�
= 0, then,eE"ec �ÜC − ef(0, eλ)

�
+ eλ −ÜCeγ +

γ − v+
0

γ

e−m+
0 eλ

ĝ(−η+
0 )

1eγ!# = 0,

and ÜC =
γ − v+

0

γĝ(−η+
0 )

1eγ eE he−m+
0 eλeλi− eceE �e−m+

0 eλτ∗−

����eλ0 = eλ ∼ Π, X0 = 0
�

1eγ eE[eλ]− ec , (4.20)
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note that, by definition,eE � ef(0, eλ)
�

=
γ − v+

0

γĝ(−η+
0 )
eE �e−m+

0 eλτ∗−

����eλ0 = eλ ∼ Π, X0 = 0
�

.

Hence, we have the generalised Cramér-Lundberg constant (4.19) for eλ ∼ Π, as

C =: lim
x→∞

P
¦
τ∗ < ∞��X0 = x

©
e−v0x

= lim
x→∞

eE hem+
0 eλ ef(x, eλ)

i
= eE�em+

0 eλ�ÜC.

Remark 4.4.4. For the Cramér-Lundberg constant (4.19), by Theorem 2.2.3 and Corollary 2.2.6,
we can explicitly calculate the termseE[eλ] =

µ1eeH eρ + eaeδeδ − µ1eeG ,eE�em+
0 eλ� = exp

�Z 0

−m+
0

eaeδu + eρ[1− êeh(u)]eδu + êeg(u)− 1
du

�
,eE heλe−m+

0 eλi = − d
dm

eE�e−meλ�����
m=m+

0

=
eaeδm+

0 + eρ[1− êeh(m+
0 )]eδm+

0 + êeg(m+
0 )− 1

exp

�
−
Z m+

0

0

eaeδu + eρ[1− êeh(u)]eδu + êeg(u)− 1
du

�
.

Also, by Theorem 4.4.3 for the net profit condition under the measure eP, we have
1eγ eE[eλ]− ec > 0.

4.4.3 Net Profit Condition under P and P̃

Theorem 4.4.3. If the net profit condition and the stationarity condition both hold under P, i.e.

c >
µ1H

ρ + aδ

δ − µ1G

µ1Z
, δ > µ1G

,

and the stationarity condition also holds under the new measure P̃, i.e. δ̃ > µ1 ˜̃
G
, then, under P̃,

we have
µ1 ˜̃

H
ρ̃ + ãδ̃

δ̃ − µ1 ˜̃
G

µ1Z̃
> c̃, (4.21)

and the ruin becomes certain (almost surely), i.e.

P̃ {τ∗ < ∞} =: lim
t→∞

P̃ {τ∗ ≤ t} = 1.

Proof. By the transformation between two measures from Theorem 4.4.1, we have

µ1Z̃
=: Ẽ [Zi] =

Z ∞

0
zdZ̃(z) =

Z ∞

0
z
ev+

0 zdZ(z)

ẑ
�
−v+

0

� =
1

ẑ
�
−v+

0

� Z ∞

0
zev+

0 zdZ(z) =
ẑ′
�
−v+

0

�
ẑ
�
−v+

0

� .

Change variable y = 1
1+δη+

0
u, then,

µ1 ˜̃
H

= Ẽ
�
Y (1)

�
=
Z ∞

0
u

h̃
�

u
1+δη+

0

�
1 + δη+

0

du =

R∞
0 ue

η
+
0

1+δη
+
0

u

h
�

1
1+δη+

0
u
�

du�
1 + δη+

0

�
ĥ(−η+

0 )
=

1 + δη+
0

ĥ(−η+
0 )

Z ∞

0
yeη+

0 ydH(y);

µ1 ˜̃
G

= Ẽ
�
Y (2)

�
=

1 + δη+
0

ĝ(−η+
0 )

Z ∞

0
yeη+

0 ydG(y) = ẑ(−v+
0 )ĝ′(−η+

0 ).
�

∵ ẑ(−v+
0 )ĝ(−η+

0 ) = 1 + δη+
0

�
84



4.4 Ruin Probability via Change of Measure

f’(η)

δ

1 + δ η 

f(η)

O η
0
+ η

1

Net Profit Condition via the Lundberg Fundamental Equation

Fig. 4.5: Net Profit Condition via the Generalised Lundberg Fundamental Equation

The mean of self-excited jump sizes under P̃ is greater than the one under P, since

µ1 ˜̃
G

> ĝ′(−η+
0 ) =

Z ∞

0
yeη+

0 ydG(y) >

Z ∞

0
ydG(y) = µ1G

.

Hence,

µ1 ˜̃
H

ρ̃ + ãδ̃

δ̃ − µ1 ˜̃
G

µ1Z̃

=
ρ
R∞
0 yeη+

0 ydH(y) + aδ

δ − ẑ(−v+
0 )ĝ′(−η+

0 )
1 + δη+

0

ẑ(−v+
0 )

Z ∞

0
zev+

0 zdZ(z)
�

∵ ẑ(−v+
0 )ĝ(−η+

0 ) = 1 + δη+
0

�
= ẑ′(−v+

0 )ĝ(−η+
0 )

ĥ′(−η+
0 )ρ + aδ

δ − ẑ(−v+
0 )ĝ′(−η+

0 )
. (4.22)

From the generalised Lundberg’s fundamental equation, we have

1 + δη+
0 = ẑ

 −aδη+
0 + ρ

�
1− ĥ(−η+

0 )
�

c

!
ĝ(−η+

0 ).

If the net profit condition and stationarity condition both hold under P, the right-hand-side function
is a strictly increasing and convex function of η+

0 as obviously a convex function of a function convex
function is still a convex function; it was also proved formally in the proof of Lemma 4.2.1. Hence,
as shown in Figure 4.5, at the point η+

0 the slope of the left-hand-side function is greater than the
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slope of the right-hand-side function, i.e.

d
dη

�
1 + δη

������
η=η+

0

<
d
dη

 
ẑ

 −aδη + ρ
�
1− ĥ(−η)

�
c

!
ĝ(−η)

!�����
η=η+

0

,

or,

δ < −

�
aδ + ρ

dĥ(−η+
0 )

dη+
0

c

�
dẑ(u)
du

����
u=

−aδη
+
0

+ρ(1−ĥ(−η
+
0

))
c

ĝ(−η+
0 ) + ẑ(−v+

0 )
dĝ(−η+

0 )
dη+

0

= −

�
aδ + ρ

dĥ(−η+
0 )

dη+
0

c

�
dẑ(u)
du

����
u=−v+

0

ĝ(−η+
0 ) + ẑ(−v+

0 )
dĝ(−η+

0 )
dη+

0

=

�
aδ + ρ

dĥ(−η+
0 )

dη+
0

c

�
dẑ(−v+

0 )
dv+

0

ĝ(−η+
0 ) + ẑ(−v+

0 )
dĝ(−η+

0 )
dη+

0

,

and

c

�
δ − ẑ(−v+

0 )
dĝ(−η+

0 )
dη+

0

�
<

�
aδ + ρ

dĥ(−η+
0 )

dη+
0

�
dẑ(−v+

0 )
dv+

0

ĝ(−η+
0 ).

Since the stationarity condition also holds under P̃, i.e.

δ > ẑ(−v+
0 )

dĝ(−η+
0 )

dη+
0

,

then,

c <
aδ + ρ

dĥ(−η+
0 )

dη+
0

δ − ẑ(−v+
0 )dĝ(−η+

0 )

dη+
0

ĝ(−η+
0 )

dẑ(−v+
0 )

dv+
0

,

and by (4.22), we have (4.21).

Remark 4.4.5. If the net profit condition and the stationarity condition hold under P, but the
stationarity condition does not hold under P̃, i.e. δ̃ < µ1 ˜̃

G
, then, the intensity λ̃t under P̃ will

increase arbitrarily. It does not mean the measures are not equivalent, as we are only considering
them till a fixed time T anyway in the optional stopping theorem; also, ruin does occur with
probability one and pretty fast (which will manifest itself in the simulation).

In particular, for the special case of shot noise intensity, interestingly, we find a conjugate
relationship between the expected loss rates under the two measures.

Corollary 4.4.1. For the shot noise case with H ∼ Exp(α) and Z ∼ Exp(γ), if the net profit
condition holds under the original measure P, i.e.

c >
ρ

δαγ
,

then, under the new measure P̃, we have

c̃ <
ρ̃

δ̃α̃γ̃
,

and
ρ

δαγ

ρ̃

δ̃α̃γ̃
= c2. (4.23)
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Proof. In particular, for the shot noise case with jump-size distributions H ∼ Exp(α) and Z ∼
Exp(γ) (by setting a = 0 and ĝ(·) = 1 in Theorem 4.4.3), we have the parameters transformed by

• c → c̃ = c,

• δ → δ̃ = δ,

• ρ ↗ ρ̃ = α
α−η+

0
ρ,

• γ ↘ γ̃ = γ − v+
0 ,

• α ↘ α̃ = α−η+
0

1+δη+
0

,

where the constants are restricted by the generalised Lundberg’s fundamental equation8<: δη+
0 = γ

γ−v+
0
− 1

cv+
0 = ρ

�
α

α−η+
0
− 1
� �

c >
ρ

δαγ

�
.

The net profit condition holds under P, i.e. c > ρ
δαγ , but under P̃ we have ρ̃

δ̃α̃γ̃
> c̃, since

ρ̃

δ̃α̃γ̃
=

α
α−η+

0
ρ

α−η+
0

1+δη+
0

�
γ − v+

0

�
δ

=
αρ

δ

1 + δη+
0

(α− η+
0 )2 γ

δη+
0 +1

�
∵ γ − v+

0 =
γ

δη+
0 + 1

�
=

αρ

δγ

�
1 + δη+

0

α− η+
0

�2

=
αρ

δγ

�
cδγ

ρ

�2

=
δαγ

ρ
c2

�
∵ c =

1 + δη+
0

α− η+
0

ρ

δγ

�
>

δαγ

ρ

ρ

δαγ
c = c̃.

Hence, we also find (4.23).

4.5 Example: Jumps with Exponential Distributions

To represent the previous results in explicit forms, in this section, we further assume the externally
excited and self-excited jumps in the intensity process λt and the claim sizes all follow exponential
distributions, i.e. H ∼ Exp(α), G ∼ Exp(β) and Z ∼ Exp(γ), with the density functions

h(y) = αe−αy, g(y) = βe−βy, z(z) = γe−γz, y, z;α, β, γ > 0,

and the Laplace transforms

ĥ(u) =
α

α + u
, ĝ(u) =

β

β + u
, ẑ(u) =

γ

γ + u
.
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4.5.1 Generalised Lundberg’s Fundamental Equation

We discuss the general case 0 ≤ r < r∗ and the special case r = 0 for the generalised Lundberg’s
fundamental equation (from Theorem 4.2.1) respectively.

Case 0 ≤ r < r∗ By Theorem 4.2.1, we have the generalised Lundberg’s fundamental equation
for 0 ≤ r < r∗,(

γ
γ−vr

β
β−ηr

= 1 + δηr

−vr =
r−aδηr+ρ(1− α

α−ηr
)

c

�
vr < γ, ηr < (α ∧ β); c >

β(ρ + aαδ)
αγ(δβ − 1)

, δβ > 1
�

,

or, rewrite it w.r.t. ηr as

1 + δηr =
cγβ(α− ηr)�

aδη2
r − (γc + ρ + aδα + r)ηr + γcα + αr

�
(β − ηr)

, ηr < (α ∧ β),

vr =
ηr

c

�
ρ

α− ηr
+ aδ

�
− r

c
, vr < γ,

with parameters restricted by

c >
β(ρ + aαδ)
αγ(δβ − 1)

, δβ > 1.

Solve (4.5) of Lemma 4.2.2 and substitute the unique negative solution η∗ = δβ−1
δ into (4.4),

we obtain the constant r∗,

r∗ = (δβ − 1)
�

a +
ρ

δ(α− β) + 1

�
.

Case r = 0 Set r → 0, we have the generalised Lundberg’s fundamental equation for r = 0,8<: γ
γ−v0

β
β−η0

= 1 + δη0

−v0 =
−aδη0+ρ

�
1− α

α−η0

�
c

�
v0 < γ, η0 < (α ∧ β); c >

β(ρ + aαδ)
αγ(δβ − 1)

, δβ > 1
�

,

or, rewrite w.r.t. η0 as

1 + δη0 =
cγβ(α− η0)�

aδη2
0 − (γc + ρ + aδα)η0 + γcα

�
(β − η0)

, η0 < (α ∧ β),

v0 =
η0

c

�
ρ

α− η0
+ aδ

�
, v0 < γ,

with parameters restricted by

c >
β(ρ + aαδ)
αγ(δβ − 1)

, δβ > 1.

The results of case r = 0 here will be used later in Section 4.5.3 for numerical calculations.

4.5.2 Ruin Probability and Generalised Cramér-Lundberg Approximation via Measure eP
The Corollary 4.5.1 below is an example of Theorem 4.4.1 and Theorem 4.4.2 by additionally
assuming the exponential distributions.

Corollary 4.5.1. If H ∼ Exp(α), G ∼ Exp(β), Z ∼ Exp(γ), α ≥ β, the net profit condition
holds under P, and stationarity condition holds under P and eP, and the initial intensity follows the
stationary distribution under eP, i.e. eλ D=ea + eΓ1 + eΓ2 whereeΓ1 ∼ Gamma

�
1eδ �ea +

eρeδ(eα− eβ) + 1

�
,
eδeβ − 1eδ �

, eΓ2 ∼ Gamma

� eρ(eα− eβ)eδ(eα− eβ) + 1
, eα� ,
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then, we have the ruin probability

P
¦
τ∗ < ∞

��X0 = x
©

=
γ − v+

0

γ

β − η+
0

β
eE�em+

0 eλ�eE �e−m+
0 eλτ∗−

����X0 = x

�
e−v+

0 x, (4.24)

and the generalised Cramér-Lundberg approximation

P
¦
τ∗ < ∞��X0 = x

©
∼ Ce−v+

0 x, x →∞,

where

C =:
γ − v+

0

γ

β − η+
0

β
eE�em+

0 eλ� 1eγ eE he−m+
0 eλeλi− eceE �e−m+

0 eλτ∗−

����X0 = 0
�

1eγ eE[eλ]− ec . (4.25)

The transformation from P to eP is given by

• a ↗ ea =:
�
1 + δη+

0

�
a,

• c → ec =: c,

• δ → eδ =: δ,

• ρ ↗ eρ =: α
α−η+

0
ρ,

• γ ↘ eγ =: γ − v+
0 ,

• β ↘ eβ =: β−η+
0

1+δη+
0
,

• α ↘ eα =: α−η+
0

1+δη+
0
.

Proof. If H ∼ Exp(α), G ∼ Exp(β), Z ∼ Exp(γ), by Theorem 2.3.1 for the case when α ≥ β, we
have the Laplace transformeE he−m+

0 eλi = e−m+
0ea� eαeα + m+

0

� eρ(eα−eβ)eδ(eα−eβ)+1

� eδeβ−1eδ
m+

0 + eδeβ−1eδ � 1eδ�ea+ eρeδ(eα−eβ)+1

�
.

Use Theorem 4.4.1 and Theorem 4.4.2, the ruin probability and generalised Cramér-Lundberg
approximation can be derived immediately.

We only discuss the case when α ≥ β for instance. It is similar to derive the corresponding
results for other cases when α < β and we omit them here.

Remark 4.5.1. We can calculate explicitly for the terms in (4.24) and (4.25) of Corollary 4.5.1,eE hem+
0 eλi = em+

0ea� eαeα−m+
0

� eρ(eα−eβ)eδ(eα−eβ)+1

� eδeβ−1eδeδeβ−1eδ −m+
0

� 1eδ�ea+ eρeδ(eα−eβ)+1

�
,

eE he−m+
0 eλeλi = e−m+

0ea� eαeα + m+
0

� eρ(eα−eβ)eδ(eα−eβ)+1

� eδeβ−1eδ
m+

0 + eδeβ−1eδ � 1eδ�ea+ eρeδ(eα−eβ)+1

� eaeδ + eρeα+m+
0eδ − 1eβ+m+

0

,eE[eλ] =
eρeα + eaeδeδ − 1eβ ,
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except the term eE �e−m+
0 eλτ∗−

����λ0 = eλ ∼ Π, X0 = x

�
. However, this term can be easily estimated by

simulation under eP where ruin becomes certain.

4.5.3 Numerical Example

Now we provide a numerical example of Corollary 4.5.1 for the case of exponential distribution
when α ≥ β, with parameters under the original measure P set by

(a, ρ, δ;α, β, γ; c) = (0.7, 0.5, 3; 2, 1.5, 1; 1.5).

It is easy to check that the stationarity and net profit condition hold. Then, we can obtain
(η+

0 , v+
0 ) = (0.1441, 0.2276) (the unique solution of the generalised Lundberg’s fundamental equa-

tion given in Case r = 0 of Section 4.5.1), and m+
0 = 0.1006 (defined in Theorem 4.4.1). By

Corollary 4.5.1, the parameters under the new measure eP are given by

(ea, eρ, eδ; eα, eβ, eγ;ec) = (1.0026, 0.5388, 3; 1.2957, 0.9467, 0.7724; 1.5000).

It is also easy to check that under eP the stationarity condition holds but the net profit condition
does not hold, hence ruin is certain i.e. ÜP {τ∗ < ∞} = 1. By Remark 4.5.1, we can explicitly calcu-

late eE�em+
0 eλ� = 1.2019, eE he−m+

0 eλeλi = 1.3974, and estimate eE �e−m+
0 eλτ∗−

��eλ0 = eλ ∼ Π, X0 = 0
�
≈

0.8330 from simulation of 10, 000 replications under eP. Therefore, we have ÜC ≈ 0.5006 (defined by
(4.20)), and by (4.25) the estimated Cramér constant C ≈ 1.2019×0.5006 = 0.6017 with estimated
standard error 1.44× 10−5, then,

P
¦
τ∗ < ∞��X0 = x

©
∼ 0.6017e−0.2276x, x →∞.

By (4.24), the estimated ruin probability P{τ∗ < ∞��X0 = x} and the estimated standard error
are also given by Table 4.2 based on simulation of 10, 000 replications under eP.

Tab. 4.2: Estimation of Ruin Probability P{τ∗ < ∞|X0 = x} by Our Method

x P{τ∗ < ∞|X0 = x} Standard Error (×10−4)

4 0.2576 4.01

6 0.1609 2.58

8 0.1013 1.68

10 0.064 1.07

12 0.0405 0.71

14 0.0256 0.45

16 0.0162 0.28

18 0.0103 0.18

20 0.0065 0.11

22 0.0041 0.07

24 0.0026 0.05

26 0.0017 0.03

28 0.0011 0.02

30 0.0007 0.01

For comparison, the estimated ruin probability P{τ∗ < ∞��X0 = x} and the estimated stan-
dard error based on the simulation of 10, 000 replications under the original measure P are given
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by Table 4.3, and the ratio of estimated standard errors under the two methods is given by Table
4.4. We can see that the estimated ruin probabilities based on simulations under the two methods
are very close. However, by using our method, the estimated standard error has been massively
reduced, particularly for a larger x, as the ratio of the estimated standard errors is increasing
rapidly as x becomes larger.

Moreover, the computer time needed for each replication is shorter because ruin is certain.
Under eP, the average time to ruin and hence the average replication length is approximately 3, all
replications had ended before time 100 and 97.5% before time 20, while under P we had to run
replications for longer than that as we had to extend the time horizon to 100 for the probability
of ruin only to stabilise.

Tab. 4.3: Estimation of Ruin Probability P{τ∗ < ∞|X0 = x} by Direct Simulation under the Original

Measure P

x P{τ∗ < ∞|X0 = x} Standard Error (×10−4)

4 0.2572 43.85

6 0.1612 36.79

8 0.1016 30.53

10 0.0642 24.51

12 0.0405 19.74

14 0.0258 15.73

16 0.0164 12.89

18 0.0103 10.38

20 0.0065 8.10

22 0.0041 6.54

24 0.0026 4.89

26 0.0017 3.87

28 0.0011 3.16

30 0.0007 2.45

Tab. 4.4: Ratio of the Estimated Standard Errors of Ruin Probability P{τ∗ < ∞|X0 = x} under the

Two Methods

x 4 6 8 10 12 14 16 18 20 22 24 26 28 30

Ratio of Errors 10.94 14.25 18.12 22.80 27.88 35.20 45.62 58.02 72.36 89.81 106.90 133.83 169.64 206.95
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5

Comparison of Dynamic

Contagion Process and Cox

Processes with CIR Intensity

As represented in Chapter 2, many results of the dynamic contagion process (DCP) have no ex-
plicit formulas, mainly because of involving the non-explicit inverse functions G−1

· from (2.13) and
(2.20) in Theorem 2.2.2 and Theorem 2.2.4. In this chapter, we carry out a parallel analysis for
the Cox processes with the intensity following some special Cox-Ingersoll-Ross (CIR) processes
and discover that they behave very similarly to the DCP case and at the same time have explicit
formulas. These formulas thus can be used to find the explicit upper or lower boundaries for the
corresponding DCP results, via these links between DCP and CIR constructed by martingale ap-
proach and properties of sub-martingale and super-martingale.

We provide a comparison for the two processes: DCP and CIR, both for two sub-cases: the
decaying and stationary intensity processes. In particular, the decaying processes have potential
to be applicable to the investigation of boundaries of DCP ruin probability. Interestingly, we
find that, for some special cases, the two types of processes are sharing the same distributional
properties, such as the probability generating functions of point processes, Laplace transform of
the intensity processes, and the first moments of intensity processes and point processes.

5.1 Introduction

We consider a Cox process with the point process Nt and the intensity process λt following a
Cox-Ingersoll-Ross (CIR) process, i.e.

dλt = κ(µ− λt)dt + σ
p

λtdWt,

where Wt is a Brownian motion, and constants κ, µ, σ are the speed of adjustment, mean, volatility,
respectively, with stationarity condition 2κµ > σ2. The generator of process (λt, Nt, t) acting on a
function f(λ, n, t) within its domain is given by

CIR : Af(λ, n, t) =
∂f

∂t
− κ(λ− µ)

∂f

∂λ
+

1
2
σ2λ

∂2f

∂λ2
+ λ

�
f(λ, n + 1, t)− f(λ, n, t)

�
.



Comparison of Dynamic Contagion Process and Cox Processes with CIR Intensity

For comparison, the generator for a general dynamic contagion process (DCP) is given by (2.2),
i.e.

DCP : Af(λ, n, t) =
∂f

∂t
+ δ(a− λ)

∂f

∂λ
+ ρ

�Z ∞

0
f(λ + y, n, t)dH(y)− f(λ, n, t)

�
+λ

�Z ∞

0
f(λ + y, n + 1, t)dG(y)− f(λ, n, t)

�
.

In the following two sections, we will compare the distributional properties for two special cases of
CIR and DCP under the stationarity condition with parameter setting as below.

1. Decaying Intensity Case (in Section 5.2):

• DCP: a = 0, ρ = 0 and G ∼ Exp(β),

• CIR:

µ = 0,

κ = δ − 1
β

(> 0), (5.1)

σ2 = 2
δ

β
, (5.2)

with stationarity condition δβ > 1.

2. Stationary Intensity Case (in Section 5.3):

• DCP: a = 0, ρ = 0 and H
D=G ∼ Exp(β),

• CIR:

µ =
ρ

δβ − 1
(> 0),

κ = δ − 1
β

(> 0),

σ2 = 2
δ

β
,

with stationarity condition δβ > 1.

We will find the two special cases of DCP and CIR above behave similarly at some circumstances,
and this provides us an alternative aspect to investigate the distributional properties of DCP.

5.2 Decaying Intensity Case

5.2.1 Asymptotic Distribution of Nt

Theorem 5.2.1. For the decaying intensity case, Nt of CIR and DCP have the same asymptotic
distribution, i.e.

DCP : E
�
θN∞

��λ0

�
= CIR : E

�
θN∞

��λ0

�
.

Proof. The generator of DCP of the decaying intensity case is given by

DCP : Af(λ, n) = −δλ
∂f

∂λ
+ λ

�Z ∞

0
f(λ + y, n + 1)dG(y)− f(λ, n)

�
.
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5.2 Decaying Intensity Case

Assume the form f(λ, n) = θne−Bλ, and let Af(λ, n) = 0, we have

δB + θĝ(B)− 1 = 0,

which has unique positive solution v∗. In particular, if G ∼ Exp(β), we have

δ

β
B2 +

�
δ − 1

β

�
B + (θ − 1) = 0, (5.3)

and v∗ is given by (2.45). Then, we have martingale θNte−v∗λt and

E
�
θN∞e−v∗λ∞

��λ0

�
= e−v∗λ0 ,

since λ∞ = 0, we have
DCP : E

�
θN∞

��λ0

�
= e−v∗λ0 .

On the other hand, the generator of CIR of the decaying intensity case is given by

CIR : Af(λ, n) = −κλ
∂f

∂λ
+

1
2
σ2λ

∂2f

∂λ2
+ λ

�
f(λ, n + 1)− f(λ, n)

�
.

Assume the form f(λ, n) = θne−Bλ, and let Af(λ, n) = 0, we have a similar form as

1
2
σ2B2 + κB + (θ − 1) = 0. (5.4)

By comparing (5.4) with (5.3) and letting κ = δ − 1
β , σ2 = 2 δ

β , then, (5.4) and (5.3) become
identical.

5.2.2 Conditional Distribution of NT

Proposition 5.2.1. f(λ, t) is a sub-martingale if Af(λ, t) ≥ 0 for all λ and t; f(λ, t) is a super-
martingale if Af(λ, t) ≤ 0 for all λ and t.

Theorem 5.2.2. For the decaying intensity case, we have

DCP : E
�
θNT

��λ0

�
> CIR : E

�
θNT

��λ0

�
, 0 < T < ∞.

Proof. The generator of the CIR case is given by

CIR : Af(λ, n, t) =
∂f

∂t
− κλ

∂f

∂λ
+

1
2
σ2λ

∂2f

∂λ2
+ λ

�
f(λ, n + 1, t)− f(λ, n, t)

�
.

Assume the form f(λ, n, t) = ec̄(t)θne−B̄(t)λ, and set Af(λ, n, t) = 0, then,

c̄′(t)− B̄′(t)λ− κλ(−B̄(t)) +
1
2
σ2λB̄2(t) + λ(θ − 1) = 0,

and

B̄′(t) =
1
2
σ2B̄2(t) + κB̄(t) + (θ − 1),

c̄′(t) = 0.

Set κ = δ − 1
β , σ2 = 2 δ

β , then,

B̄′(t) =
δ

β
B̄2(t) +

�
δ − 1

β

�
B̄(t) + (θ − 1),

c̄′(t) = 0,
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with boundary condition B̄(T ) = 0 and condition δβ > 1. By (2.59), B̄′(t) < 0 when 0 ≤ B̄(t) < v∗.

On the other hand, the generator of DCP case is given by

DCP : Af(λ, n, t) =
∂f

∂t
− δλ

∂f

∂λ
+ λ

�Z ∞

0
f(λ + y, n + 1, t)dG(y)− f(λ, n, t)

�
,

where G ∼ Exp(β). We have

DCP : A
�
ec̄(t)θne−B̄(t)λ

�
= ec̄(t)θne−B̄(t)λ

�
c̄′(t)− B̄′(t)λ + δB̄(t)λ + λ

�
θ

β

β + B̄(t)
− 1
��

= ec̄(t)θne−B̄(t)λ

�
−
�

δ

β
B̄2(t) +

�
δ − 1

β

�
B̄(t) + (θ − 1)

�
λ + δB̄(t)λ + λ

�
θ

β

β + B̄(t)
− 1
��

= ec̄(t)θne−B̄(t)λλB̄(t)
−1

β + B̄(t)

�
δ

β
B̄2(t) +

�
δ − 1

β

�
B̄(t) + (θ − 1)

�
= −ec̄(t)θne−B̄(t)λλB̄(t)

B̄′(t)
β + B̄(t)

> 0,

as B̄(t) > 0, B̄′(t) < 0. Therefore, ec̄(t)θNte−B̄(t)λt is a sub-martingale in the DCP case, and we
have a martingale

ec̄(t)θNte−B̄(t)λt − ec̄(0)θN0e−B̄(0)λ0 −
Z t

0
A
�
ec̄(s)θNse−B̄(s)λs

�
ds.

Hence,

DCP : E
�
θNT

��λ0

�
= E

�
ec̄(T )θNT e−B̄(T )λT

����λ0

�
= ec̄(0)θN0e−B̄(0)λ0 + E

�Z T

0
A
�
ec̄(s)θNse−B̄(s)λs

�
ds

����λ0

�
> ec̄(0)θN0e−B̄(0)λ0 = CIR : E

�
θNT

��λ0

�
,

since

E
�Z T

0
A
�
ec̄(s)θNse−B̄(s)λs

�
ds

����λ0

�
> 0.

5.2.3 Conditional Distribution of λT

Theorem 5.2.3. For the decaying intensity case, we have

DCP : E
�
e−vλT

��λ0

�
< CIR : E

�
e−vλT

��λ0

�
, 0 < T < ∞.

Proof. The generator of the CIR case is given by

CIR : Af(λ, t) =
∂f

∂t
− κλ

∂f

∂λ
+

1
2
σ2λ

∂2f

∂λ2
.

Assume the form f(λ, t) = ec̄(t)e−B̄(t)λ, and set Af(λ, t) = 0, then,

c̄′(t)− B̄′(t)λ− κλ(−B̄(t)) +
1
2
σ2λB̄2(t) = 0,
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5.2 Decaying Intensity Case

and

B̄′(t) =
1
2
σ2B̄2(t) + κB̄(t),

c̄′(t) = 0.

Set κ = δ − 1
β , σ2 = 2 δ

β , then,

B̄′(t) =
δ

β
B̄2(t) +

�
δ − 1

β

�
B̄(t),

c̄′(t) = 0,

with boundary condition B̄(T ) = v > 0 and stationarity condition δβ > 1, B̄′(t) > 0.

On the other hand, the generator of the DCP case is given by

DCP : Af(λ, t) =
∂f

∂t
− δλ

∂f

∂λ
+ λ

�Z ∞

0
f(λ + y, t)dG(y)− f(λ, t)

�
,

where G ∼ Exp(β). We have

DCP : A
�
ec̄(t)e−B̄(t)λ

�
= ec̄(t)e−B̄(t)λ

�
c̄′(t)− B̄′(t)λ + δB̄(t)λ + λ

�
β

β + B̄(t)
− 1
��

= ec̄(t)e−B̄(t)λ

�
−
�

δ

β
B̄2(t) +

�
δ − 1

β

�
B̄(t)

�
λ + δB̄(t)λ + λ

�
β

β + B̄(t)
− 1
��

= ec̄(t)e−B̄(t)λλB̄(t)
−1

β + B̄(t)

�
δ

β
B̄2(t) +

�
δ − 1

β

�
B̄(t)

�
= −ec̄(t)e−B̄(t)λλB̄(t)

B̄′(t)
β + B̄(t)

< 0,

as B̄(t) > 0, B̄′(t) > 0. Therefore, ec̄(t)e−B̄(t)λt is a super-martingale in the DCP case, and we
have a martingale

ec̄(t)e−B̄(t)λt − ec̄(0)e−B̄(0)λ0 −
Z t

0
A
�
ec̄(s)e−B̄(s)λs

�
ds,

then,

DCP : E
�
e−vλT

��λ0

�
= E

�
ec̄(T )e−B̄(T )λT

����λ0

�
= ec̄(0)e−B̄(0)λ0 + E

�Z T

0
A
�
ec̄(s)e−B̄(s)λs

�
ds

����λ0

�
< ec̄(0)e−B̄(0)λ0 = CIR : E

�
e−vλT

��λ0

�
,

since

E
�Z T

0
A
�
ec̄(s)e−B̄(s)λs

�
ds

����λ0

�
< 0.
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5.2.4 Moments of λt and Nt

Theorem 5.2.4. For 0 < t < ∞, the comparison of the moments conditional on λ0 between CIR
and DCP for the decaying intensity case is summarised by

CIR : E[λt|λ0] = DCP : E[λt|λ0],

CIR : E[Nt|λ0] = DCP : E[Nt|λ0],

CIR : E[λ2
t |λ0] > DCP : E[λ2

t |λ0],

CIR : E[λtNt|λ0] < DCP : E[λtNt|λ0],

CIR : E[N2
t |λ0] < DCP : E[N2

t |λ0],

CIR : Var[Nt|λ0] < DCP : Var[Nt|λ0].

Proof. The proofs are given separately as below.

Remind that, the generator for CIR is given by

CIR : Af(λ, n, t) =
∂f

∂t
− κλ

∂f

∂λ
+

1
2
σ2λ

∂2f

∂λ2
+ λ

�
f(λ, n + 1, t)− f(λ, n, t)

�
. (5.5)

E[λt|λ0]: For CIR, set f(λ, n, t) = λ in (5.5), we have

Aλ = −κλ.

Since λt − λ0 −
R t
0 Aλsds is a martingale, we have

E[λt|λ0] = λ0 + E
�Z t

0
Aλsds

����λ0

�
= λ0 − κ

Z t

0
E[λs|λ0]ds,

and

u(t) = λ0 − κ

Z t

0
u(s)ds,

where u(t) = E[λt|λ0], then, the ODE

du(t)
dt

= −κu(t),

with the initial condition u(0) = λ0, we have

CIR : E[λt|λ0] = λ0e
−κt. (5.6)

Comparing with the DCP case from (2.29), i.e.

DCP : E[λt|λ0] = λ0e
−(δ−µ1G)t = λ0e

−(δ− 1
β )t, (5.7)

let κ = δ − 1
β , then CIR (5.6) = DCP (5.7), i.e.

CIR : E[λt|λ0] = DCP : E[λt|λ0], t > 0.

E[Nt|λ0]: For CIR, set f(λ, n, t) = n in (5.5), we have

An = λ,
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5.2 Decaying Intensity Case

since Nt −N0 −
R t
0 λsds is a martingale, and assume N0 = 0 we have

E[Nt|λ0] =
Z t

0
E[λs|λ0]ds = λ0

Z t

0
e−κsds = λ0

1− e−κt

κ
.

Set κ = δ − 1
β ,

CIR : E[Nt|λ0] = λ0
1

δ − 1
β

�
1− e−(δ− 1

β )t
�

,

which is the same for DCP and CIR, i.e.

CIR : E[Nt|λ0] = DCP : E[Nt|λ0], t > 0.

E[λ2
t |λ0]: For CIR, set f(λ, n, t) = λ2 in (5.5), we have

Aλ = −2κλ2 + σ2λ.

Since λ2
t − λ2

0 −
R t
0 Aλ2

sds is a martingale, we have

E[λ2
t |λ0] = λ2

0 + E
�Z t

0
Aλ2

sds

����λ0

�
= λ2

0 − 2κ

Z t

0
E[λ2

s|λ0]ds + σ2

Z t

0
E[λs|λ0]ds,

then,

u(t) = λ2
0 − 2κ

Z t

0
u(s)ds + σ2

Z t

0
E[λs|λ0]ds,

where u(t) = E[λ2
t |λ0], and the ODE

du(t)
dt

= −2κu(t) + σ2E[λt|λ0],

i.e.
du(t)

dt
= −2κu(t) + σ2λ0e

−κt,

with the initial condition u(0) = λ2
0, we have

E[λ2
t |λ0] = λ2

0e
−2κt +

σ2

κ
λ0

�
e−κt − e−2κt

�
.

Set κ = δ − 1
β and σ2 = 2 δ

β , we have

CIR : E[λ2
t |λ0] = λ2

0e
−2(δ− 1

β )t +
2 δ

β

δ − 1
β

λ0

�
e−(δ− 1

β )t − e−2(δ− 1
β )t
�

, (5.8)

comparing with the DCP case from (2.31), i.e.

DCP : E[λ2
t |λ0] = λ2

0e
−2(δ− 1

β )t +
2

β2

δ − 1
β

λ0

�
e−(δ− 1

β )t − e−2(δ− 1
β )t
�

. (5.9)

Compare (5.9) with (5.8), since the stationarity condition δβ > 1, we have

2 δ
β

δ − 1
β

>

2
β2

δ − 1
β

,

then CIR (5.8) > DCP (5.9), i.e.

CIR : E[λ2
t |λ0] > DCP : E[λ2

t |λ0], t > 0.
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E[λtNt|λ0]: For CIR, set f(λ, n, t) = λn in (5.5), we have

A(λn) = −κnλ + λ2,

since λtNt − λ0N0 −
R t
0 A(λsNs)ds is a martingale, and assume N0 = 0, we have

E[λtNt|λ0] = E
�Z t

0
A(λsNs)ds

����λ0

�
= −κ

Z t

0
E[λsNs|λ0]ds +

Z t

0
E[λ2

s|λ0]ds,

then, the ODE
du(t)

dt
= −κu(t) + E[λ2

t |λ0], (5.10)

or,
du(t)

dt
+ κu(t) = λ0e

−κt

��
λ0 − σ2

κ

�
e−κt +

σ2

κ

�
,

where u(t) = E[λtNt|λ0] and u(0) = 0, then,

CIR : E[λtNt|λ0] = λ0

��
λ0 − σ2

κ

�
e−κt − e−2κt

κ
+

σ2

κ
te−κt

�
= λ0

" 
λ0 −

2 δ
β

δ − 1
β

!
e−(δ− 1

β )t − e−2(δ− 1
β )t

δ − 1
β

+
2 δ

β

δ − 1
β

te−(δ− 1
β )t

#
.

For DCP, set f(λ, n, t) = λn in the generator, we have

A(λn) = −(δ − µ1G
)nλ + λ2 + µ1G

λ,

similarly, we have the ODE

du(t)
dt

= −(δ − µ1G
)u(t) + E[λ2

t |λ0] + µ1G
E[λt|λ0], (5.11)

where u(t) = E[λtNt|λ0] and u(0) = 0, then, we have

DCP : E[λtNt|λ0]

= λ0

��
λ0 − µ2G

δ − µ1G

�
e−(δ−µ1G

)t − e−2(δ−µ1G
)t

δ − µ1G

+
�

µ2G

δ − µ1G

+ µ1G

�
te−(δ−µ1G

)t

�
= λ0

��
λ0 −

2
β2

δ − 1
β

�
e−(δ− 1

β )t − e−2(δ− 1
β )t

δ − 1
β

+

� 2
β

δ − 1
β

+
1
β

�
te−(δ− 1

β )t

�
.

To compare CIR with DCP, we firstly compare their corresponding A(λn) via (5.10) and (5.11),
i.e.

CIR :
dE[λtNt|λ0]

dt
−DCP :

dE[λtNt|λ0]
dt

=
2 δ

β

δ − 1
β

λ0

�
e−(δ− 1

β )t − e−2(δ− 1
β )t
�
−
� 2

β2

δ − 1
β

λ0

�
e−(δ− 1

β )t − e−2(δ− 1
β )t
�

+
1
β

λ0e
−(δ− 1

β )t

�
=

1
β

λ0e
−(δ− 1

β )t
�
1− 2e−(δ− 1

β )t
�

, (5.12)

where t∗ = ln 2
δ− 1

β

is the critical point. Note that, CIR : E[λtNt|λ0] − DCP : E[λtNt|λ0] is the

integration of (5.12). From time t = 0 to t = ∞, (5.12) is first negative and then positive,
meanwhile the integration of (5.12) starts from 0 and ends up at 0, hence the difference CIR :
E[λtNt|λ0] − DCP : E[λtNt|λ0] is first decreasing and then increasing. A function that is first
decreasing and then increasing (quasi-convex) and starts from 0 and ends to 0 has to be negative.
Therefore, we have

CIR : E[λtNt|λ0] < DCP : E[λtNt|λ0], t > 0.
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E[N2
t |λ0]: For CIR, set f(λ, n, t) = n2 in (5.5), we have

A(n2) = λ(2n + 1),

since N2
t −N2

0 −
R t
0 A(N2

s )ds is a martingale, and assume N0 = 0, we have

CIR : E[N2
t |λ0] = E

�Z t

0
A(N2

s )ds

����λ0

�
= 2

Z t

0
E[λsNs|λ0]ds +

Z t

0
E[λs|λ0]ds.

For DCP, set f(λ, n, t) = n2 in the generator, we have

A(n2) = λ(2n + 1),

since N2
t −N2

0 −
R t
0 A(N2

s )ds is a martingale, and assume N0 = 0, we have

DCP : E[N2
t |λ0] = E

�Z t

0
A(N2

s )ds

����λ0

�
= 2

Z t

0
E[λsNs|λ0]ds +

Z t

0
E[λs|λ0]ds.

Since CIR : E[λtNt|λ0] < DCP : E[λtNt|λ0], t > 0, we also have

CIR : E[N2
t |λ0] < DCP : E[N2

t |λ0], t > 0.

Var[Nt|λ0]: Since Var[Nt|λ0] = E[N2
t |λ0] − E[Nt|λ0]2, where CIR : E[N2

t |λ0] < DCP : E[N2
t |λ0]

and CIR : E[Nt|λ0] = DCP : E[Nt|λ0], we have

CIR : Var[Nt|λ0] < DCP : Var[Nt|λ0], t > 0.

5.2.5 The Probability of the First Jump Time of Nt

Theorem 5.2.5. For CIR of the decaying intensity case, the probability of no jump conditional
on λ0 is given by

CIR : P
¦
T ∗1 > T

��λ0

©
= P

¦
NT = 0

��λ0

©
= exp

�
−1

δ

1− e−(δ+ 1
β )T

1 + 1
δβ e−(δ+ 1

β )T
λ0

�
. (5.13)

Proof. Define Λt =:
R t
0 λsds, the generator of CIR is given by

CIR : Af(λ, Λ, t) =
∂f

∂t
+ λ

∂f

∂Λ
−
�

δβ − 1
β

�
λ

∂f

∂λ
+

δ

β
λ

∂2f

∂λ2
.

Assume the form f(λ, Λ, t) = e−Λe−B(t)λ, and set Af(λ, Λ, t) = 0, we have

B′(t) =
δ

β
B2(t) +

�
δ − 1

β

�
B(t)− 1,

or, factorise as
dB(t)

dt
=

δ

β

�
B(t) + β

��
B(t)− 1

δ

�
,

then, with boundary condition B(T ) = 0, we have

B(t) =
1
δ

1− e−(δ+ 1
β )(T−t)

1 + 1
δβ e−(δ+ 1

β )(T−t)
.
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Hence,

B(0) =
1
δ

1− e−(δ+ 1
β )T

1 + 1
δβ e−(δ+ 1

β )T
.

Since
E
�
e−ΛT e−B(T )λT

��λ0

�
= e−Λ0e−B(0)λ0 ,

or,
E
�
e−ΛT

��λ0

�
= e−B(0)λ0 ,

we obtain the probability of no jump explicitly for CIR,

CIR : P
¦
NT = 0

��λ0

©
= P

¦
T ∗1 > T

��λ0

©
= E

�
e−ΛT

��λ0

�
= exp

�
−1

δ

1− e−(δ+ 1
β )T

1 + 1
δβ e−(δ+ 1

β )T
λ0

�
.

Note that, it is an increasing function of T as

d
dT

8<: 1− e−(δ+ 1
β )T

1 + 1
δβ e−(δ+ 1

β )T

9=; =
δ + 1

β

1 + 1
δβ e−(δ+ 1

β )T

�
e−(δ+ 1

β )T +
1

δβ

�
1− e−(δ+ 1

β )T
�

1 + 1
δβ e−(δ+ 1

β )T

�
> 0.

Theorem 5.2.6. For the decaying intensity case, we have

DCP : P
¦
T ∗1 > T

��λ0

©
> CIR : P

¦
T ∗1 > T

��λ0

©
, 0 < T < ∞.

Proof. Compare (5.13) with the decaying contagion case from Corollary 2.2.4, i.e.

DCP : P
¦
NT = 0

��λ0

©
= P

¦
T ∗1 > T

��λ0

©
= exp

�
−1

δ

�
1− e−δT

�
λ0

�
. (5.14)

By the inequality

ex > 1 + x, x 6= 0,

ex = 1 + x, x = 0,

if T 6= 0, then,

βe
1
β T +

1
δ
e−δT > β

�
1 +

1
β

T

�
+

1
δ

(1− δT ) = β +
1
δ
,

and

e
1
β T +

1
δβ

�
e−δT − 1

�
> 1

e−δT +
1
δβ

�
e−(2δ+ 1

β )T − e−(δ+ 1
β )T
�

> e−(δ+ 1
β )T�

1 +
1
δβ

e−(δ+ 1
β )T
��

1− e−δT
�

< 1− e−(δ+ 1
β )T

1− e−δT <
1− e−(δ+ 1

β )T

1 + 1
δβ e−(δ+ 1

β )T

(5.14) > (5.13);

if T = 0, then (5.14) = (5.13).

Remark 5.2.1. Note that, the super-martingale approach does not work here as

DCP : P
¦
T ∗1 < T

��λ0

©
6= E

�
e−ΛT

��λ0

�
.
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5.2 Decaying Intensity Case

5.2.6 The Probability of the Last Jump Time of Nt

Note that, for both CIR and DCP cases, we have

P
¦
T ∗L < T

��λ0

©
= E

�
exp

�
−
Z ∞

T
λsds

� ����λ0

�
= E

�
exp

�
−
Z ∞

T
λT e−δ(s−T )ds

� ����λ0

�
= E

h
e−

λT
δ

��λ0

i
,

and we can use the super-martingale method for comparison.

Theorem 5.2.7. For CIR of the decaying intensity case, the probability of the last jump time
conditional on λ0 is given by

CIR : P
¦
T ∗L < T

��λ0

©
= exp

�
−1

δ

δβ − 1

δβe(δ− 1
β )T − 1

λ0

�
.

Proof. Assume the form f(λ, t) = e−B̄(t)λ, and set Af(λ, Λ, t) = 0, for CIR, we have

B̄′(t) =
δ

β
B̄2(t) +

�
δ − 1

β

�
B̄(t),

then, with the boundary condition B̄(T ) = 1
δ , we have the solution

B̄(t) =:
1
δ

δβ − 1

δβe(δ− 1
β )(T−t) − 1

> 0, 0 < t < T.

B̄′(t) > 0 as it is a strictly increasing function of time t. We have

CIR : P
¦
T ∗L < T

��λ0

©
= E

�
e−

1
δ λT
��λ0

�
= E

�
e−B̄(T )λT

��λ0

�
= e−B̄(0)λ0

= exp

�
−1

δ

δβ − 1

δβe(δ− 1
β )T − 1

λ0

�
.

Remark 5.2.2. For DCP case, by setting v = 1
δ , a = 0, ρ = 0 in Theorem 2.2.2, we have

DCP : P
¦
T ∗L < T

��λ0

©
= E

�
e−

1
δ λT
��λ0

�
= exp

�
−G−1

v= 1
δ ,1

(T )λ0

�
,

where

Gv= 1
δ ,1(L) =:

Z v= 1
δ

L

du

δu + ĝ(u)− 1
;

in particular, when G ∼ Exp(β), by Lemma 2.3.1, we have

Gv,1(L) =
1

δ(δβ − 1)

�
δβ ln

� v

L

�
− ln

�
δv + (δβ − 1)
δL + (δβ − 1)

��
,

which can not be explicitly inverse. Hence, it is hard to compare with the CIR case directly. Below,
we alternatively adopt the super-martingale method for this comparison.
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Theorem 5.2.8. For the decaying intensity case, we have

DCP : P
¦
T ∗L < T

��λ0

©
< CIR : P

¦
T ∗L < T

��λ0

©
, 0 < T < ∞.

Proof. Plug f(λ, t) = e−B̄(t)λ into DCP’s generator, then, for all λ and t > 0,

DCP : A
�
e−B̄(t)λ

�
= λe−B̄(t)λ

�
−B̄′(t) + δB̄(t) +

β

β + B̄(t)
− 1
�

= λe−B̄(t)λ

�
−B̄′(t) +

δ

β + B̄(t)
B̄(t)

�
B̄(t) +

�
β − 1

δ

���
= λe−B̄(t)λ

�
−B̄′(t) +

βB̄′(t)
β + B̄(t)

�
= −λe−B̄(t)λ B̄(t)

β + B̄(t)
B̄′(t) < 0,

as B̄(t) > 0, B̄′(t) > 0. Therefore, e−B̄(t)λt is a super-martingale in the DCP case, and we have a
martingale

e−B̄(t)λt − e−B̄(0)λ0 −
Z t

0
A
�
e−B̄(s)λs

�
ds,

then,

DCP : P
¦
T ∗L < T

��λ0

©
= E

�
e−B̄(T )λT

��λ0

�
= e−B̄(0)λ0 + E

�Z T

0
A
�
e−B̄(s)λs

�
ds

����λ0

�
< e−B̄(0)λ0 = CIR : P

¦
T ∗L < T

��λ0

©
,

since

E
�Z T

0
A
�
e−B̄(s)λs

�
ds

����λ0

�
< 0.

5.3 Stationary Intensity Case

This section provides an example of two different Markov processes sharing an identical asymptotic
and stationary distribution.

5.3.1 Asymptotic Distribution of λt

Theorem 5.3.1. For the stationary intensity case, DCP and CIR have the same asymptotic
distribution of λt, i.e.

DCP : lim
T→∞

E
�
e−vλT

��λ0

�
= CIR : lim

T→∞
E
�
e−vλT

��λ0

�
.

Proof. For DCP, by setting a = 0 and α = β in Theorem 2.3.1, we have the Gamma distribution

DCP : λ∞ ∼ Gamma
�

ρ

δ
,
δβ − 1

δ

�
,

with the Laplace transform give by

DCP : lim
T→∞

E
�
e−vλT

��λ0

�
=

�
δβ−1

δ

v + δβ−1
δ

� ρ
δ

, (5.15)
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5.3 Stationary Intensity Case

which is also the Laplace transform of the stationary distribution of {λt}t≥0.

On the other hand, the infinitesimal generator of a general CIR for the process (λt, t) is given
by

CIR : Af(λ, t) =
∂f

∂t
− κ(λ− µ)

∂f

∂λ
+

1
2
σ2λ

∂2f

∂λ2
.

Assume the form f(λ, t) = ec(t)e−B(t)λ, and let Af(λ, t) = 0, we have�
−B′(t) + κB(t) +

1
2
σ2B2(t)

�
λ +

�
c′(t)− κµB(t)

�
= 0,

holding for any λ, then,

B′(t) = B(t)
�

κ +
1
2
σ2B(t)

�
,

c′(t) = κµB(t).

With boundary condition B(T ) = v > 0,we have

B(t) =
2

σ2 κv�
v + 2

σ2 κ
�

eκ(T−t) − v
,

and

B(0) =
2

σ2 κv�
v + 2

σ2 κ
�

eκT − v
,

then,
lim

T→∞
B(0) = 0.

Also, we have

c(T )− c(0) =
Z T

0
κµB(t)dt

= κµ
2
σ2

κ

Z T

0

1�
1 + 1

v
2

σ2 κ
�

eκT e−κt − 1
dt

�
u = eκt�

= κµ
2
σ2

κ

Z eκT

1

1�
1 + 1

v
2

σ2 κ
�

eκT − u
du

= −κµ
2
σ2

ln

"�
1 + 1

v
2

σ2 κ
�

eκT − eκT�
1 + 1

v
2

σ2 κ
�

eκT − 1

#
,

and

lim
T→∞

e−[c(T )−c(0)] = exp
�

κµ
2
σ2

ln
� 2

σ2 κ

v + 2
σ2 κ

��
=
� 2

σ2 κ

v + 2
σ2 κ

� 2
σ2 κµ

.

Note that,
E
�
ec(T )e−B(T )λT

��λ0

�
= ec(0)e−B(0)λ0 ,

or,
E
�
e−B(T )λT

��λ0

�
= e−[c(T )−c(0)]e−B(0)λ0 ,

then,

CIR : lim
T→∞

E
�
e−vλT

��λ0

�
=
� 2

σ2 κ

v + 2
σ2 κ

� 2
σ2 κµ

,
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which is also the Laplace transform of the stationary distribution of {λt}t≥0 (with proof given by
Theorem 5.3.2), and

CIR : λ∞ ∼ Gamma
�

2
σ2

κµ,
2
σ2

κ

�
.

Compare with DCP given by (5.15), if we set

µ =
ρ

δβ − 1
,

2
σ2

κ =
δβ − 1

δ
,

given the parameters (5.1) and (5.2) derived from Section 5.2 for κ and σ2, we have

µ =
ρ

δβ − 1
, κ = δ − 1

β
, σ2 = 2

δ

β
.

Hence, DCP and CIR share the same asymptomatic (Gamma) distribution of λt.

5.3.2 Stationary Distribution of λt

Theorem 5.3.2. For the stationary intensity case, DCP and CIR have the same stationary dis-
tribution of λt, i.e.

DCP : E
�
e−vλt

�
= CIR : E

�
e−vλt

�
.

Proof. We adopt the same approach as the proof for Theorem 2.2.3 to prove the stationarity. If λ

follows a distribution with density Π(λ), we have

E
�
A(λ)

�
=
Z ∞

0
A(λ)Π(λ)dλ =

Z ∞

0

�
−κ(λ− µ)

df(λ)
dλ

+
1
2
σ2λ

d2f(λ)
dλ2

�
Π(λ)dλ.

SinceZ ∞

0

�
−κ(λ− µ)

df(λ)
dλ

�
Π(λ)dλ = −κ

Z ∞

0
f ′(λ)(λ− µ)Π(λ)dλ ∵ Π(0) = 0

= −κ

Z ∞

λ=0
f ′(λ)

Z λ

u=0
[(u− µ)Π(u)]′ dudλ

= −κ

Z ∞

λ=0

Z λ

u=0
f ′(λ) [(u− µ)Π(u)]′ dudλ

= −κ

Z ∞

u=0

Z ∞

λ=u
f ′(λ) [(u− µ)Π(u)]′ dλdu

= −κ

Z ∞

u=0

Z ∞

λ=u
f ′(λ)dλ [(u− µ)Π(u)]′ du ∵ f(∞) = 0

= κ

Z ∞

0
f(u)

�
(u− µ)Π(u)

�′
du

= κ

Z ∞

0
f(λ)

�
(λ− µ)Π(λ)

�′
dλ,
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5.3 Stationary Intensity Case

and Z ∞

0

�
1
2
σ2λ

d2f(λ)
dλ2

�
Π(λ)dλ =

1
2
σ2

Z ∞

0
λ

d2f(λ)
dλ2

Π(λ)dλ

=
1
2
σ2

Z ∞

0
f ′′(λ)λΠ(λ)dλ

=
1
2
σ2

Z ∞

λ=0
f ′′(λ)

Z λ

u=0

�
uΠ(u)

�′
dudλ

=
1
2
σ2

Z ∞

λ=0

Z λ

u=0
f ′′(λ)

�
uΠ(u)

�′
dudλ

=
1
2
σ2

Z ∞

u=0

Z ∞

λ=u
f ′′(λ)

�
uΠ(u)

�′
dλdu

=
1
2
σ2

Z ∞

u=0

Z ∞

λ=u
f ′′(λ)dλ

�
uΠ(u)

�′
du ∵ f ′(∞) = 0

= −1
2
σ2

Z ∞

u=0
f ′(u)

�
uΠ(u)

�′
du

= −1
2
σ2

Z ∞

u=0

�
uΠ(u)

�′
df(u)

= −1
2
σ2

�
f(u)

�
uΠ(u)

�′����u=∞

u=0

−
Z ∞

u=0
f(u)

�
uΠ(u)

�′′
du

�
=

1
2
σ2

Z ∞

u=0
f(u)

�
uΠ(u)

�′′
du

=
1
2
σ2

Z ∞

0
f(λ)

�
λΠ(λ)

�′′
dλ,

we have

E
�
A(λ)

�
=
Z ∞

0
f(λ)

�
κ
�
(λ− µ)Π(λ)

�′
+

1
2
σ2
�
λΠ(λ)

�′′�
dλ.

Set E
�
A(λ)

�
= 0 for any f ∈ Ω(A), we have

κ
�
(λ− µ)Π(λ)

�′
+

1
2
σ2
�
λΠ(λ)

�′′
= 0.

By Laplace transform

Π̂(v) =: L{Π(λ)} =
Z ∞

0
Π(λ)e−vλdλ,

L
§�

(λ− µ)Π(λ)
�′ª

= vL
§

(λ− µ)Π(λ)
ª

= v
�
−Π̂′(v)− µΠ̂(v)

�
,

L
§�

λΠ(λ)
�′′ª

= −v2Π̂′(v),

we have the ODE of Π̂(v),

κv
�
−Π̂′(v)− µΠ̂(v)

�
− 1

2
σ2v2Π̂′(v) = 0,

rewrite as
Π̂′(v) +

κµ

κ + 1
2σ2v

Π̂(v) = 0,

with boundary condition Π̂(0) = 1, we have

CIR : Π̂(v) =
� 2

σ2 κ
2

σ2 κ + v

� 2
σ2 κµ

.
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6

A Dynamic Contagion Process

with Diffusion

In this chapter, we investigate a dynamic contagion process with diffusion (DCPD), an extension of
the original dynamic contagion process (DCP) introduced by Chapter 2 with the intensity process
perturbed by diffusion. However, DCPD is a point process that cannot be classified as a branching
process as DCP defined in Definition 2.1.1, so, rather than combining the results of DCP and
DCPD within a single chapter, here we seperately derive the Laplace transform of the intensity
process and the probability generating function of the point process for DCPD.

6.1 Introduction

The infinitesimal generator of the dynamic contagion process with diffusion (λt, Nt, t) acting on a
function f(λ, n, t) within its domain Ω(A) is given by

Af(λ, n, t) =
∂f

∂t
− δ (λ− a)

∂f

∂λ
+ ρ

�Z ∞

0
f(λ + y, n, t)dH(y)− f(λ, n, t)

�
+λ

�Z ∞

0
f(λ + z, n + 1, t)dG(z)− f(λ, n, t)

�
+

1
2
σ2λ

∂2f

∂λ2
, (6.1)

where constant σ > 0 is the volatility of the intensity process perturbed by diffusion and Ω(A) is
the domain for the generator A such that f(λ, n, t) is differentiable with respect to λ, t for all λ,
n and t, and ����Z ∞

0
f(λ + y, n, t)dH(y)− f(λ, n, t)

���� < ∞,����Z ∞

0
f(λ + z, n + 1, t)dG(z)− f(λ, n, t)

���� < ∞.

6.2 Distributional Properties

6.2.1 Joint Laplace Transform - Probability Generating Function of (λT , NT )

Theorem 6.2.1. For the constants 0 ≤ θ ≤ 1, v ≥ 0 and time 0 ≤ t ≤ T , we have the conditional
joint Laplace transform - probability generating function for the process λt and the point process
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Nt,

E
�
θ(NT−Nt)e−vλT

����Ft

�
= e

−
�

c(T )−c(t)

�
e−B(t)λt , (6.2)

where B(t) is determined by the non-linear ODE

−B′(t) + δB(t) + θĝ
�
B(t)

�
− 1 +

1
2
σ2B2(t) = 0, (6.3)

ĝ(u) =:
Z ∞

0
e−uzdG(z),

with boundary condition B(T ) = v; and c(t) is determined by

c(t) = aδ

Z t

0
B(s)ds + ρ

Z t

0

�
1− ĥ

�
B(s)

��
ds, (6.4)

ĥ(u) =:
Z ∞

0
e−uydH(y).

Proof. Consider a function f(λ, n, t) with an exponential affine form

f(λ, n, t) = ec(t)An(t)e−B(t)λ,

substitute into Af = 0 in (6.1); we then have

A′(t)
A(t)

n +
�
−B′(t) + δB(t) + A(t)ĝ(B(t))− 1 +

1
2
σ2B2(t)

�
λ

+
�

c′(t) + ρĥ(B(t))− ρ− aδB(t)
�

= 0. (6.5)

Since this equation holds for any n and λ, it is equivalent to solving three separated equations8><>: A′(t)
A(t) = 0 (.1)

−B′(t) + δB(t) + A(t)ĝ(B(t))− 1 + 1
2σ2B2(t) = 0 (.2)

c′(t) + ρĥ(B(t))− ρ− aδB(t) = 0 (.3)

. (6.6)

We have A(t) = θ immediately from (6.6.1); and substitute into (6.6.2) by adding the boundary
condition B(T ) = v, we have the ODE as (6.3); then, by (6.6.3) with boundary condition c(0) = 0,
the integration as (6.4) follows. Since ec(t)θNte−B(t)λt is a F−martingale by the property of the
infinitesimal generator, we have

E
�
ec(T )θNT e−B(T )λT

����Ft

�
= ec(t)θNte−B(t)λt . (6.7)

Then, by the boundary condition B(T ) = v, (6.2) follows.

6.2.2 Laplace Transform of λT

Theorem 6.2.2. The conditional Laplace transform λT given λ0 at time t = 0, under the condition
δ > µ1G

, is given by

E
�
e−vλT

��λ0

�
= exp

�
−
Z v

G−1
v,1(T )

aδu + ρ[1− ĥ(u)]
δu + ĝ(u)− 1 + 1

2σ2u2
du

�
× exp

�
−G−1

v,1(T )λ0

�
, (6.8)

where
µ1G

=:
Z ∞

0
zdG(z),

Gv,1(L) =:
Z v

L

du

δu + ĝ(u)− 1 + 1
2σ2u2

1.

1 It will be clear in the proof later that Gv,1(L) is a one by one function of L and hence its inverse function

G−1
v,1(T ) exsits.
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Proof. By setting t = 0 and θ = 1 in Theorem 6.2.1, we have

E
�
e−vλT

��F0

�
= e−c(T )e−B(0)λ0 , (6.9)

where B(0) is uniquely determined by the non-linear ODE

−B′(t) + δB(t) + ĝ
�
B(t)

�
− 1 +

1
2
σ2B2(t) = 0,

with boundary condition B(T ) = v. It can be solved, under the condition δ > µ1G
, by the following

steps:

1. Set B(t) = L(T − t) and τ = T − t, it is equivalent to the initial value problem

dL(τ)
dτ

= 1− δL(τ)− ĝ(L(τ))− 1
2
σ2L2(τ) =: f1(L), (6.10)

with initial condition L(0) = v; we define the right-hand side as the function f1(L).

2. Under the condition δ > µ1G
, we have

∂f1(L)
∂L

=
Z ∞

0
ye−LzdG(z)− δ − σ2L ≤

Z ∞

0
zdG(z)− δ = µ1G

− δ < 0, for L ≥ 0,

then, f1(L) < 0 for L > 0, since f1(0) = 0.

3. Rewrite (6.10) as
dL

δL + ĝ(L)− 1 + 1
2σ2L2

= −dτ,

by integrating both sides from time 0 to τ with initial condition L(0) = v > 0, we haveZ v

L

du

δu + ĝ(u)− 1 + 1
2σ2u2

= τ,

where L ≥ 0, we define the function on left hand side as

Gv,1(L) =:
Z v

L

du

δu + ĝ(u)− 1 + 1
2σ2u2

,

then,
Gv,1(L) = τ,

obviously L → v when τ → 0; by convergence test,

lim
u→0

1
u
1

δu+ĝ(u)−1+ 1
2 σ2u2

= δ + lim
u→0

ĝ(u)− 1
u

= δ − µ1G
> 0,

and we know that
R v
0

1
udu = ∞, then,Z v

0

du

δu + ĝ(u)− 1 + 1
2σ2u2

= ∞,

hence, L → 0 when τ → ∞; the integrand is positive in the domain u ∈ (0, v] and also for
L ≤ v, Gv,1(L) is a strictly decreasing function; therefore, Gv,1(L) : (0, v] → [0,∞) is a well
defined (monotone) function, and its inverse function G−1

v,1(τ) : [0,∞) → (0, v] exists.

4. The unique solution is found by

L(τ) = G−1
v,1(τ), or, B(t) = G−1

v,1(T − t).
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5. B(0) is obtained,
B(0) = L(T ) = G−1

v,1(T ).

Then, c(T ) is determined by

c(T ) = aδ

Z T

0
G−1

v,1(τ)dτ + ρ

Z T

0

�
1− ĥ

�
G−1

v,1(τ)
��

dτ, (6.11)

by the change of variable G−1
v,1(τ) = u, we have τ = Gv,1(u), andZ T

0

�
1− ĥ

�
G−1

v,1(τ)
��

dτ =
Z G−1

v,1(T )

G−1
v,1(0)

[1− ĥ(u)]
∂τ

∂u
du =

Z v

G−1
v,1(T )

1− ĥ(u)
δu + ĝ(u)− 1 + 1

2σ2u2
du,

similarly, Z T

0
G−1

v,1(τ)dτ =
Z v

G−1
v,1(T )

u

δu + ĝ(u)− 1 + 1
2σ2u2

du.

Finally, substitute B(0) and c(T ) into (6.9), and Theorem 6.2.2 follows.

Theorem 6.2.3. If δ > µ1G
and 2δ

σ2 a > 1, then the Laplace transform of the asymptotic distribution
of λT is given by

lim
T→∞

E
�
e−vλT

��λ0

�
= exp

�
−
Z v

0

aδu + ρ[1− ĥ(u)]
δu + ĝ(u)− 1 + 1

2σ2u2
du

�
, (6.12)

and this is also the Laplace transform of the stationary distribution of the process {λt}t≥0.

Proof. Let T →∞ in Theorem 6.2.2, then G−1
v,1(T ) → 0 and the Laplace transform of the asymp-

totic distribution follows immediately as given by (6.12).
To further prove the stationarity, by Proposition 9.2 of Ethier and Kurtz (1986) (and see also

Costa (1990)), we need to prove that, for any function f within its domain Ω(A), we haveZ
E
Af(λ)Π(λ)dλ = 0, (6.13)

where E = [0,∞) is the domain for λ, Af(λ) is the infinitesimal generator of this process acting
on f(λ), i.e.

Af(λ) = −δλ
df(λ)

dλ
+ δa

df(λ)
dλ

+ ρ

�Z ∞

0
f(λ + y)dH(y)− f(λ)

�
+λ

�Z ∞

0
f(λ + z)dG(z)− f(λ)

�
+

1
2
σ2λ

d2f(λ)
dλ2

, (6.14)

and Π(λ) is the density function of λ with the Laplace transform given by (6.12).
Note that, for the density function Π, since

R∞
0 Π(u)du = 1, we have

lim
u→∞

uΠ(u) = 0,

lim
u→∞

[uΠ(u)]′ = 0.

By convergence test,

lim
u→∞

aδu+ρ[1−ĥ(u)]

δu+ĝ(u)−1+ 1
2 σ2u2

aδ
δ+ 1

2 σ2u

= lim
u→∞

u + ρ
aδ [1− ĥ(u)]

u + ĝ(u)−1

δ+ 1
2 σ2u

= lim
u→∞

�
u + ρ

aδ [1− ĥ(u)]
�′�

u + ĝ(u)−1

δ+ 1
2 σ2u

�′ = 1,
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since

lim
v→∞

Z v

0

aδ

δ + 1
2σ2u

du = ∞,

we have

lim
v→∞

Z v

0

aδu + ρ[1− ĥ(u)]
δu + ĝ(u)− 1 + 1

2σ2u2
= ∞.

For constant ε > 0,

ε−
2δ
σ2 a × lim

v→∞
v

2δ
σ2 aΠ̂(v)

= lim
v→∞

exp

�
−
Z v

0

aδu + ρ[1− ĥ(u)]
δu + ĝ(u)− 1 + 1

2σ2u2
du +

2δ

σ2
a

Z v

ε

1
u

du

�
= exp

�
−
Z ε

0

aδu + ρ[1− ĥ(u)]
δu + ĝ(u)− 1 + 1

2σ2u2
du

�
× lim

v→∞
exp

�
−
Z v

ε

aδu + ρ[1− ĥ(u)]
δu + ĝ(u)− 1 + 1

2σ2u2
du +

2δ

σ2
a

Z v

ε

1
u

du

�
= Π̂(ε)× lim

v→∞
exp

�
−
Z v

ε

�
aδu + ρ[1− ĥ(u)]

δu + ĝ(u)− 1 + 1
2σ2u2

−
2δ
σ2 a

u

�
du

�
= Π̂(ε)× lim

v→∞
exp

 
−
Z v

ε

ρ[1− ĥ(u)]u− 2δ
σ2 a [δu− ĝ(u)− 1]�

δu + ĝ(u)− 1 + 1
2σ2u2

�
u

du

!
= Π̂(ε)× E(ε),

where

E(ε) =: exp

 
−
Z ∞

ε

ρ[1− ĥ(u)]u− 2δ
σ2 a [δu− ĝ(u)− 1]�

δu + ĝ(u)− 1 + 1
2σ2u2

�
u

du

!
< ∞,

hence,

lim
v→∞

v
2δ
σ2 aΠ̂(v) = ε

2δ
σ2 aΠ̂(ε)E(ε),

i.e.

Π̂(v) ∼ ε
2δ
σ2 aΠ̂(ε)E(ε)× v−

2δ
σ2 a, v →∞,

by Tauberian Theorem, we have

Π(λ) ∼ ε
2δ
σ2 aΠ̂(ε)E(ε)

Γ
�

2δ
σ2 a
� × λ( 2δ

σ2 a−1), λ → 0.

Note that a constant is a slowly varying function. Then, if 2δ
σ2 a > 1, we have

lim
u→0

Π(u) = 0,

lim
u→0

uΠ(u) = 0,

lim
u→0

[uΠ(u)]′ = 0.

We will now try to solve equation (6.13).
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For the first term of (6.13), we haveZ
E

�
−δλ

df(λ)
dλ

�
Π(λ)dλ = −δ

Z ∞

0
f ′(λ)[λΠ(λ)]dλ

= δ

Z ∞

λ=0
f ′(λ)

Z ∞

u=λ
[uΠ(u)]′dudλ ∵ [uΠ(u)]

����
u=∞

= 0

= δ

Z ∞

λ=0

Z ∞

u=λ
f ′(λ)[uΠ(u)]′dudλ

= δ

Z ∞

u=0

Z ∞

λ=u
f ′(λ)[uΠ(u)]′dλdu

= δ

Z ∞

u=0

Z ∞

λ=u
f ′(λ)dλ[uΠ(u)]′du

= δ

Z ∞

0

�
f(u)− f(0)

�
[uΠ(u)]′du

= δ

Z ∞

0
f(u)[uΠ(u)]′du− δf(0)[uΠ(u)]

����u=∞

u=0

∵ [uΠ(u)]
����u=∞

u=0

= 0

= δ

Z ∞

0
f(u)[uΠ(u)]′du.

For the second term of (6.13), we haveZ
E

�
δa

df(λ)
dλ

�
Π(λ)dλ = δa

Z ∞

λ=0
f ′(λ)Π(λ)dλ

= −δa

Z ∞

λ=0
f ′(λ)

Z ∞

u=λ
Π′(u)dudλ ∵ Π(u)

����
u=∞

= 0

= −δa

Z ∞

λ=0

Z ∞

u=λ
f ′(λ)Π′(u)dudλ

= −δa

Z ∞

u=0

Z u

λ=0
f ′(λ)Π′(u)dudλ

= −δa

Z ∞

u=0

Z u

λ=0
f ′(λ)dλΠ′(u)du

= −δa

Z ∞

u=0

�
f(u)− f(0)

�
Π′(u)du

= −δa

Z ∞

u=0
f(u)Π′(u)du + δaf(0)

Z ∞

u=0
Π′(u)du

= −δa

Z ∞

u=0
f(u)Π′(u)du + δaf(0)Π(u)

����u=∞

u=0

∵ Π(u)
����
u=∞

= 0

= −δa

Z ∞

u=0
f(u)Π′(u)du + δaf(0)Π(0) ∵ Π(0) = 0

= −δa

Z ∞

u=0
f(u)Π′(u)du.

For the third term of (6.13), by change variable λ + y = s (y ≤ s) in the double integral,Z
E

�
ρ

Z ∞

0
f(λ + y)dH(y)

�
Π(λ)dλ

= ρ

Z ∞

λ=0
Π(λ)

Z ∞

y=0
f(λ + y)dH(y)dλ = ρ

Z ∞

s=0
f(s)

Z s

y=0
Π(s− y)dH(y)ds,

or, Z
E

�
ρ

Z ∞

0
f(λ + y)dH(y)

�
Π(λ)dλ = ρ

Z ∞

λ=0
f(λ)

Z λ

y=0
Π(λ− y)dH(y)dλ.
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For the fourth term of (6.13), by change variable λ + z = s (z ≤ s) in the double integral,Z
E

�
λ

�Z ∞

0
f(λ + z)dG(z)

��
Π(λ)dλ

=
Z ∞

λ=0
λΠ(λ)

Z ∞

z=0
f(λ + z)dG(z)dλ =

Z ∞

s=0
f(s)

Z s

z=0
(s− z)Π(s− z)dG(z)ds,

or, Z
E

�
λ

�Z ∞

0
f(λ + z)dG(z)

��
Π(λ)dλ =

Z ∞

λ=0
f(λ)

Z λ

z=0
(λ− z)Π(λ− z)dG(z)dλ.

For the fifth term of (6.13), we haveZ
E

�
1
2
σ2λ

d2f(λ)
dλ2

�
Π(λ)dλ

=
1
2
σ2

Z ∞

0
f ′′(λ)λΠ(λ)dλ

= −1
2
σ2

Z ∞

λ=0
f ′′(λ)

Z ∞

u=λ
[uΠ(u)]′dudλ ∵ [uΠ(u)]

����
u=∞

= 0

= −1
2
σ2

Z ∞

λ=0

Z ∞

u=λ
f ′′(λ)[uΠ(u)]′dudλ

= −1
2
σ2

Z ∞

u=0

Z u

λ=0
f ′′(λ)[uΠ(u)]′dλdu

= −1
2
σ2

Z ∞

u=0

Z u

λ=0
f ′′(λ)dλ[uΠ(u)]′du

= −1
2
σ2

Z ∞

u=0

�
f ′(u)− f ′(0)

�
[uΠ(u)]′du

= −1
2
σ2

Z ∞

u=0
f ′(u)[uΠ(u)]′du +

1
2
σ2f ′(0)

Z ∞

u=0
[uΠ(u)]′du

= −1
2
σ2

Z ∞

u=0
f ′(u)[uΠ(u)]′du +

1
2
σ2f ′(0)[uΠ(u)]

����u=∞

u=0

∵ [uΠ(u)]
����u=∞

u=0

= 0

= −1
2
σ2

Z ∞

u=0
f ′(u)[uΠ(u)]′du

=
1
2
σ2

Z ∞

u=0
f ′(u)

Z ∞

s=u
[sΠ(s)]′′dsdu ∵ [sΠ(s)]′

����
s=∞

= 0

=
1
2
σ2

Z ∞

u=0

Z ∞

s=u
f ′(u)[sΠ(s)]′′dsdu

=
1
2
σ2

Z ∞

s=0

Z s

u=0
f ′(u)[sΠ(s)]′′duds

=
1
2
σ2

Z ∞

s=0

Z s

u=0
f ′(u)du[sΠ(s)]′′ds

=
1
2
σ2

Z ∞

s=0

�
f(s)− f(0)

�
[sΠ(s)]′′ds

=
1
2
σ2

Z ∞

s=0
f(s)[sΠ(s)]′′ds− 1

2
σ2f(0)

Z ∞

s=0
[sΠ(s)]′′ds

=
1
2
σ2

Z ∞

s=0
f(s)[sΠ(s)]′′ds− 1

2
σ2f(0)[sΠ(s)]′

����s=∞
s=0

∵ [sΠ(s)]′
����s=∞
s=0

= 0

=
1
2
σ2

Z ∞

s=0
f(s)[sΠ(s)]′′ds.
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Therefore, Z
E
Af(λ)Π(λ)dλ

=
Z ∞

0
f(λ)

�
δ

d
dλ

�
(λ− a)Π(λ)

�
+ ρ

�Z λ

0
Π(λ− y)dH(y)−Π(λ)

�
+
�Z λ

0
(λ− z)Π(λ− z)dG(z)− λΠ(λ) +

1
2
σ2 d2

dλ2
[λΠ(λ)]

��
dλ.

Set Z
E
Af(λ)Π(λ)dλ = 0,

for any function f(λ) ∈ Ω(A), then,

δ
d
dλ

�
(λ− a)Π(λ)

�
+ ρ

�Z λ

0
Π(λ− y)dH(y)−Π(λ)

�
+
�Z λ

0
(λ− z)Π(λ− z)dG(z)− λΠ(λ) +

1
2
σ2 d2

dλ2
[λΠ(λ)]

�
= 0,

by Laplace transform

Π̂(v) =: L{Π(λ)} =
Z

E
Π(λ)e−vλdλ,

we have

L
§

d
dλ

�
(λ− a)Π(λ)

�ª
= vL{(λ− a)Π(λ)} = v

�
−dΠ̂(v)

dv
− aΠ̂(v)

�
,

L
�Z λ

0
Π(λ− y)dH(y)

�
= L

�Z λ

0
Π(λ− y)h(y)dy

�
= Π̂(v)ĥ(v),

L
�Z λ

0
(λ− z)Π(λ− z)dG(z)

�
= L

�Z λ

0
(λ− z)Π(λ− z)g(z)dz

�
= L{λΠ(λ)} ĝ(v) = −dΠ̂(v)

dv
ĝ(v),

L
�

d2

dλ2
[λΠ(λ)]

�
= −v2 d

dv
Π̂(v),

then,

δv

�
−dΠ̂(v)

dv
− aΠ̂(v)

�
+ ρ[ĥ(v)− 1]Π̂(v) +

�
1− ĝ(v)− 1

2
σ2v2

�
dΠ̂(v)

dv
= 0,

or, �
1− δv − ĝ(v)− 1

2
σ2v2

�
dΠ̂(v)

dv
+
�
− aδv + ρ[ĥ(v)− 1]

�
Π̂(v) = 0,

which is an ODE with the solution given by

Π̂(v) = Π̂(0) exp

�
−
Z v

0

aδu + ρ[1− ĥ(u)]
δu + ĝ(u)− 1 + 1

2σ2u2
du

�
.

Note that, given the initial condition

Π̂(0) =
Z

E
Π(λ)dλ = 1,

we have the unique solution

Π̂(v) = exp

�
−
Z v

0

aδu + ρ[1− ĥ(u)]
δu + ĝ(u)− 1 + 1

2σ2u2
du

�
,
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which is exactly given by (6.12).

Since Π is the unique solution to (6.13), we have the stationarity for the intensity process
{λt}t≥0.

Corollary 6.2.1. For the case without externally excited and self-excited jumps, we have¦
λt

©
t≥0

∼ Gamma
�

2δ

σ2
a,

2δ

σ2

�
.

Proof.

Π̂(v) = exp
�
−
Z v

0

aδu

δu + 1
2σ2u2

du

�
= exp

�
− 2δ

σ2
a

Z v

0

1
2δ
σ2 + u

du

�
=

�
2δ
σ2

v + 2δ
σ2

� 2δ
σ2 a

.

Corollary 6.2.2. For the case without self-excited jumps and assume H ∼ Exp(α), we have¦
λt

©
t≥0

∼ Gamma
�

2δ

σ2
a− 2ρ

2δ − ασ2
,
2δ

σ2

�
+ Gamma

�
2ρ

2δ − ασ2
, α

�
.

Proof.

Π̂(v) = exp

 
−
Z v

0

aδu + ρ
�
1− α

α+u

�
δu + 1

2σ2u2
du

!
= exp

�
−
Z v

0

aδu

δu + 1
2σ2u2

du

�
× exp

 
−
Z v

0

ρ
�
1− α

α+u

�
δu + 1

2σ2u2
du

!
=

�
2δ
σ2

v + 2δ
σ2

� 2δ
σ2 a

×
�

2δ
σ2

v + 2δ
σ2

�− 2ρ

2δ−ασ2 � α

α + v

� 2ρ

2δ−ασ2

=

�
2δ
σ2

v + 2δ
σ2

�� 2δ
σ2 a− 2ρ

2δ−ασ2

�
×
�

α

α + v

� 2ρ

2δ−ασ2

.

Corollary 6.2.3. For the case without externally excited jumps and assume G ∼ Exp(β) and
stationarity condition δβ > 1, we have

Π̂(v) = exp
�
− 2δ

σ2
a

Z v

0
l(u)du

�
,

where

l(u) =:
β + u

u2 +
�

2δ
σ2 + β

�
u + 2

σ2 (δβ − 1)
, u ∈ [0, v],

and

E[λt] =
δβ

δβ − 1
a.
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Proof.

Π̂(v) = exp

 
−
Z v

0

aδu

δu + β
β+u − 1 + 1

2σ2u2
du

!
= exp

�
−
Z v

0

aδ

δ − 1
β+u + 1

2σ2u
du

�
= exp

 
− 2δ

σ2
a

Z v

0

β + u

u2 +
�

2δ
σ2 + β

�
u + 2

σ2 (δβ − 1)
du

!
.

Note that,

l(0) =
σ2β

2(δβ − 1)
,

for u ∈ [0, v], l(u) is a positive strictly increasing function since

l′(u) =
u2 + 2βu +

�
β2 + 2

σ2

��
u2 +

�
2δ
σ2 + β

�
u + 2

σ2 (δβ − 1)
�2 < 0, u ∈ [0, v].

hence, Π̂(v) exists. For instance, we derive the first moment of stationary λt,

E[λt] = −Π̂′(v)
��
v=0

= −Π̂(0)
�
− 2δ

σ2
al(0)

�
=

2δ

σ2
a× σ2β

2(δβ − 1)
=

δβ

δβ − 1
a,

which is independent of volatility parameter σ.

Corollary 6.2.4. If δ > µ1G
and λ0 ∼ Π, then λT ∼ Π for any time T ≥ 0.

Proof.

E
�
e−vλT

�
= E

�
E
�
e−vλT

��λ0

��
= exp

�
−
Z v

G−1
v,1(T )

aδu + ρ[1− ĥ(u)]
δu + ĝ(u)− 1 + 1

2σ2u2
du

�
× E

�
exp

�
−G−1

v,1(T )λ0

��
= exp

�
−
Z v

G−1
v,1(T )

aδu + ρ[1− ĥ(u)]
δu + ĝ(u)− 1 + 1

2σ2u2
du

�
× exp

�
−
Z G−1

v,1(T )

0

aδu + ρ[1− ĥ(u)]
δu + ĝ(u)− 1 + 1

2σ2u2
du

�
= exp

�
−
Z v

0

aδu + ρ[1− ĥ(u)]
δu + ĝ(u)− 1 + 1

2σ2u2
du

�
= Π̂(v).

6.2.3 Probability Generating Function of NT

Theorem 6.2.4. The conditional probability generating function of NT given λ0 and N0 = 0 at
time t = 0, under the condition δ > µ1G

, is given by

E
�
θNT

��λ0

�
= exp

�
−
Z G−1

0,θ
(T )

0

aδu + ρ[1− ĥ(u)]
1− δu− θĝ(u)− 1

2σ2u2
du

�
× exp

�
−G−1

0,θ(T )λ0

�
,

where

G0,θ(L) =:
Z L

0

du

1− δu− θĝ(u)− 1
2σ2u2

, 0 ≤ θ < 1. (6.15)
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Proof. By setting t = 0, v = 0 and assuming N0 = 0 in Theorem 6.2.1, we have

E
�
θNT

��F0

�
= e−c(T )e−B(0)λ0 ,

where B(0) is uniquely determined by the non-linear ODE

−B′(t) + δB(t) + θĝ
�
B(t)

�
− 1 +

1
2
σ2B2(t) = 0,

with boundary condition B(T ) = 0. It can be solved for σ > 0, under the condition δ > µ1G
, by

the following steps:

1. Set B(t) = L(T − t) and τ = T − t,

dL(τ)
dτ

= 1− δL(τ)− θĝ(L(τ))− 1
2
σ2L2(τ) =: f2(L), 0 ≤ θ < 1, (6.16)

with initial condition L(0) = 0; we define the right-hand side as the function f2(L).

2. There is only one positive singular point, denoted by v∗ > 0, by solving the equation f2(L) =
0. This is because,

• for the case 0 < θ < 1, the equation f2(L) = 0 is equivalent to

ĝ(u) =
1
θ

�
1− δu− 1

2
σ2u2

�
, 0 < θ < 1,

note that ĝ(·) is a convex function, then it is clear that there is only one positive solution
to this equation;

• for the case θ = 0, the equation f2(L) = 0 is equivalent to

1− δu− 1
2
σ2u2 = 0, θ = 0,

which has only one positive solution

v∗ =
−δ +

√
δ2 + 2σ2

σ2
> 0, σ > 0;

and for both cases,

0 <
−δ +

È
δ2 + 2σ2(1− θ)

σ2
< v∗ ≤ −δ +

√
δ2 + 2σ2

σ2
, σ > 0; (6.17)

then, we have f2(L) > 0 for 0 ≤ L < v∗ and f2(L) < 0 for L > v∗.

3. Rewrite (6.16) as
dL

1− δL− θĝ(L)− 1
2σ2L2

= dτ,

and integrate, Z L

0

du

1− δu− θĝ(u)− 1
2σ2u2

= τ,

where 0 ≤ L < v∗, we define the function on left-hand side as

G0,θ(L) =:
Z L

0

du

1− δu− θĝ(u)− 1
2σ2u2

(6.18)

then,
G0,θ(L) = τ,

as L → 0 when τ → 0, and L → v∗ when τ → ∞; the integrand is positive in the domain
u ∈ [0, v∗) and L ≥ 0, G0,θ(L) is a strictly increasing function; therefore, G0,θ(L) : [0, v∗) →
[0,∞) is a well defined function, and its inverse function G−1

0,θ(τ) : [0,∞) → [0, v∗) exists.
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4. The unique solution is found by

L(τ) = G−1
0,θ(τ), or, B(t) = G−1

0,θ(T − t).

5. B(0) is obtained,
B(0) = L(T ) = G−1

0,θ(T ).

Then, c(T ) is determined by

c(T ) = aδ

Z T

0
G−1

0,θ(τ)dτ + ρ

Z T

0

�
1− ĥ

�
G−1

0,θ(τ)
��

dτ, (6.19)

where, by the change of variable,Z T

0
G−1

0,θ(τ)dτ =
Z G−1

0,θ
(T )

0

u

1− δu− θĝ(u)− 1
2σ2u2

du,Z T

0

�
1− ĥ

�
G−1

0,θ(τ)
��

dτ =
Z G−1

0,θ
(T )

0

1− ĥ(u)
1− δu− θĝ(u)− 1

2σ2u2
du.

Finally, substitute B(0) and c(T ) into (6.9), and the result follows.
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7

A Discretised Dynamic Contagion

Process

In this chapter, we introduce a new point process named “discretised dynamic contagion process”,
a Markov chain model for contagion. We can prove (in Theorem 7.2.3) that it is a special class
of branching processes that generalises a dynamic contagion process (of reversion level a = 0)
introduced by Chapter 2. The transformation formulas between a discretised dynamic contagion
process and the original dynamic contagion process (a = 0) are obtained. Some key distributional
properties of this new point process have also been derived.

7.1 Introduction

We provide the definition of a discretised dynamic contagion process based on the transition prob-
ability within a sufficient small time interval.

Definition 7.1.1. The discretised dynamic contagion process (Nt,Mt) is a point process on R+

such that

P
¦
Mt+∆t −Mt = k, Nt+∆t −Nt = 0

��Mt, Nt

©
= ρpk∆t + o(∆t), k = 1, 2...,

P
¦
Mt+∆t −Mt = k − 1, Nt+∆t −Nt = 1

��Mt, Nt

©
= δMtqk∆t + o(∆t), k = 0, 1...,

P
¦
Mt+∆t −Mt = 0, Nt+∆t −Nt = 0

��Mt, Nt

©
= 1−

�
ρ(1− p0) + δMt

�
∆t + o(∆t),

P
¦
Others

��Mt, Nt

©
= o(∆t),

where ∆t is a sufficient small time interval, δ, ρ > 0 are constants and batch-size distributions

pk =: P {KP = k} , qk =: P {KQ = k} , k = 0, 1...,

with the probability generating functions are defined by

p̂ (θ) =:
∞X

k=0

θkpk, q̂ (θ) =:
∞X

k=0

θkqk.

Remark 7.1.1. In the point process Mt, there are two types of jumps:

1. Independent Jumps KP :
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• jump independent of Nt,

• upward by 0, 1, 2, .. steps, with the corresponding probability p0, p1, p2, ...;

2. Joint Jumps KQ:

• jump simultaneously with Nt,

• upward by −1, 0, 1, 2, ... steps, with the corresponding probability q0, q1, q2, ..., in par-
ticular, −1 means decline by 1 step.

With the aid of the piecewise deterministic Markov process theory and using the results in
Davis (1984), the infinitesimal generator of a discretised dynamic contagion process (Mt, Nt, t)
acting on a function f(m,n, t) ∈ Ω(A) is given by

Af(m,n, t) =
∂f

∂t
+ ρ

 ∞X
k=0

f(m + k, n, t)pk − f(m,n, t)

!
+δm

 ∞X
k=0

f(m + k − 1, n + 1, t)qk − f(m,n, t)

!
, (7.1)

where Ω(A) is the domain of the generator A such that f(λ, n, t) is differentiable with respect to
t, and for all m, n and t, ����� ∞X

k=0

f(m + k, n, t)pk − f(m,n, t)

����� < ∞,����� ∞X
k=0

f(m + k − 1, n + 1, t)qk − f(m,n, t)

����� < ∞.

Similarly to the Definition 2.1.1 for the dynamic contagion process, the discretised dynamic con-
tagion process is a cluster point process on R+ and also can be defined as a branching process. A
sample path of the discretised dynamic contagion process (Nt,Mt) is given by Figure 7.1.

Remark 7.1.2. The point process Mt is a non-negative process, as by Definition 7.1.1,

• if Mt = 0, there is no joint jump and Mt cannot be brought downward further by 1 step or
more;

• if Mt = 1, 2, ..., there is possible downward movement with maximum 1 step.

Higher levels of Mt will bring more possible jumps in Nt, hence more joint jumps in Mt.
So, for a general discretised dynamic contagion process, Mt could explode at time infinity, and a
stationarity condition (given later by Remark 7.2.1) needed to keep the process Mt stationary:

• when Mt goes higher, there will be more possible jumps in Nt, and hence more simultaneous
joint jumps with −1 step in Mt. So it finally will bring the level of Mt to be lower;

• when Mt goes lower, in particular, during the period when Mt = 0, there are no joint jumps;
there are only possible independent jumps that bring Mt out of 0 level; once Mt is above 0,
there will be possible joint jumps, and hence more possible joint jumps that bring the level
of Mt higher.

Remark 7.1.3. We can consider the discrete piecewise non-negative process {δMt}t≥0 as the
intensity process of the point process Nt ( with the proof given later by (7.2)).
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7.2 Distributional Properties
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Fig. 7.1: Point Process Nt v.s. Point Process Mt

Remark 7.1.4. The discretised dynamic contagion process is a generalised birth-death process
with multiple births and one single death of offsprings for each individual alive at time t.

Remark 7.1.5. The discretised dynamic contagion process is more general than the dynamic
contagion process (a = 0) introduced by Chapter 2, as the intensity process {δMt}t≥0 allows to
be zero, and also the dynamic contagion process (a = 0) is a special case of discretised dynamic
contagion process when both KP and KQ follow mixed–Poisson distributions (with proof later
given by Theorem 7.2.3).

7.2 Distributional Properties

7.2.1 Moments of Mt and Nt

We derive the first moments of Mt and Nt by ODE method and discuss the stationarity condition
for the process Mt. Other moments can also be obtained similarly to Section 2.2.4 for dynamic
contagion process, and we omit them here.

Theorem 7.2.1. The expectation of Mt conditional on M0 is given by

E[Mt|M0] =
µ1P

ρ

δ(1− µ1Q
)

+
�

M0 − µ1P
ρ

δ(1− µ1Q
)

�
e−δ(1−µ1Q

)t, µ1Q
6= 1,

E[Mt|M0] = M0 + µ1P
ρt, µ1Q

= 1.

Proof. Set f(m,n, t) = m and plug into the generator (7.1), we have

Am = −δ(1− µ1Q
)m + µ1P

ρ.

Since Mt −M0 −
R t
0 AMsds is a FP−martingale, then,

E[Mt|M0] = M0 + E
�Z t

0
AMsds

����M0

�
= M0 − δ(1− µ1Q

)
Z t

0
E[Ms|M0]ds + µ1P

ρt,
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and we can derive the expectation via the ODE

du(t)
dt

= −δ(1− µ1Q
)u(t) + µ1P

ρ,

where u(t) = E[Mt|M0] with the initial condition u(0) = M0.

Remark 7.2.1. The stationarity condition of the process Mt is µ1Q
< 1 where

µ1Q
=:

∞X
k=0

kqk.

Note that, by Theorem 7.2.3, it can be alternatively derived via the transformation from the
stationarity condition δ > µ1G

for a dynamic contagion process, i.e.

µ1Q
= E [KQ] = E

�
Y

δ

����Y ∼ G

�
=

µ1G

δ
< 1.

In particular, if KQ ∼ Geometric (q́), then, the stationarity condition is q́ > 1
2 .

Corollary 7.2.1. Assume µ1Q
< 1 and N0 = 0, for the stationary distribution of Mt, we have

E[Mt] =
µ1P

ρ

δ(1− µ1Q
)
,

E[Nt] =
µ1P

ρ

1− µ1Q

t.

Proof. Set f(m,n, t) = n and plug into the generator (7.1), we have

An = δm.

Since Nt −N0 −
R t
0 ANsds is a FP−martingale and N0 = 0, then,

E[Nt|M0] = N0 + E
�Z t

0
ANsds

����M0

�
= δ

Z t

0
E[Ms|M0]ds, (7.2)

and

E[Nt] = δ

Z t

0
E[Ms]ds = E[Nt] =

µ1P
ρ

1− µ1Q

t.

7.2.2 Joint Probability Generating Function of (MT , NT )

Theorem 7.2.2. For constants 0 ≤ θ, ϕ ≤ 1 and time 0 ≤ t ≤ T , we have the conditional joint
probability generating function of (MT , NT ),

E
�
θ(NT−Nt)ϕMT

��Ft

�
= e−(c(T )−c(t))[A(t)]Mt ,

where A(t) is determined by the non-linear ODE

A′(t) + δθq̂(A(t))− δA(t) = 0,

with boundary condition A(T ) = ϕ; and c(t) is determined by

c(t) = ρ

Z t

0
[1− p̂(A(s))] ds.
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7.2 Distributional Properties

Proof. Assume the exponential affine form

f(m,n, t) = [A(t)]mθnec(t),

and set Af(m,n, t) = 0, note that,
∞X

k=0

[A(t)]kpk = p̂ (A(t)) ;
∞X

k=0

[A(t)]kqk = q̂ (A(t)) ,

then, we have (
A′(t)
A(t) + δ

�
θ

A(t) q̂(A(t))− 1
�

= 0 (.1)

c′(t) = ρ[1− p̂(A(t))] (.2)
,

or, ¨
A′(t) + δθq̂(A(t))− δA(t) = 0 (.1)
c′(t) = ρ[1− p̂(A(t))] (.2)

.

Since [A(t)]MtθNtec(t) is a FP−martingale, we have

E
�
[A(T )]MT θNT ec(T )

����Ft

�
= [A(t)]MtθNtec(t),

with boundary conditions A(T ) = ϕ and c(0) = 0.

7.2.3 Transformation to Dynamic Contagion Process

The discretised dynamic contagion process (Nt,Mt) (defined by Definition 7.1.1) is matching to
a dynamic contagion process (Nt, λt) (defined by Definition 2.1.1) with reversion level a = 0. We
discover the transformation formulas between the discretised dynamic contagion process and the
dynamic contagion process (a = 0) by comparing their infinitesimal generators:

• The generator of a dynamic contagion process (λt, Nt) with a = 0 is given by (2.2), i.e.

Af(λ, n, t) =
∂f

∂t
− δλ

∂f

∂λ
+ ρ

�Z ∞

0
f(λ + y, n, t)dH(y)− f(λ, n, t)

�
+λ

�Z ∞

0
f(λ + y, n + 1, t)dG(y)− f(λ, n, t)

�
.

Assume the form f(λ, n, t) = e−B(t)λθnec(t) and set Af(λ, n, t) = 0, we have¨
−B′(t) + δB(t) + θĝ(B(t))− 1 = 0
c′(t) = ρ[1− ĥ(B(t))]

(7.3)

which has been used to derive E
�
θNT e−vλT

��λ0

�
(as given by Theorem 2.2.1).

• The generator of a discretised dynamic contagion process (Mt, Nt) is given by (7.1), i.e.

Af(m,n, t) =
∂f

∂t
+ ρ

 ∞X
k=0

f(m + k, n, t)pk − f(m,n, t)

!
+δm

 ∞X
k=0

f(m + k − 1, n + 1, t)qk − f(m,n, t)

!
.

Similarly, assume f(m,n, t) = [A(t)]mθnec(t) and set Af(m,n, t) = 0, we have¨
A′(t) + δθq̂(A(t))− δA(t) = 0
c′(t) = ρ[1− p̂(A(t))]

(7.4)

which has been used to derive E
�
θNT ϕMT

��M0

�
(as given by Theorem 7.2.2).
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A Discretised Dynamic Contagion Process

Compare (7.4) with (7.3), if we set

B(t) =
1−A(t)

δ
, (7.5)

p̂ (u) = ĥ

�
1− u

δ

�
, q̂ (u) = ĝ

�
1− u

δ

�
, (7.6)

or,
A(t) = 1− δB(t), (7.7)

p̂ (1− δu) = ĥ (u) , q̂ (1− δu) = ĝ (u) , (7.8)

then, (7.3) and (7.4) are equivalent. The transformation between the discretised dynamic contagion
process and the dynamic contagion process (a = 0) is thus given by Theorem 7.2.3.

Theorem 7.2.3. The discretised dynamic contagion process is a dynamic contagion process with
a = 0, if

KP ∼ Mixed–Poisson
�

Y

δ

����Y ∼ H

�
, KQ ∼ Mixed–Poisson

�
Y

δ

����Y ∼ G

�
,

i.e.

pk =
Z ∞

0

e−
y
δ

k!

�y

δ

�k

dH(y), qk =
Z ∞

0

e−
y
δ

k!

�y

δ

�k

dG(y).

Proof. By the transformation formula (7.6), we have

∞X
k=0

θkpk = p̂ (θ) = ĥ

�
1− θ

δ

�
=
Z ∞

0
e−

1−θ
δ ydH(y) = E

�
e−

Y
δ (1−θ)

�
= E

�
E
�
θKP

����KP ∼ Poisson
�

Y

δ

���
= E

" ∞X
k=0

θkP

§
KP = k

����KP ∼ Poisson
�

Y

δ

�ª#
=

∞X
k=0

θkE
�
P

§
KP = k

����KP ∼ Poisson
�

Y

δ

�ª�
=

∞X
k=0

θkP {KP = k} ;

and similarly, for qk.

Corollary 7.2.2. If H ∼ Exp (α) and G ∼ Exp (β), then, the transformation is given by

{pk}k=0,1,2... ∼ Geometric (ṕ) , ṕ =:
δα

δα + 1
;

{qk}k=0,1,2... ∼ Geometric (q́) , q́ =:
δβ

δβ + 1
.

Proof. If H ∼ Exp (α), then, by (7.6), we have

p̂(u) = ĥ

�
1− u

δ

�
=

α

α + 1−u
δ

=
δα

δα+1

1−
�
1− δα

δα+1

�
u

=
ṕ

1− (1− ṕ)u
;

and similarly, for G ∼ Exp (β).
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7.2 Distributional Properties

7.2.4 Probability Generating Function of MT

Theorem 7.2.4. Under the condition µ1Q
< 1, the probability generating function of MT condi-

tional on M0 is given by

E[ϕMT
��M0] = exp

�
−
Z Q−1

ϕ,1(T )

ϕ

ρ[1− p̂(u)]
δq̂(u)− δu

du

�
×
�
Q−1

ϕ,1(T )
�M0

,

where

Qϕ,1(L) =:
Z L

ϕ

du

δq̂(u)− δu
. (7.9)

Proof. In particular, set t = 0, θ = 1 and assume N0 = 0 in Theorem 7.2.2, we have

E
�
ϕMT

��M0

�
= e−c(T )[A(0)]M0 , (7.10)

where A(0) is uniquely determined by the non-linear ODE

A′(t) + δq̂(A(t))− δA(t) = 0,

with boundary condition A(T ) = ϕ. Under the condition µ1Q
< 1, it can be solved by the following

steps:

1. Set A(t) = L(T − t) and τ = T − t, it is equivalent to the initial value problem

dL(τ)
dτ

= δq̂(L(τ))− δL(τ) =: f1(L),

with initial condition L(0) = ϕ; we define the right-hand side as the function f1(L).

2. Under the condition µ1Q
< 1, we have

∂f1(L)
∂L

= δ

 ∞X
k=0

kLk−1pk − 1

!
≤ δ

 ∞X
k=0

kpk − 1

!
= δ

�
µ1Q

− 1
�

< 0, 0 < L ≤ 1,

then, f1(L) > 0 for 0 < L < 1, since f1(1) = 0.

3. Rewrite as
dL

δq̂(L)− δL
= dτ,

by integrating both sides from time 0 to τ with initial condition L(0) = ϕ > 0, we haveZ L

ϕ

du

δq̂(u)− δu
= τ,

where 0 < L ≤ 1, we define the function on left hand side as

Qϕ,1(L) =:
Z L

ϕ

du

δq̂(u)− δu
,

then,
Qϕ,1(L) = τ,

obviously L → ϕ when τ → 0; by convergence test,

lim
u→1

1
1−u

1
δq̂(u)−δu

= δ lim
u→1

q̂(u)− u

1− u
= δ lim

u→1

�
q̂(u)− u

�′
(1− u)′

= δ
�
1− lim

u→1
q̂′(u)

�
= 1− µ1Q

> 0,
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A Discretised Dynamic Contagion Process

and we know that
R 1

ϕ
1

1−udu = ∞, then,Z 1

ϕ

du

δq̂(u)− δu
= ∞,

hence, L → 1 when τ → ∞; the integrand is positive in the domain u ∈ [ϕ, 1) and also
Qϕ,1(L) is a strictly increasing function; therefore, Qϕ,1(L) : [ϕ, 1) → [0,∞) is a well defined
(monotone) function, and its inverse function Q−1

ϕ,1(τ) : [0,∞) → [ϕ, 1) exists.

4. The unique solution is found by

L(τ) = Q−1
ϕ,1(τ), or, A(t) = Q−1

ϕ,1(T − t).

5. A(0) is obtained,
A(0) = L(T ) = Q−1

ϕ,1(T ).

Then, c(T ) is determined by

c(T ) = ρ

Z T

0

�
1− p̂

�
Q−1

ϕ,1(τ)
��

dτ,

by the change of variable Q−1
ϕ,1(τ) = u, we have τ = Qϕ,1(u), andZ T

0

�
1− ĥ

�
Q−1

ϕ,1(τ)
��

dτ =
Z Q−1

ϕ,1(T )

Q−1
ϕ,1(0)

[1− p̂(u)]
∂τ

∂u
du =

Z Q−1
ϕ,1(T )

ϕ

1− p̂(u)
δq̂(u)− δu

du.

Alternatively, with the aid of the transformation, we can directly prove Theorem 7.2.2 from
Theorem 2.2.2 for the dynamic contagion process.

Proof. Review the proof of Theorem 2.2.2, as given by (7.10), we have

E
�
[A(T )]MT

��M0

�
= e−c(T )[A(0)]M0 ,

where A(T ) and A(0) can be alternatively solved via the transformation. Set A(T ) = ϕ, by (7.7),
we have

A(T ) = 1− δB(T ) = 1− δG−1
v,1(0) = 1− δv = ϕ,

then, v = 1−ϕ
δ , and by (2.13),

Gv,1(L) =
Z v

L

1
δu + ĝ(u)− 1

du

=
Z v

L

1
δu + q̂(1− δu)− 1

du (s = 1− δu)

=
Z 1−δL

1−δv

1
δq̂(s)− δs

ds

�
v =

1− ϕ

δ

�
=

Z 1−δL

ϕ

1
δq̂(s)− δs

ds.

Since

Gv,1(B) =
Z 1−δB

ϕ

1
δq̂(s)− δs

ds,
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and by transformation (7.7), A = 1− δB, we have

Gv,1

�
1−A

δ

�
=
Z A

ϕ

1
δq̂(s)− δs

ds.

Define Qϕ,1(L) by (7.9), we have

Qϕ,1(u) = Gv,1

�
1− u

δ

�
,

or,

Qϕ,1(1− δu) = Gv,1 (u) .

then,

Qϕ,1

�
1− δG−1

v,1(T )
�

= Gv,1

�
G−1

v,1(T )
�

= T,

and

Q−1
ϕ,1(T ) = 1− δG−1

v,1(T ).

By transformtation (7.7),

A(0) = 1− δB(0) = 1− δG−1
v,1(T ) = Q−1

ϕ,1(T ),

and

c(T ) =
Z v

G−1
v,1(T )

ρ[1− ĥ(u)]
δu + ĝ(u)− 1

du

=
Z 1−ϕ

δ

1−Q−1
ϕ,1

(T )

δ

ρ[1− p̂(1− δu)]
δu + q̂(1− δu)− 1

du (s = 1− δu)

=
Z Q−1

ϕ,1(T )

ϕ

ρ[1− p̂(s)]
δq̂(s)− δs

ds.

Theorem 7.2.5. If M0 ∼ Poisson
�

λ0
δ

�
, then,

E[ϕMT ] = E
�
e−vλT

��λ0

�
.

Proof. If M0 ∼ Poisson
�

λ0
δ

�
, then, E

�
ψM0

�
= e−

1−ψ
δ λ0 . By the transformation (7.5) and (7.7), we

have

v =
1− ϕ

δ
, G−1

v,1(T ) =
1−Q−1

ϕ,1(T )
δ

, A(0) = 1− δB(0),

and

G−1
v,1(T ) = B(0), Q−1

ϕ,1(T ) = A(0).
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Then, by comparing Theorem 7.2.2 and Theorem 2.2.2, we have

E[ϕMT ] = E
�
E[ϕMT

��M0]
�

= exp

�
−
Z Q−1

ϕ,1(T )

ϕ

ρ[1− p̂(u)]
δq̂(u)− δu

du

�
E
h�
Q−1

ϕ,1(T )
�M0

i
= exp

�
−
Z Q−1

ϕ,1(T )

ϕ

ρ[1− p̂(u)]
δq̂(u)− δu

du

�
e−

1−Q−1
ϕ,1

(T )

δ λ0

= exp

 
−
Z Q−1

ϕ,1(T )

ϕ

ρ
�
1− ĥ

�
1−u

δ

��
δĝ
�

1−u
δ

�
− δu

du

!
e−

1−Q−1
ϕ,1

(T )

δ λ0

�
s =

1− u

δ

�
= exp

�
−
Z 1−ϕ

δ

1−Q−1
ϕ,1

(T )

δ

ρ[1− ĥ(s)]
δs + ĝ(s)− 1

ds

�
e−

1−Q−1
ϕ,1

(T )

δ λ0

= exp

�
−
Z v

G−1
v,1(T )

aδu + ρ[1− ĥ(u)]
δu + ĝ(u)− 1

du

�
e−G

−1
v,1(T )λ0

= E
�
e−vλT

��λ0

�
.

Theorem 7.2.6. If µ1Q
< 1, then, the probability generating function of the asymptotic distribu-

tion of MT is given by

lim
T→∞

E[ϕMT
��M0] = exp

�
−
Z 1

ϕ

ρ[1− p̂(u)]
δq̂(u)− δu

du

�
, (7.11)

and this is also the probability generating function of the stationary distribution of the process
{Mt}t≥0.

Proof. Since

lim
T→∞

Q−1
ϕ,1(T ) = 1,

and by Theorem 7.2.4, we have the probability generating function of the asymptotic distribution
of MT immediately.

To further prove the stationarity, by Proposition 9.2 of Ethier and Kurtz (1986) (and see also
Costa (1990)), we need to prove that, for any function f ∈ Ω(A), we have

∞X
m=0

Af(m)ℵm = 0, (7.12)

where Af(m) is the infinitesimal generator of the discretised dynamic contagion process acting on
f(m), i.e.

Af(m) = ρ

 ∞X
k=0

f(m + k)pk − f(m)

!
+ δm

 ∞X
k=0

f(m + k − 1)qk − f(m)

!
, (7.13)

and {ℵm}k=0,1,2,... are the probabilities of m with the probability generating function given by
(7.11). Now, we try to solve equation (7.12).
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For the first term of (7.12), we have

∞X
m=0

"
ρ

 ∞X
k=0

f(m + k)pk

!#
ℵm = ρ

∞X
m=0

ℵm

∞X
k=0

f(m + k)pk (j = m + k)

= ρ
∞X

j=0

f(j)
jX

k=0

ℵj−kpk

= ρ
∞X

m=0

f(m)
mX

k=0

ℵm−kpk.

For the second term of (7.12), we have

∞X
m=0

"
δm

 ∞X
k=0

f(m + k − 1)qk

!#
ℵm = δ

∞X
m=0

mℵm

∞X
k=0

f(m + k − 1)qk

= δ
∞X

m=−1

(m + 1)ℵm+1

∞X
k=0

f(m + k)qk

= δ
∞X

m=0

(m + 1)ℵm+1

∞X
k=0

f(m + k)qk (j = m + k)

= δ
∞X

j=0

f(j)
jX

k=0

(j − k + 1)ℵj−k+1qk

= δ
∞X

m=0

f(m)
mX

k=0

(m− k + 1)ℵm−k+1qk.

Therefore,

∞X
m=0

Af(m)ℵm

=
∞X

m=0

f(m)

"
ρ

 
mX

k=0

ℵm−kpk − ℵm

!
+ δ

 
mX

k=0

(m− k + 1)ℵm−k+1qk −mℵm

!#
= 0,

for any function f(m) ∈ Ω(A), then, we have recursive equation

ρ

 
mX

k=0

ℵm−kpk − ℵm

!
+ δ

 
mX

k=0

(m− k + 1)ℵm−k+1qk −mℵm

!
= 0,

and

∞X
m=0

ϕm ×
"
ρ

 
mX

k=0

ℵm−kpk − ℵm

!
+ δ

 
mX

k=0

(m− k + 1)ℵm−k+1qk −mℵm

!#
= 0.

By the Laplace transform

ℵ̂(ϕ) =: L{ℵm} =
∞X

m=0

ℵmϕm,
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since
∞X

m=0

ϕm
mX

k=0

ℵm−kpk =
∞X

m=0

mX
k=0

ϕkpkϕm−kℵm−k

=
∞X

k=0

∞X
m=k

ϕm−kℵm−kϕkpk

 ∞X
m=k

ϕm−kℵm−k = ℵ̂(ϕ)

!
= ℵ̂(ϕ)

∞X
k=0

ϕkpk

= ℵ̂(ϕ)p̂(ϕ),

∞X
m=0

ϕm
mX

k=0

(m− k + 1)ℵm−k+1qk =
∞X

m=0

ϕm
m+1X
j=1

jℵjqm+1−j (j = m− k + 1)

=
1
ϕ

∞X
m=0

ϕj
m+1X
j=1

jℵjqm+1−jϕ
m+1−j (i = m + 1)

=
1
ϕ

∞X
i=1

iX
j=1

ϕjjℵjqi−jϕ
i−j

=
1
ϕ

∞X
j=1

∞X
i=j

qi−jϕ
i−jϕjjℵj

 ∞X
i=j

qi−jϕ
i−j = q̂(ϕ)

!
=

1
ϕ

q̂(ϕ)
∞X

j=1

ϕjjℵj

= q̂(ϕ)
∞X

j=1

jϕj−1ℵj

= q̂(ϕ)
∞X

j=0

jϕj−1ℵj

= q̂(ϕ)ℵ̂′(ϕ),

and ∞X
m=0

ϕmmℵm = ϕ
∞X

m=0

mℵmϕm−1 = ϕℵ̂′(ϕ),

we have the ODE of ℵ̂(ϕ),

ρ

�
ℵ̂(ϕ)p̂(ϕ)− ℵ̂(ϕ)

�
+ δ

�
q̂(ϕ)ℵ̂′(ϕ)− ϕℵ̂′(ϕ)

�
= 0,

or,

δ

�
q̂(ϕ)− ϕ

�
dℵ̂(ϕ)

dϕ
+ ρ [p̂(ϕ)− 1] ℵ̂(ϕ) = 0,

then,

ℵ̂(ϕ) = ℵ̂(1) exp
�
−
Z 1

ϕ

ρ[1− p̂(u)]
δq̂(u)− δu

du

�
,

with the initial condition ℵ̂(1) = 1, hence, we have the unique solution

ℵ̂(ϕ) =: exp
�
−
Z 1

ϕ

ρ[1− p̂(u)]
δq̂(u)− δu

du

�
132



7.2 Distributional Properties

which is exactly given by (7.11).
Since the distribution ℵ is the unique solution to (7.12), we have the stationarity for the

process {Mt}t≥0.

Corollary 7.2.3. Under condition µ1Q
< 1, if M0 ∼ ℵ, then MT ∼ ℵ.

Proof. If M0 ∼ ℵ, then, by Theorem 7.2.6 and Theorem 7.2.4, we have

E
�
ψMT

�
= E

��
ψMT

��M0

��
= exp

�
−
Z Q−1

ϕ,1(T )

ϕ

ρ[1− p̂(u)]
δq̂(u)− δu

du

�
× E

h�
Q−1

ϕ,1(T )
�M0

i
= exp

�
−
Z Q−1

ϕ,1(T )

ϕ

ρ[1− p̂(u)]
δq̂(u)− δu

du

�
× exp

�
−
Z 1

Q−1
ϕ,1(T )

ρ[1− p̂(u)]
δq̂(u)− δu

du

�
= exp

�
−
Z 1

ϕ

ρ[1− p̂(u)]
δq̂(u)− δu

du

�
= ℵ̂(ϕ).

Corollary 7.2.4. The probability generating function of stationary distribution of {Mt}t≥0 can be
expressed by the Laplace transform of stationary distribution of {λt}t≥0 as

ℵ̂(ϕ) = Π̂(v),

or,

ℵ̂(u) = Π̂
�

1− u

δ

�
. (7.14)

Proof. By Theorem 7.2.6 and Theorem 2.2.3, we have

Π̂(v) = exp

�
−
Z v

0

ρ[1− ĥ(u)]
δu + ĝ(u)− 1

du

�
= exp

�
−
Z v

0

ρ[1− p̂(1− δu)]
δu + q̂(1− δu)− 1

du

�
(s = 1− δu)

= exp
�
−
Z 1

1−δv

ρ[1− p̂(s)]
δq̂(s)− δu

ds

�
= ℵ̂(1− δv)

= ℵ̂(ϕ).

7.2.5 Probability Generating Function of NT

Theorem 7.2.7. Assume µ1Q
< 1 and N0 = 0, the probability generating function of NT condi-

tional on M0 is given by

E
�
θNT

��M0

�
= exp

�
−
Z 1

Q−1
0,θ

(T )

ρ[1− p̂(u)]
δu− δθq̂(u)

du

�
×
�
Q−1

0,θ(T )
�M0

,

where

Q0,θ(L) =:
Z 1

L

du

δu− δθq̂(u)
, 0 ≤ θ < 1. (7.15)
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Proof. By setting t = 0, ϕ = 1 and assuming N0 = 0 in Theorem 7.2.2, we have

E
�
θNT

��M0

�
= e−c(T )[A(0)]M0 , (7.16)

where A(0) is uniquely determined by the non-linear ODE

A′(t) + δθq̂(A(t))− δA(t) = 0,

with boundary condition A(T ) = 1. It can be solved, under the condition µ1Q
< 1, by the following

steps:

1. Set A(t) = L(T − t) and τ = T − t,

dL(τ)
dτ

= δθq̂(L(τ))− δL(τ) =: f2(L), 0 ≤ θ < 1, (7.17)

with initial condition L(0) = 1; we define the right-hand side as the function f2(L).

2. There is only one positive singular point in the interval [0, 1], denoted by

0 ≤ ϕ∗ ≤ 1, (7.18)

by solving the equation f2(L) = 0. This is because, for the case 0 < θ < 1, the equation
f2(L) = 0 is equivalent to

q̂(u) =
1
θ
u, 0 < θ < 1,

note that q̂(·) is a convex function, then it is clear that there is only one positive solution
within [0, 1] to this equation; in particularly when θ → 0, ϕ∗ → 0; then, we have f2(L) < 0
for ϕ∗ < L ≤ 1.

3. Rewrite (7.17) as
dL

δL− δθq̂(L)
= −dτ,

and integrate, Z 1

L

du

δu− δθq̂(u)
= τ,

where ϕ∗ < L ≤ 1, we define the function on left-hand side as

Q0,θ(L) =:
Z 1

L

du

δu− δθq̂(u)
,

then,
Q0,θ(L) = τ,

as L → 1 when τ → 0, and L → ϕ∗ when τ → ∞; the integrand is positive in the domain
u ∈ (ϕ∗, 1] and L ≥ 0, Q0,θ(L) is a strictly decreasing function; therefore, Q0,θ(L) : (ϕ∗, 1] →
[0,∞) is a well defined function, and its inverse function Q−1

0,θ(τ) : [0,∞) → (ϕ∗, 1] exists.

4. The unique solution is found by
L(τ) = Q−1

0,θ(τ),

or,
A(t) = Q−1

0,θ(T − t).
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5. A(0) is obtained,
A(0) = L(T ) = Q−1

0,θ(T ).

Then, c(T ) is determined by

c(T ) = ρ

Z T

0

�
1− p̂

�
Q−1

0,θ(τ)
��

dτ,

where, by the change of variable,Z T

0

�
1− p̂

�
Q−1

0,θ(τ)
��

dτ =
Z 1

Q−1
0,θ

(T )

1− p̂(u)
δu− δθq̂(u)

du.

Alternatively, with the aid of the transformation, we can directly prove Theorem 7.2.7 from
Theorem 2.2.4.

Proof. Review the proof of Theorem 2.2.4, as given by (7.16), we have

E
�
θNT

��M0

�
= e−c(T )[A(0)]M0 ,

where A(0) can be alternatively solved via the transformation. By definition (2.20), we have

G0,θ(L) =
Z L

0

1
1− δu− θĝ(u)

du

=
Z L

0

1
1− δu− θq̂(1− δu)

du (s = 1− δu)

=
Z 1

1−δL

1
δs− δθq̂(s)

ds.

Define Q0,θ(L) by (7.15), then,
Q0,θ(1− δu) = G0,θ(u).

Since
Q0,θ

�
1− δG−1

0,θ(T )
�

= G0,θ

�
G−1

0,θ(T )
�

= T,

then,
Q−1

0,θ(T ) = 1− δG−1
0,θ(T ).

Hence, by transformation (7.7),

A(0) = 1− δB(0) = 1− δG−1
0,θ(T ) = Q−1

0,θ(T ),

and

c(T ) =
Z G−1

0,θ
(T )

0

ρ[1− ĥ(u)]
1− δu− θĝ(u)

du

=
Z 1−Q−1

0,θ
(T )

δ

0

ρ[1− p̂(1− δu)]
1− δu− θq̂(1− δu)

du (s = 1− δu)

=
Z 1−Q−1

0,θ
(T )

δ

0

ρ[1− p̂(1− δu)]
1− δu− θq̂(1− δu)

du

=
Z 1

Q−1
0,θ

(T )

ρ[1− p̂(s)]
δs− δθq̂(s)

ds.
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7.3 Some Special Cases of Discretised Dynamic Contagion Process

In this section, we discuss the distributional properties for the following three special cases of the
discretised dynamic contagion process:

Case p1 = 1: p1 = 1, {pk}k 6=1 = 0; q0 = 1, {qk}k 6=0 = 0; (7.19)

Case q1 = q: p1 = 1, {pk}k 6=1 = 0; q0 = 1− q, q1 = q, {qk}k=2,3,... = 0; 0 ≤ q < 1; (7.20)

Case q0 = 1: q0 = 1, {qk}k 6=0 = 0. (7.21)

7.3.1 Case p1 = 1

The case p1 = 1 (7.19) of discretised dynamic contagion process can be defined by

P
¦
Mt+∆t −Mt = 1, Nt+∆t −Nt = 0

��Mt, Nt

©
= ρ∆t + o(∆t),

P
¦
Mt+∆t −Mt = −1, Nt+∆t −Nt = 1

��Mt, Nt

©
= δMt∆t + o(∆t),

P
¦
Mt+∆t −Mt = 0, Nt+∆t −Nt = 0

��Mt, Nt

©
= 1−

�
ρ + δMt

�
∆t + o(∆t),

P
¦
Others

��Mt, Nt

©
= o(∆t);

with the generator

Af(m,n, t) =
∂f

∂t
+ ρ

�
f(m + 1, n, t)− f(m,n, t)

�
+ δm

�
f(m− 1, n + 1, t)− f(m,n, t)

�
. (7.22)

We will apply this case and extensions to ruin problem in Chapter 8.

Corollary 7.3.1. Assume N0 = 0, we have

E
�
θNT ϕMT

��M0

�
= exp

�
−ρ

�
(1− θ)T − (ϕ− θ)

1− e−δT

δ

���
(ϕ− θ)e−δT + θ

�M0
.

If M0 ∼ Poisson(ζ), ζ ≥ 0, then,

E
�
θNT ϕMT

�
= exp

�
−(1− θ)(ρT + ζ) + (ϕ− θ)

hρ
δ

�
1− e−δT

�
+ ζe−δT

i�
;

in particular, for ζ = ρ
δ ,

E
�
θNT ϕMT

�
= e−ρT (1−θ)e−

ρ
δ (1−ϕ).

Proof. By Theorem 7.2.2, solve
A′(t) + δθ − δA(t) = 0,

with boundary condition A(T ) = ϕ, and we have the solution

A(t) = (ϕ− θ)e−δ(T−t) + θ,

then,

A(0) = (ϕ− θ)e−δT + θ,

C(T ) = ρ

�
(1− θ)T − (ϕ− θ)

1− e−δT

δ

�
.

Hence, we have

E
�
θNT ϕMT

��M0

�
= e−c(T )[A(0)]M0

= exp
�
−ρ

�
(1− θ)T − (ϕ− θ)

1− e−δT

δ

���
(ϕ− θ)e−δT + θ

�M0
.
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If M0 ∼ Poisson(ζ), ζ ≥ 0, then,

E
�
θNT ϕMT

�
= exp

�
−ρ

�
(1− θ)T − (ϕ− θ)

1− e−δT

δ

��
E
h�

(ϕ− θ)e−δT + θ
�M0

i
= exp

�
−ρ

�
(1− θ)T − (ϕ− θ)

1− e−δT

δ

��
exp

�
−ζ
�
1− θ − (ϕ− θ)e−δT

��
= exp

�
−(1− θ)(ρT + ζ) + (ϕ− θ)

hρ
δ

�
1− e−δT

�
+ ζe−δT

i�
.

Corollary 7.3.2. If M0 ∼ Poisson(ζ), ζ ≥ 0, then,

MT ∼ Poisson
�ρ

δ

�
1− e−δT

�
+ ζe−δT

�
;

in particular, the stationary distribution of Mt is given¦
Mt

©
t≥0

∼ Poisson
�ρ

δ

�
.

Proof. By Theorem 7.2.4, we have

Qϕ,1(L) = −1
δ

ln
�

1− L

1− ϕ

�
,

Q−1
ϕ,1(T ) = 1− (1− ϕ)e−δT ,

then,

E[ϕMT
��M0] = exp

�
−
Z Q−1

ϕ,1(T )

ϕ

ρ[1− u]
δ − δu

du

��
Q−1

ϕ,1(T )
�M0

= exp
�
−ρ

δ

�
1− e−δT

�
(1− ϕ)

� �
1− (1− ϕ)e−δT

�M0
.

If M0 ∼ Poisson(ζ), ζ ≥ 0, then,

E[ϕMT ] = E
�
E[ϕMT

��M0]
�

= exp
�
−ρ

δ

�
1− e−δT

�
(1− ϕ)

�
E
h�

1− (1− ϕ)e−δT
�M0

i
= exp

�
−
�ρ

δ

�
1− e−δT

�
+ ζe−δT

�
(1− ϕ)

�
.

By Theorem 7.2.6, we have

ℵ̂(ϕ) = exp

 
−
Z 1

ϕ

ρ
�
1−P∞

k=0 ukpk

�
δ
P∞

k=0 ukqk − δu
du

!
= exp

�
−
Z 1

ϕ

ρ [1− u]
δ − δu

du

�
= e−

ρ
δ (1−ϕ),

which is the probability generating function of a Poisson distribution with constant intensity ρ
δ .

Corollary 7.3.3. Assume N0 = 0, we have

E
�
θNT

��M0

�
= exp

�
−ρ

δ

�
δT − 1 + e−δT

�
(1− θ)

� �
θ + (1− θ)e−δT

�M0
; (7.23)
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if M0 ∼ Poisson(ζ), ζ ≥ 0, then,

NT ∼ Poisson
�

ρ

�
T − 1− e−δT

δ

�
+ ζ

�
1− e−δT

��
;

in particular, if M0 ∼ ℵ ∼ Poisson
�

ρ
δ

�
, then NT is a ρ-Poisson process, i.e.

NT ∼ Poisson(ρT ).

Proof. By Theorem 7.2.7, we have

Q0,θ(L) =
1
δ

ln
�

1− θ

L− θ

�
,

Q−1
0,θ(T ) = θ + (1− θ)e−δT ,

and

E
�
θNT

��M0

�
= exp

�
−
Z 1

Q−1
0,θ

(T )

ρ[1− u]
δu− δθ

du

��
Q−1

0,θ(T )
�M0

,

= exp
�
−ρ

δ

�
δT − 1 + e−δT

�
(1− θ)

� �
θ + (1− θ)e−δT

�M0
;

if M0 ∼ Poisson(ζ), then,

E
�
θNT

�
= E

�
E
�
θNT

��M0

��
= exp

�
−ρ

δ

�
δT − 1 + e−δT

�
(1− θ)

�
E
h�

θ + (1− θ)e−δT
�M0

i
= exp

�
−ρ

δ

�
δT − 1 + e−δT

�
(1− θ)

�
exp

�
−ζ
�
1−

�
θ + (1− θ)e−δT

���
= exp

�
−
�
ρ

�
T − 1− e−δT

δ

�
+ ζ

�
1− e−δT

��
(1− θ)

�
;

in particular, if M0 ∼ Poisson
�

ρ
δ

�
, then, E[θNT ] = e−ρT (1−θ).

Corollary 7.3.4. If M0 ∼ Poisson(ζ), ζ ≥ 0, then MT and NT are independent.

Proof. If M0 ∼ Poisson(ζ), ζ ≥ 0, then, by Corollary 7.3.1, Corollary 7.3.2 and Corollary 7.3.3,
we have

E
�
θNT ϕMT

�
= exp

�
−(1− θ)(ρT + ζ) + (ϕ− θ)

hρ
δ

�
1− e−δT

�
+ ζe−δT

i�
,

MT ∼ Poisson
�ρ

δ

�
1− e−δT

�
+ ζe−δT

�
,

NT ∼ Poisson
�

ρ

�
T − 1− e−δT

δ

�
+ ζ

�
1− e−δT

��
.

Hence,
E
�
θNT ϕMT

�
= E

�
ϕMT

�
E
�
θNT

�
, ∀ϕ, θ ≥ 0.

More importantly, by assuming N0 = 0 and M0 ∼ Poisson(ζ), ζ ≥ 0, we prove that for the
case p1 = 1 (7.19), Nt is a non-homogeneous Poisson process as follows.
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Lemma 7.3.1. For a constant 0 ≤ θ ≤ 1, we have a F-martingale

[A(t)]MtθNtec(t),

where A(t) and c(t) are determined by the ODEs

A′(t) + δ (θ −A(t)) = 0, (7.24)

c′(t) + ρ
�
A(t)− 1

�
= 0. (7.25)

Proof. Assume the exponential affine form

f(m,n, t) = [A(t)]mθnec(t),

and set Af(m,n, t) = 0 in the generator (7.22) such that f(m,n, t) becomes a F-martingale, then,
for any m, we have

c′(t) + m
A′(t)
A(t)

+ ρ
�
A(t)− 1

�
+ δm

�
θ

A(t)
− 1
�

= 0,

hence, the equations of A(t) and c(t),

A′(t)
A(t)

+ δ

�
θ

A(t)
− 1
�

= 0,

c′(t) + ρ
�
A(t)− 1

�
= 0.

Theorem 7.3.1. For any time t2 > t1 ≥ 0, if Mt1 ∼ Poisson(υ), υ ≥ 0, then,

Mt2 ∼ Poisson
�

υe−δ(t2−t1) + ρ
1− e−δ(t2−t1)

δ

�
,

Nt2 −Nt1 ∼ Poisson
�

υ
�
1− e−δ(t2−t1)

�
+ ρ

�
(t2 − t1)− 1− e−δ(t2−t1)

δ

��
,

and also they are independent.

Proof. Set the boundary condition A(t2) = ϕ, 0 ≤ ϕ ≤ 1, in Lemma 7.3.1, the equations (7.24)
and (7.25) of A(t) and c(t) can be solved explicitly, and we have

A(t) = (ϕ− θ)e−δ(t2−t) + θ,

c(t2)− c(t1) = ρ

�
(1− θ)(t2 − t1)− (ϕ− θ)

1− e−δ(t2−t1)

δ

�
.

Since [A(t)]MtθNtec(t) is a F-martingale, we have

E
�
[A(t2)]Mt2 θNt2 ec(t2)

����Ft1

�
= [A(t1)]Mt1 θNt1 ec(t1),

and

E
�
ϕMt2 θNt2−Nt1

��Mt1

�
= [A(t1)]Mt1 e

−
�

c(t2)−c(t1)

�
.
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Then, the joint probability generating function of Mt2 and Nt2 −Nt1 is given by

E
�
ϕMt2 θNt2−Nt1

�
= E

�
E
�
ϕMt2 θNt2−Nt1

��Mt1

��
= E

�
[A(t1)]Mt1

�
e
−
�

c(t2)−c(t1)

�
= e−υ(1−A(t1))e

−
�

c(t2)−c(t1)

�
= exp

�
−υ
�
(1− θ)− (ϕ− θ)e−δ(t2−t1)

�
− ρ

�
(1− θ)(t2 − t1)− (ϕ− θ)

1− e−δ(t2−t1)

δ

��
.

Set θ = 1 and ϕ = 1, respectively, we have the marginal distributions of Mt2 and Nt2 −Nt1 ,

E
�
ϕMt2

�
= exp

�
−(1− ϕ)

�
υe−δ(t2−t1) + ρ

1− e−δ(t2−t1)

δ

��
,

E
�
θNt2−Nt1

�
= exp

�
−(1− θ)

�
υ
�
1− e−δ(t2−t1)

�
+ ρ

�
(t2 − t1)− 1− e−δ(t2−t1)

δ

���
.(7.26)

Obviously, we also have

E
�
ϕMt2 θNt2−Nt1

�
= E

�
ϕMt2

�
E
�
θNt2−Nt1

�
.

Therefore, Mt2 and Nt2 −Nt1 are Poisson distributed and also independent.

Corollary 7.3.5. If N0 = 0, M0 ∼ Poisson(ζ), then, Mt and Nt are independent and follow
Poisson distributions given by

Mt ∼ Poisson
�

ζe−δt + ρ
1− e−δt

δ

�
,

Nt ∼ Poisson
�

ζ
�
1− e−δt

�
+ ρ

�
t− 1− e−δt

δ

��
,

Proof. Given the initial conditions N0 = 0 and M0 ∼ Poisson(ζ), ζ ≥ 0, we set t1 = 0, any time
t2 = t > 0 and υ = ζ ≥ 0 in Theorem 7.3.1, and the results follow immediately.

Corollary 7.3.6. If N0 = 0, M0 ∼ Poisson(ζ), then, Nt is a non-homogeneous Poisson process
of rate ρ + (ζδ − ρ) e−δt.

Proof. For any time t2 > t1 ≥ 0, by Corollary 7.3.5, we have

Mt1 ∼ Poisson
�

ζe−δt1 + ρ
1− e−δt1

δ

�
.

By Theorem 7.3.1, set

υ = ζe−δt1 + ρ
1− e−δt1

δ

in (7.26), then,

E
�
θNt2−Nt1

�
= exp

�
−(1− θ)

�
−ζ
�
e−δt2 − e−δt1

�
+ ρ

�
(t2 − t1) +

e−δt2 − e−δt1

δ

���
= exp

�
−(1− θ)

Z t2

t1

�
ζδe−δs + ρ

�
1− e−δs

��
ds

�
,
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hence, the increments of Nt follow a Poisson distribution,

Nt2 −Nt1 ∼ Poisson
�Z t2

t1

�
ζδe−δs + ρ

�
1− e−δs

��
ds

�
.

Based on Theorem 7.3.1 and Corollary 7.3.5, we observe that Mt2 and Nt2 −Nt1 are both Poisson
distributed and crucially independent. Because of the Markov property, all the future increments
after Nt2 only depend on Mt2 , they are independent of Nt2 − Nt1 as well, i.e. for any random
variable X ∈ σ {Ns : Ns −Nt2 , s ≥ t2}, we have

E
�
XθNt2−Nt1

�
= E

�
E
�
XθNt2−Nt1

��Mt2

��
= E

�
E
�
X
��Mt2

�
E
�
θNt2−Nt1

��Mt2

��
= E

�
E
�
X
��Mt2

��
E
�
E
�
θNt2−Nt1

��Mt2

��
= E [X] θNt2−Nt1 .

The increments of the point process Nt follow a Poisson distribution and also they are inde-
pendent, therefore, Nt is a non-homogeneous Poisson process of rate ζδe−δt + ρ

�
1− e−δt

�
.

Remark 7.3.1. In particular, if and only if ζ = ρ
δ , Nt is a Poisson process with rate of ρ inde-

pendent from time t.

7.3.2 Case q1 = q

Corollary 7.3.7. For the case q1 = q (7.20), the stationary distribution of Mt is given¦
Mt

©
t≥0

∼ Poisson
�

ρ

δ(1− q)

�
.

Proof. By Theorem 7.2.6, we have

ℵ̂(ϕ) = exp

 
−
Z 1

ϕ

ρ
�
1−P∞

k=0 ukpk

�
δ
P∞

k=0 ukqk − δu
du

!
= exp

�
−
Z 1

ϕ

ρ [1− u]
δ(1− q + uq − u)

du

�
= e−

ρ
δ(1−q) (1−ϕ),

which is the probability generating function of a Poisson distribution with constant intensity ρ
δ(1−q) .

Corollary 7.3.8. For the case q1 = q (7.20), we have

E
�
θNT

��M0

�
= exp

�
−ρ

δ

1− θ

1− θq

�
δT − 1− e−(1−θq)δT

1− θq

���
θ(1− q) + (1− θ)e−(1−θq)δT

1− θq

�M0

;

(7.27)
if M0 ∼ ℵ ∼ Poisson

�
ρ

δ(1−q)

�
, then we have

E
�
θNT

�
= exp

�
−ρT

�
1− 1− q

1− θq
θ

��
exp

�
−ρ

δ

q

1− q

�
1− 1− q

1− θq
θ

�2 �
1− e−(1−θq)δT

��
. (7.28)
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Proof. Note that the stationarity condition holds as µ1Q
= q < 1. By Theorem 7.2.7, we have

Q0,θ(L) =
1
δ

1
1− θq

ln
�

1− θ

(1− θq)L− θ(1− q)

�
, 0 ≤ θ < 1,

Q−1
0,θ(T ) =

θ(1− q) + (1− θ)e−(1−θq)δT

1− θq
,

and

E
�
θNT

��M0

�
= exp

�
−
Z 1

Q−1
0,θ

(T )

ρ[1− u]
δu− δθ(1− q + uq)

du

��
Q−1

0,θ(T )
�M0

,

= exp
�
−ρ

δ

1− θ

1− θq

�
δT − 1− e−(1−θq)δT

1− θq

���
θ(1− q) + (1− θ)e−(1−θq)δT

1− θq

�M0

,

then,

E
�
θNT

�
= E

�
E
�
θNT

��M0

��
= exp

�
−ρ

δ

1− θ

1− θq

�
δT − 1− e−(1−θq)δT

1− θq

��
E

"�
θ(1− q) + (1− θ)e−(1−θq)δT

1− θq

�M0
#

= exp
�
−ρT

�
1− 1− q

1− θq
θ

��
exp

�
−ρ

δ

q

1− q

�
1− 1− q

1− θq
θ

�2 �
1− e−(1−θq)δT

��
.

Remark 7.3.2. The first term of E[θNT ] of (7.28) is the probability generating function of a com-
pound Poisson distribution N1 with point N̊T ∼ Poisson(ρT ) and underlying X1 ∼ Geometric(1−q)
where

P{X1 = j} = qj−1(1− q), j = 1, 2, ..., E[θX1 ] =
1− q

1− θq
θ;

the second term is the the probability generating function of a proper random variable Õ. Hence,
NT = N1 + Õ, and NT is stochastically larger than N1, i.e.

NT Â N1.

Note that, if T → ∞, then E
�
θNT

��M0

�
→ 0 and E

�
θNT

�
→ 0. As we have explicit formulas

of E
�
θNT

��M0

�
and E

�
θNT

�
for the case above, we can easily expand them by MatLab to obtain

P{NT = n} for any n = 0, 1, 2, ....

7.3.3 Case q0 = 1

The case q0 = 1 (7.21) is an important case which matches to the Cox process with shot noise
intensity (a special case of dynamic contagion process) by the transformation. It can be defined
by

P
¦
Mt+∆t −Mt = k, Nt+∆t −Nt = 0

��Mt, Nt

©
= ρpk∆t + o(∆t), k = 1, 2...,

P
¦
Mt+∆t −Mt = −1, Nt+∆t −Nt = 1

��Mt, Nt

©
= δMt∆t + o(∆t),

P
¦
Mt+∆t −Mt = 0, Nt+∆t −Nt = 0

��Mt, Nt

©
= 1−

�
ρ(1− p0) + δMt

�
∆t + o(∆t),

P
¦
Others

��Mt, Nt

©
= o(∆t),

142



7.3 Some Special Cases of Discretised Dynamic Contagion Process

with the generator

Af(m,n, t) =
∂f

∂t
+ ρ

 ∞X
k=0

f(m + k, n, t)pk − f(m,n, t)

!
+ δm

�
f(m− 1, n + 1, t)− f(m,n, t)

�
.

(7.29)

Corollary 7.3.9. For the case q0 = 1 (7.21), if {pk}k=0,1,2,... ∼ Geometric(ṕ), then, the stationary
distribution of Mt is given ¦

Mt

©
t≥0

∼ NegBin
�ρ

δ
, 1− ṕ

�
.

Proof. Since

p̂(u) =
ṕ

1− (1− ṕ)u
,

by Theorem 7.2.6, we have

ℵ̂(ϕ) = exp

�
−
Z 1

ϕ

ρ
�
1− ṕ

1−(1−ṕ)u

�
δ − δu

du

�
=
�

ṕ

1− (1− ṕ)ϕ

� ρ
δ

,

which is the probability generating function of a negative binomial distribution with parameters ρ
δ

and 1− ṕ.

Alternatively, we can use the direct distributional transformation between Mt and λt from
Corollary 7.2.4.

Proof. By Theorem 2.3.1, for the shot noise case with externally excited jump sizes Y (1) ∼ Exp(α),
we have

{λt}t≥0 ∼ Gamma
�ρ

δ
, α
�

,

and

Π̂(v) =
�

α

α + v

� ρ
δ

,

then, by the transformation (7.14), we have

ℵ̂(ϕ) = Π̂
�

1− ϕ

δ

�
=

�
α

α + 1−ϕ
δ

� ρ
δ

=

�
1− 1

αδ+1

1− 1
αδ+1ϕ

� ρ
δ

=
�

ṕ

1− (1− ṕ)ϕ

� ρ
δ

, ṕ =
δα

δα + 1
.

Corollary 7.3.10. For the case q0 = 1 (7.21), if {pk}k=0,1,2,... ∼ Geometric(ṕ), then,

E
�
θNT

��M0

�
= e−ρT (1−p̂(θ))

�
ṕT

1− (1− ṕT θ)

�− ρ
δ p̂(θ) �

(1− θ)e−δT + θ
�M0

,

where

ṕT =:
ṕ

1− (1− ṕ)e−δT
;

if M0 ∼ ℵ ∼ NegBin
�

ρ
δ , 1− ṕ

�
, then,

E
�
θNT

�
= e−ρT (1−p̂(θ))

�
ṕT

1− (1− ṕT θ)

� ρ
δ (1−p̂(θ))

. (7.30)
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Proof. By Theorem 7.2.7, we have

Q0,θ(L) =
1
δ

ln
�

1− θ

L− θ

�
, 0 ≤ θ < 1,

Q−1
0,θ(T ) = (1− θ)e−δT + θ,

since
p̂(u) =

ṕ

1− (1− ṕ)u
,

we have

E
�
θNT

��M0

�
= exp

�
−
Z 1

Q−1
0,θ

(T )

ρ
�
1− ṕ

1−(1−ṕ)u

�
δu− δθ

du

��
Q−1

0,θ(T )
�M0

= e−ρT (1−p̂(θ))

 
ṕ

1− (1− ṕ)
�
(1− θ)e−δT + θ

�!− ρ
δ p̂(θ) �

(1− θ)e−δT + θ
�M0

= e−ρT (1−p̂(θ))

�
ṕ

1−(1−ṕ)e−δT

1−
�
1− ṕ

1−(1−ṕ)e−δT θ
��− ρ

δ p̂(θ) �
(1− θ)e−δT + θ

�M0
.

If M0 ∼ ℵ ∼ NegBin
�

ρ
δ , 1− ṕ

�
, then we have

E
�
θNT

�
= E

�
E
�
θNT

��M0

��
= e−ρT (1−p̂(θ))

�
ṕ

1−(1−ṕ)e−δT

1−
�
1− ṕ

1−(1−ṕ)e−δT θ
��− ρ

δ p̂(θ)

E
h�

(1− θ)e−δT + θ
�M0

i
= e−ρT (1−p̂(θ))

�
ṕ

1−(1−ṕ)e−δT

1−
�
1− ṕ

1−(1−ṕ)e−δT θ
��− ρ

δ p̂(θ) 
ṕ

1− (1− ṕ)
�
(1− θ)e−δT + θ

�! ρ
δ

= e−ρT (1−p̂(θ))

�
ṕ

1−(1−ṕ)e−δT

1−
�
1− ṕ

1−(1−ṕ)e−δT θ
�� ρ

δ (1−p̂(θ))

.

Remark 7.3.3. The first term of of E[θNT ] of (7.30) is the probability generating function of a com-
pound Poisson distribution N2 with point N̊T ∼ Poisson (ρT ) and underlying X2 ∼ Geometric (ṕ)
where

P{X2 = j} = (1− ṕ)j ṕ, j = 0, 1, 2, ..., E[θX2 ] =
ṕ

1− (1− ṕ)θ
;

the second term of (7.30) is the probability generating function of a proper random variable Õ.
Hence, we have NT = N2 + Õ, and NT is stochastically larger than N2, i.e.

NT Â N2.

Note that,
lim

T→∞
ṕT = ṕ,

for a large T , we have

E
�
θNT

�
≈ e−ρT (1−p̂(θ))

�
p̂(θ)

� ρ
δ (1−p̂(θ))

.
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8

Applications to Insurance: Ruin

by Delayed Claims

In this chapter, we apply a special case (when p1 = 1 and some generalisation) of discretised
dynamic contagion process introduced by Chapter 7 to ruin theory, by introducing a simple risk
model with delayed claims, an extension of the classical Poisson model. The arrival of claims is
assumed to be a Poisson process, claims follow a light-tailed distribution and each loss payment
of the claims will be settled with a random period of delay. We obtain asymptotic expressions for
the ruin probability by exploiting a connection to Poisson models that are not time-homogeneous.
A finer asymptotic formula is obtained for the special case of exponentially delayed claims and an
exact formula when the claims are also exponentially distributed.

8.1 Introduction

In a variety of real situations, claims could have already occurred but have not been settled or
reported immediately. Many factors may lead to the delay of the actual loss payment of the claims.
For instance, the acronyms, such as IBNR (Incurred But Not Reported) and IBNR (Reported But
Not Settled) are typically used to classify the delayed claims by different reasonings.

In the literature, the issues of ruin problem involving delayed claim settlement have been
studied. Waters and Papatriandafylou (1985) and Trufin, Albrecher and Denuit (2011) considered
a discrete-time model for a risk process allowing claims being delayed. Boogaert and Haezendonck
(1989) discussed a liability process with settling delay in the framework of economical environment.
Yuen, Guo and Ng (2005) introduced a continuous-time model with one claim settled immediately
and the other claim (named ‘by-claim’) settled with delay for the each time of claim occurrences.
Delaying claims were also modelled by a Poisson shot noise process, see Klüppelberg and Mikosch
(1995) and Brémaud (2000), or by a shot noise Cox process, see also Macci and Torrisi (2004) and
Albrecher and Asmussen (2006).

This chapter introduces a simple delayed-claim model. We assume claims arrive as a Poisson
process, claims follow a light-tailed distribution, i.e. the distribution of claims has moment gener-
ating function, and each of the claims will be settled in a randomly delayed period of time. The
loss of each claim payment only occurs at the settlement time, rather than at the arrival time. In



Applications to Insurance: Ruin by Delayed Claims

particular, we consider the special case of exponential delay where the ultimate ruin probability
and asymptotics can be exactly obtained by a power series, and this is also a simplified version of
the model by Yuen, Guo and Ng (2005) without the immediate settled claims.

This chapter is organised as follows. Section 8.2 introduces our model setting of the delayed-
claim risk process and the underlying processes of claim arrival, delay and settlement. Section 8.3
derives an asymptotic formula for the ruin probability for the general case of delay, and in par-
ticular, exploit a well known connection to the non-homogeneous Poisson models. For the special
case of exponential delay, the Laplace transform of non-ruin probability and a finer asymptotic
expansion for the ruin probability are obtained in Section 8.4. Section 8.5 derives an exact formula
of ruin probability by assuming the claims are exponentially delayed and sizes are exponentially
distributed.

8.2 Risk Process

Consider a surplus process {Xt}t≥0 in continuous time on a probability space (Ω,F , P ),

Xt = x + ct−
NtX
i=1

Zi, t ≥ 0,

where

• x = X0 ≥ 0 is the initial reserve at time t = 0;

• c > 0 is the constant rate of premium payment per time unit;

• Nt is the number of cumulative settled claims within the time interval [0, t] and assume
N0 = 0;

• {Zi}i=1,2,... is a sequence of independent and identically distributed positive random variables
(claims sizes), independent of Nt, following a light-tailed distribution with the cumulative
distribution function Z(z), z > 0, i.e.

ẑ(w) =
Z ∞

0
e−wzdZ(z) < ∞, for some w < 0;

the mean and tail of Z are denoted respectively by

µ1Z
=
Z ∞

0
zdZ(z), Z(x) =

Z ∞

x
dZ(s).

Assume the arrival of claims follows a Poisson process of rate ρ, and each of the claims will be
settled with a random delay. Loss only occurs when claims are being settled. Mt is denoted as
the number of cumulative unsettled claims within the time interval [0, t] and assume the initial
number M0 = 0.

¦
Tk

©
k=1,2,...

,
¦
Lk

©
k=1,2,...

and
¦
Tk + Lk

©
k=1,2,...

are denoted as the (random)
times of claim arrival, delayed period and settlement, respectively, and hence,

Mt =
X

k

�
I {Tk ≤ t} − I {Tk + Lk ≤ t}

�
,

Nt =
X

k

I {Tk + Lk ≤ t} .
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Fig. 8.1: A Sample Path of the Joint Point Processes of Cumulative Settled and Unsettled Claims

(Nt, Mt)¦
Lk

©
k=1,2,...

are independent and identically distributed non-negative random variables with the
cumulative distribution function L. A sample path of the joint point processes of the cumulative
settled and unsettled claims (Nt,Mt) is given by Figure 8.1.

The ruin (stopping) time after time t ≥ 0 is defined by

τ∗t =:

¨
inf {s : s > t, Xs ≤ 0} ,

inf {∅} = ∞, if Xs > 0 for all t;

in particular, τ∗t = ∞ means ruin does not occur. We are interested in the ultimate ruin probability
at time t, i.e.

ψ(x, t) =: P
¦
τ∗t < ∞��Xt = x

©
, (8.1)

or, the ultimate non-ruin probability at time t, i.e.

φ(x, t) =: 1− ψ(x, t). (8.2)

Note that, ψ(x, t) defined by (8.1) is the ultimate ruin probability at the general time t ≥ 0,
rather than the conventionally defined ruin probability of finite-horizon time t.

8.3 Ruin with Randomly Delayed Claims

8.3.1 Preliminaries

The net profit condition remains the same as the classical Poisson model, i.e. c > ρµ1Z
, since,

obviously,

lim
t→∞

R t
0 L(s)ds

t
= 0,
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and sequence {Zi}i=1,2,... and point process Nt are independent,

lim
t→∞

E [Xt]
t

= lim
t→∞

x + ct− µ1Z
E [Nt]

t
= lim

t→∞

x + ct− µ1Z
ρ
�
t− R t

0 L(s)ds
�

t
= c− ρµ1Z

> 0.

Lemma 8.3.1. Assume c > ρµ1Z
and L ∼ Exp(δ), we have a series of modified Lundberg funda-

mental equations
cw − ρ [1− ẑ(w)]− δj = 0, j = 0, 1, ...; (8.3)

• for j = 0, (8.3) has solution zero and a unique negative solution (denoted by W+
0 = 0 and

W−
0 < 0);

• for j = 1, 2, ..., (8.3) has unique positive and negative solutions (denoted by W+
j > 0 and

W−
j < 0).

Proof. Rewrite (8.3) as
ẑ(w) = lj(w), (8.4)

where
lj(w) =: − c

ρ
w +

�
1 +

δ

ρ
j

�
, j = 0, 1, ....

Note that,
dẑ(w)
dw

����
w=0

= −µ1Z
,

dlj(w)
dw

����
w=0

= − c

ρ
,

by the net profit condition c > ρµ1Z
, we have

dẑ(w)
dw

����
w=0

>
dlj(w)

∂w

����
w=0

.

In particular, for j = 0, we have l0(0) = ẑ(0) = 1. Then, further by the convexity of ẑ(w) and the
linearity of lj(w), the uniqueness of the positive and negative solutions to (8.3) follows immediately.
It is more obvious by plotting (8.4) in Figure 8.2.

Denote the (modified) adjustment coefficients by

Rj =: −W−
j , j = 0, 1, ...,

note that,
0 < R0 < R1 < R2 < ... < R∞,

where R∞ =: inf
¦
R
��ẑ(−R) = ∞

©
.

If Z ∼ Exp(γ), then, we have a series of the modified Lundberg fundamental equations

cw2 + (cγ − ρ− δj)w − γδj = 0, j = 0, 1, ...,

with explicit solutions

W±
j =

(ρ + δj − cγ)±
È

(ρ + δj − cγ)2 + 4cγδj

2c
, j = 0, 1, ...,

and
R∞ = lim

j→∞
Rj = γ.
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Lundberg Fundamental Equations

wO w+
3

w+
2

w+
1

w+
0

...

z<(w)

1

w−
0w−

1w−
2w−

3w−
3

l
2
(w)

l
1
(w)

l
0
(w)

 ...l
3
(w)

Fig. 8.2: Lundberg Fundamental Equations

8.3.2 Asymptotics of Ruin Probability

By Mirasol (1963), we know that, a delayed (or displaced) Poisson process is still a (non-homogeneous)
Poisson process, which is also a special case of discretised dynamic contagion process introduced
by Dassios and Zhao (2012), see also Newell (1966), Lawrance and Lewis (1975) and Dassios and
Zhao (2011). According to the model setting in Section 8.2, the settlement process Nt hence is a
non-homogeneous Poisson process with rate ρL(t), and we can obtain the asymptotics of the ruin
probability as below.

Theorem 8.3.1. Assume c > ρµ1Z
and the first, second moments of L exist, we have the asymp-

totics of ruin probability

ψ(x, t) ∼ e−cR0

R∞
t

L(s)ds c− ρµ1Z

ρ
R∞
0 zeR0zdZ(z)− c

e−R0x + o
�
e−R0x

�
, x →∞,

where L(t) =: 1− L(t).

Proof. By Markov property, the integro-differential equation of the ruin probability ψ(x, t) defined
by (8.1) is given by

∂ψ(x, t)
∂t

+ c
∂ψ(x, t)

∂x
+ ρL(t)

�Z x

0
ψ(x− z, t)dZ(z) + Z(x)− ψ(x, t)

�
= 0.

By the Laplace transform

ψ̂(w, t) =: Lw

¦
ψ(x, t)

©
=
Z ∞

0
e−wxψ(x, t)dx,

we have

∂ψ̂(w, t)
∂t

+ c
�
wψ̂(w, t)− ψ(0, t)

�
− ρL(t)

�
[1− ẑ(w)] ψ̂(w, t)− 1− ẑ(w)

w

�
= 0,
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or,
∂ψ̂(w, t)

∂t
− cψ(0, t) +

�
cw − ρL(t) [1− ẑ(w)]

�
ψ̂(w, t) + ρL(t)

1− ẑ(w)
w

= 0. (8.5)

Note that, the special case of t →∞ corresponds to the classical Poisson case as L(t) → 1, i.e.

c
∂ψ(x,∞)

∂x
+ ρ

�Z x

0
ψ(x− z,∞)dZ(z) + Z(x)− ψ(x,∞)

�
= 0,

and it is well known that the Laplace transform of the solution ψ(x,∞) is given by

ψ̂(w,∞) =
ρ
�
µ1Z

− 1−ẑ(w)
w

�
cw − ρ [1− ẑ(w)]

.

Define

ψ̂(w, t) =:
ρ
�
µ1Z

− 1−ẑ(w)
w

�
cw − ρ [1− ẑ(w)]

eρ
R∞

t
[1−ẑ(w)]L(s)ds + k̂(w, t), (8.6)

where k̂(w, t) is the Laplace transform of a function k(x, t) and satisfies

lim
t→∞

k̂(w, t) = 0. (8.7)

Plug (8.6) into (8.5), then, we have the ODE of k̂(w, t),

∂k̂(w, t)
∂t

+ c
�
wk̂(w, t)− ψ(0, t)

�
− ρL(t)

�
[1− ẑ(w)] k̂(w, t)− 1− ẑ(w)

w

�
+ρ

�
µ1Z

− 1− ẑ(w)
w

�
eρ
R∞

t
[1−ẑ(w)]L(s)ds = 0,

or,

∂k̂(w, t)
∂t

+
�

cw − ρ [1− ẑ(w)] + ρL(t) [1− ẑ(w)]
�

k̂(w, t)

= c
�
ψ(0, t)− ρµ1Z

c

�
+ ρ

�
1− ẑ(w)

w
− µ1Z

��
eρ
R∞

t
[1−ẑ(w)]L(s)ds − 1

�
+ ρL(t)

1− ẑ(w)
w

.

By multiplying (multiplier factor) e(cw−ρ[1−ẑ(w)])te−ρ
R∞

t
L(s)[1−ẑ(w)]ds, we have

∂

∂t

�
k̂(w, t)e(cw−ρ[1−ẑ(w)])te−ρ

R∞
t

L(s)[1−ẑ(w)]ds
�

=
�
c
�
ψ(0, t)− ρµ1Z

c

�
+ ρ

�
1− ẑ(w)

w
− µ1Z

��
eρ
R∞

t
[1−ẑ(w)]L(s)ds − 1

�
+ ρL(t)

1− ẑ(w)
w

�
×e(cw−ρ[1−ẑ(w)])te−ρ

R∞
t

L(s)[1−ẑ(w)]ds,

with the boundary condition (8.7), and then the solution

k̂(w, t) (8.8)

= e−(cw−ρ[1−ẑ(w)])teρ
R∞

t
L(s)[1−ẑ(w)]ds

Z ∞

t
e(cw−ρ[1−ẑ(w)])se−ρ

R∞
s

L(u)[1−ẑ(w)]du

×
�
−c
�
ψ(0, s)− ρµ1Z

c

�
− ρ

�
1− ẑ(w)

w
− µ1Z

��
eρ
R∞

s
[1−ẑ(w)]L(u)du − 1

�
− ρL(s)

1− ẑ(w)
w

�
ds.

Obviously, from Figure 8.2, for −R0 < w < 0, we have l0(w) > ẑ(w), i.e.

cw − ρ [1− ẑ(w)] < 0, −R0 < w < 0.

Now, we discuss the three terms of k̂(w, t) given by (8.8), respectively.
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8.3 Ruin with Randomly Delayed Claims

1. It is well known that (see Gerber (1979) and Grandel (1991)), in the classical model when
the claim settlement follows a Poisson process with a constant rate λ, the ruin probability
with the initial reserve x = 0 is simply µ1Z

c λ, whereas ψ(0, t) here in the first term of (8.8)
is based on the realisation of the rate {ρL(s)}t≤s≤∞. Also, the cumulative function L(s) is
an increasing function of s, then, the ruin probability ψ(0, t) should be greater than the case
λ = ρL(t) and smaller than the case λ = ρL(∞) = ρ of the classical model, i.e.

µ1Z

c
ρL(t) < ψ(0, t) <

µ1Z

c
ρ,

or,
0 <

ρµ1Z

c
− ψ(0, t) <

ρµ1Z

c
L(t).

If the first moment of L exists, then, we haveZ ∞

t

���ψ(0, s)− ρµ1Z

c

��� ds <
ρµ1Z

c

Z ∞

t
L(s)ds <

ρµ1Z

c

Z ∞

0
L(s)ds < ∞.

2. For the second term of (8.8), if the second moment of L exists, then,Z ∞

t
e−ρ

R∞
s

[1−ẑ(w)]L(u)du
�
eρ
R∞

s
[1−ẑ(w)]L(u)du − 1

�
ds

=
Z ∞

t

�
1− e−ρ

R∞
s

[1−ẑ(w)]L(u)du
�

ds

<

Z ∞

t
ρ

Z ∞

s
[1− ẑ(w)]L(u)duds

< ρ [1− ẑ(w)]
Z ∞

0

Z ∞

s
L(u)duds < ∞.

3. For the third term of (8.8), if the first moment of L exists, then,Z ∞

t
ρL(s)

1− ẑ(w)
w

ds = ρ
1− ẑ(w)

w

Z ∞

t
L(s)ds < ρ

1− ẑ(w)
w

Z ∞

0
L(s)ds < ∞.

Therefore, for −R0 < w < 0, we have
k̂(w, t) < ∞,

and
k̂(−R0, t) = lim

w↓−R0
k̂(w, t) =

Z ∞

0
eR0xk(x, t)dx < ∞,

hence,
k(x, t) = o

�
e−R0x

�
.

By the Final Value Theorem and ψ̂(w, t) given by (8.6), we have

lim
x→∞

eR0xψ(x, t)

= lim
w→0

wLw

¦
eR0xψ(x, t)

©
= lim

w→0
wψ̂(w −R0, t)

= eρ
R∞

t
[1−ẑ(−R0)]L(s)ds lim

w→0
w

ρ
�
µ1Z

− 1−ẑ(w−R0)
w−R0

�
c(w −R0)− ρ [1− ẑ(w −R0)]

+ lim
w→0

wk̂(w −R0, t)

= eρ
R∞

t
[1−ẑ(−R0)]L(s)ds c− ρµ1Z

ρ
R∞
0 zeR0zdZ(z)− c

+ 0

= e−cR0

R∞
t

L(s)ds c− ρµ1Z

ρ
R∞
0 zeR0zdZ(z)− c

.
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Note that, by definition, −R0 is the solution to cw − ρ[1− ẑ(w)] = 0, and we have

1− ẑ(−R0) = −cR0

ρ
.

8.4 Ruin with Exponentially Delayed Claims

By specifying the distribution of the period of delay L, we could improve the result in Theorem
8.3.1 with higher order of asymptotics. Here, for instance, we consider the special case when the
claims are exponentially delayed, in order to derive o

�
e−R0x

�
with more details.

8.4.1 Laplace Transform of Non-ruin Probability

We derive the the Laplace transform of non-ruin probability in two different expressions as given
by Theorem 8.4.1 and Theorem 8.4.2, respectively, and then, they will be used to derive the
asymptotics of ruin probability.

Theorem 8.4.1. Assume c > ρµ1Z
and L ∼ Exp(δ), we have the Laplace transform of non-ruin

probability

φ̂(w, t) = eϑe−δt[1−ẑ(w)]

�
c− ρµ1Z

cw − ρ [1− ẑ(w)]
+ c

∞X
j=1

e−jδt

Pj
`=0 r`

[ϑẑ(w)]j−`

(j−`)!

cw − ρ [1− ẑ(w)]− δj

�
, (8.9)

where ϑ = ρ
δ ,

r0 = 1− ρ

c
µ1Z

, r` = −
`−1X
i=0

�
ϑẑ(W+

` )
�`−i

(`− i)!
ri, ` = 1, 2, .... (8.10)

Proof. If L ∼ Exp(δ), then, L(t) = 1 − e−δt, and Nt is a non-homogeneous Poisson process with
rate ρ−ϑδe−δt, and the non-ruin probability φ(x, t) defined by (8.2) satisfies the integro-differential
equation

∂φ(x, t)
∂t

+ c
∂φ(x, t)

∂x
+
�
ρ− ϑδe−δt

��Z x

0
φ(x− z, t)dZ(z)− φ(x, t)

�
= 0.

By the Laplace transform

φ̂(w, t) =: Lw

¦
φ(x, t)

©
=
Z ∞

0
e−wxφ(x, t)dx, (8.11)

we have
∂φ̂(w, t)

∂t
+ c

�
wφ̂(w, t)− φ(0, t)

�
−
�
ρ− ϑδe−δt

�
[1− ẑ(w)] φ̂(w, t) = 0. (8.12)

Define

ĥ(w, t) =: φ̂(w, t) exp
�Z t

0
δϑe−δs [1− ẑ(w)] ds

�
,

where ĥ(w, t) is the Laplace transform of a function h(x, t), then,

φ̂(w, t) = ĥ(w, t)e−ϑ(1−e−δt)[1−ẑ(w)]. (8.13)

Plug (8.13) into (8.12), we have

∂ĥ(w, t)
∂t

+ c
�
wĥ(w, t)− φ(0, t)eϑ(1−e−δt)[1−ẑ(w)]

�
− ρ [1− ẑ(w)] ĥ(w, t) = 0. (8.14)
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8.4 Ruin with Exponentially Delayed Claims

Note that, by (8.13), we have

φ̂(w, t) = ĥ(w, t)e−ϑ(1−e−δt)eϑ(1−e−δt)ẑ(w)

= ĥ(w, t)e−ϑ(1−e−δt)

�
1 +

∞X
k=1

�
ϑ
�
1− e−δt

��k

k!
ẑk(w)

�
= e−ϑ(1−e−δt)

�
ĥ(w, t) +

∞X
k=1

�
ϑ
�
1− e−δt

��k

k!
ĥ(w, t)ẑk(w)

�
,

which is the Laplace transform of

φ(x, t) = e−ϑ(1−e−δt)

�
h(x, t) +

∞X
k=1

�
ϑ
�
1− e−δt

��k

k!

Z x

0
h(x− z, t)dZ(k)(z)

�
,

where Z(k) is the k−fold convolution of the distribution Z, i.e.

Z(k) D=
kX

i=1

Zi,

then, we have
φ(0, t) = h(0, t)e−ϑ(1−e−δt). (8.15)

Plug (8.15) into (8.14), we have

∂ĥ(w, t)
∂t

+
�

cw − ρ [1− ẑ(w)]
�

ĥ(w, t)− ce−ϑẑ(w)h(0, t)eϑe−δtẑ(w) = 0.

This equation of ĥ(w, t) has a power series solution

ĥ(w, t) =
∞X

j=0

e−jδtĥj(w),

the Laplace transform of

h(x, t) =
∞X

j=0

e−jδthj(x).

Since

∂ĥ(w, t)
∂t

= −δ
∞X

j=0

je−jδtĥj(w),

h(0, t)eϑe−δtẑ(w) =
∞X

j=0

e−jδthj(0)×
∞X

k=0

e−kδt [ϑẑ(w)]k

k!

=
∞X

j=0

∞X
k=0

e−(j+k)δthj(0)
[ϑẑ(w)]k

k!
(j + k = i)

=
∞X

i=0

e−iδt
iX

j=0

hj(0)
[ϑẑ(w)]i−j

(i− j)!
,

we have

∞X
j=0

e−jδt

"�
− δj + cw − ρ [1− ẑ(w)]

�
ĥj(w)− ce−ϑẑ(w)

jX̀
=0

h`(0)
[ϑẑ(w)]j−`

(j − `)!

#
= 0,
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then, for any j = 0, 1, ...,�
− δj + cw − ρ [1− ẑ(w)]

�
ĥj(w)− ce−ϑẑ(w)

jX̀
=0

h`(0)
[ϑẑ(w)]j−`

(j − `)!
= 0,

and hence,

ĥj(w) =
ce−ϑẑ(w)

cw − ρ [1− ẑ(w)]− δj

jX̀
=0

h`(0)
[ϑẑ(w)]j−`

(j − `)!
, j = 0, 1, .... (8.16)

Note that, the denominator of (8.16) is the modified Lundberg fundamental equation given by
Lemma 8.3.1.

By (8.13), we have

φ̂(w, t) = e−ϑ(1−e−δt)[1−ẑ(w)]

 
ĥ0(w) +

∞X
j=1

e−jδtĥj(w)

!
. (8.17)

Note that, if t →∞, it recovers the classical Poisson model. By (8.17), we have

φ̂(w,∞) = e−ϑ[1−ẑ(w)]ĥ0(w), (8.18)

φ̂(w, 0) =
∞X

j=0

ĥj(w). (8.19)

The series of constants {h`(0)}`=0,1,... in (8.16) can be obtained as follows.

For case j = 0, by (8.16), we have

ĥ0(w) =
ce−ϑẑ(w)

cw − ρ [1− ẑ(w)]
h0(0).

By (8.15) and (8.18), we have

φ(0,∞) = h(0,∞)e−ϑ = h0(0)e−ϑ,

φ̂(w,∞) = ĥ0(w)e−ϑ[1−ẑ(w)] =
ce−ϑh0(0)

cw − ρ [1− ẑ(w)]
=

cφ(0,∞)
cw − ρ [1− ẑ(w)]

.

Since
lim

x→∞
φ(x,∞) = lim

w→0
wφ̂(w,∞) = 1,

i.e.
lim
w→0

w
cφ(0,∞)

cw − ρ [1− ẑ(w)]
=

cφ(0,∞)
limw→0

1
w (cw − ρ [1− ẑ(w)])

=
cφ(0,∞)
c− ρµ1Z

= 1,

we have
φ(0, t) =

c− ρµ1Z

c
,

h0(0) =
eϑ (c− ρµ1Z

)
c

, (8.20)

and
φ̂(w, t) =

c− ρµ1Z

cw − ρ [1− ẑ(w)]
,

which is exactly the Laplace transform of ultimate non-ruin probability of the classical Poisson
model. Hence, we have

ĥ0(w) = eϑ[1−ẑ(w)] c− ρµ1Z

cw − ρ [1− ẑ(w)]
. (8.21)

154



8.4 Ruin with Exponentially Delayed Claims

For case j = 1, 2, ..., since ĥj(w) of (8.16) exists at w = W+
j , we have

lim
w→W+

j

 
ce−ϑẑ(w)

jX̀
=0

h`(0)
[ϑẑ(w)]j−`

(j − `)!

!
= 0, j = 1, 2, ...,

or,
jX̀
=0

�
ϑẑ(W+

j )
�j−`

(j − `)!
h`(0) = 0, j = 1, 2, ....

Given the initial value h0(0) by (8.20), obviously, the series of constants {h`(0)}`=1,2,... can be
solved uniquely and explicitly by recursion. Define the solution by

rj =: e−ϑhj(0),

with the initial value r0 = 1− ρ
c µ1Z

, and we have

ĥj(w) =
ceϑ[1−ẑ(w)]

cw − ρ [1− ẑ(w)]− δj

jX̀
=0

r`
[ϑẑ(w)]j−`

(j − `)!
, j = 1, 2, ..., (8.22)

where

r` = −
`−1X
i=0

�
ϑẑ(W+

` )
�`−i

(`− i)!
ri, ` = 1, 2, ....

Therefore, by (8.17), we have the Laplace transform of non-ruin probability

φ̂(w, t) = e−ϑ(1−e−δt)[1−ẑ(w)]

�
eϑ[1−ẑ(w)] (c− ρµ1Z

)
cw − ρ [1− ẑ(w)]

+
∞X

j=1

e−jδt
ceϑ[1−ẑ(w)]

Pj
`=0 r`

[ϑẑ(w)]j−`

(j−`)!

cw − ρ [1− ẑ(w)]− δj

�
.

Remark 8.4.1. In particular, for t = 0, we have

φ̂(w, 0) = eϑ[1−ẑ(w)]

�
c− ρµ1Z

cw − ρ [1− ẑ(w)]
+ c

∞X
j=1

Pj
`=0 r`

[ϑẑ(w)]j−`

(j−`)!

cw − ρ [1− ẑ(w)]− δj

�
;

and, for t = ∞,

φ̂(w,∞) =
c− ρµ1Z

cw − ρ [1− ẑ(w)]
,

which recovers the result of the classic Poisson model.

Remark 8.4.2. (8.10) offers a numerically tractable formula for calculating the coefficients {rj}j=0,1,....
For instance, if Z ∼ Exp(γ) with parameter setting (c, δ, ρ, γ) = (1.5, 2.0, 0.5, 1.0), then, we have
r0 = 0.6667, r1 = −0.0657, r2 = 0.0028, r3 = −7.2560× 10−5,....

Alternatively, the Laplace transform of non-ruin probability can also be expressed by another
power series as below.

155



Applications to Insurance: Ruin by Delayed Claims

Theorem 8.4.2. Assume c > ρµ1Z
and L ∼ Exp(δ), we have the Laplace transform of the non-

ruin probability

φ̂(w, t) =
∞X

j=0

e−jδtφ̂j(w),

where
¦
φ̂j(w)

©
j=0,1,...

follow the recurrence

φ̂j(w) = ρ

�
1− ẑ(W+

j )
�
φ̂j−1(W+

j )− [1− ẑ(w)] φ̂j−1(w)

cw − ρ [1− ẑ(w)]− δj
, j = 1, 2, ..., (8.23)

φ̂0(w) =
c
�
1− ρ

c µ1Z

�
cw − ρ [1− ẑ(w)]

. (8.24)

Proof. Rewrite (8.12) as

∂φ̂(w, t)
∂t

+ c
�
wφ̂(w, t)− φ(0, t)

�
− ρ [1− ẑ(w)] φ̂(w, t) + ρ [1− ẑ(w)] e−δtφ̂(w, t) = 0.

This equation has a power series solution

φ̂(w, t) =
∞X

j=0

e−jδtφ̂j(w),

the Laplace transform of the non-ruin probability

φ(x, t) =
∞X

j=0

e−jδtφj(x).

Note that, by setting φ̂−1(w) = 0, we have

∂φ̂(w, t)
∂t

= −δ
∞X

j=0

je−jδtφ̂j(w),

e−δtφ̂(w, t) =
∞X

j=0

e−(j+1)δtφ̂j(w) =
∞X

j=1

e−jδtφ̂j−1(w) =
∞X

j=0

e−jδtφ̂j−1(w),

then,

−δ
∞X

j=0

je−jδtφ̂j(w) + c

 
w

∞X
j=0

e−jδtφ̂j(w)−
∞X

j=0

e−jδtφj(0)

!
− ρ [1− ẑ(w)]

∞X
j=0

e−jδtφ̂j(w)

+ρ [1− ẑ(w)]
∞X

j=0

e−jδtφ̂j−1(w) = 0,

or,

∞X
j=0

e−jδt

�
− δjφ̂j(w) + c

�
wφ̂j(w)− φj(0)

�
− ρ [1− ẑ(w)] φ̂j(w) + ρ [1− ẑ(w)] φ̂j−1(w)

�
= 0,

and then, for any j = 0, 1, ...,

−δjφ̂j(w) + c
�
wφ̂j(w)− φj(0)

�
− ρ [1− ẑ(w)] φ̂j(w) + ρ [1− ẑ(w)] φ̂j−1(w) = 0.

Hence, we have

φ̂j(w) =
cφj(0)− ρ [1− ẑ(w)] φ̂j−1(w)

cw − ρ [1− ẑ(w)]− δj
, j = 0, 1, ....
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For the initial case j = 0, note that φ̂−1(w) = 0, we have

φ̂0(w) =
cφ0(0)

cw − ρ [1− ẑ(w)]
.

By the boundary condition

lim
w→0

wφ̂0(w) = lim
x→∞

φ0(x) = 1,

we have

lim
w→0

wφ̂0(w) = lim
w→0

cφ0(0)

c− ρ 1−ẑ(w)
w

=
cφ0(0)

c− ρµ1Z

= 1,

then,

φ0(0) = 1− ρ

c
µ1Z

,

and φ̂0(w) as given by (8.24). Since φ̂j(w) exists at w = W+
j for any j = 1, 2, ..., we have

lim
w→W+

j

�
cφj(0)− ρ [1− ẑ(w)] φ̂j−1(w)

�
= 0,

and

φj(0) =
ρ

c

�
1− ẑ(W+

j )
�
φ̂j−1(W+

j ), j = 1, 2, ....

Hence, we have the recurrence relation between φ̂j(w) and φ̂j−1(w) as given by (8.23).

Remark 8.4.3. Theorem 8.4.1 will be used to derive a general asymptotic formula (given by
Theorem 8.4.3), whereas Theorem 8.4.2 is more useful for obtaining an exact expression in the
case of exponentially distributed claim sizes (given by Theorem 8.5.1).

8.4.2 Asymptotics of Ruin Probability

Theorem 8.4.3. Assume c > ρµ1Z
and L ∼ Exp(δ), we have the asymptotics of the ruin proba-

bility

ψ(x, t) ∼
∞X

j=0

κj(t)e−Rjx, x →∞, (8.25)

where

κ0(t) =: e−
cR0

ρ ϑe−δt c− ρµ1Z

ρ
R∞
0 zeR0zdZ(z)− c

, (8.26)

κj(t) =: e−jδt ceϑe−δt[1−ẑ(−Rj)]

ρ
R∞
0 zeRjzdZ(z)− c

jX̀
=0

r`
[ϑẑ(−Rj)]

j−`

(j − `)!
, j = 1, 2, .... (8.27)

Proof. Denote

φ(x, t) =:
∞X

j=0

φj(x, t),

then,

φ̂(w, t) =
∞X

j=0

φ̂j(w, t),
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where every term φ̂j(w, t) is specified by (8.9), i.e.

φ̂0(w, t) =: eϑe−δt[1−ẑ(w)] c− ρµ1Z

cw − ρ [1− ẑ(w)]
, (8.28)

φ̂j(w, t) =: ceϑe−δt[1−ẑ(w)]e−jδt

Pj
`=0 r`

[ϑẑ(w)]j−`

(j−`)!

cw − ρ [1− ẑ(w)]− δj
, j = 1, 2, .... (8.29)

Now, we discuss the asymptotics of the terms φ0(x, t) and {φj(x, t)}j=1,2,..., respectively.
For φ0(x, t), we have the asymptotics

1− φ0(x, t) ∼ κ0(t)e−R0x, x →∞,

since by Final Value Theorem,

κ0(t) = lim
x→∞

eR0x
�
1− φ0(x, t)

�
= lim

w→0
wLw

¦
eR0x

�
1− φ0(x, t)

�©
= lim

w→0
w

�
1

w −R0
− φ̂0(w −R0, t)

�
= − lim

w→0
wφ̂0(w −R0, t)

= − lim
w→0

w
eϑe−δt[1−ẑ(w−R0)] (c− ρµ1Z

)
c(w −R0)− ρ [1− ẑ(w −R0)]

= − eϑe−δt[1−ẑ(−R0)] (c− ρµ1Z
)

d
dw

�
c(w −R0)− ρ [1− ẑ(w −R0)]

�����
w=0

=
e−

cR0
ρ ϑe−δt

(c− ρµ1Z
)

ρ
R∞
0 zeR0zdZ(z)− c

.

For φj(x, t), j = 1, 2, ..., we have the asymptotics

−φj(x, t) ∼ κj(t)e−Rjx, x →∞,

since, by Final Value Theorem,

κj(t) = lim
x→∞

eRjx(−φj(x, t))

= lim
w→0

wLw

¦
eRjx(−φj(x, t))

©
= − lim

w→0
wφ̂j(w −Rj , t)

= − lim
w→0

 
w

ceϑe−δt[1−ẑ(w−Rj)]e−jδt

c(w −Rj)− ρ [1− ẑ(w −Rj)]− δj

jX̀
=0

r`
[ϑẑ(w −Rj)]

j−`

(j − `)!

!
= − ceϑe−δt[1−ẑ(−Rj)]e−jδt

d
dw

�
c(w −Rj)− ρ [1− ẑ(w −Rj)]− δj

�����
w=0

jX̀
=0

r`
[ϑẑ(−Rj)]

j−`

(j − `)!

=
ceϑe−δt[1−ẑ(−Rj)]e−jδt

ρ
R∞
0 zeRjzdZ(z)− c

jX̀
=0

r`
[ϑẑ(−Rj)]

j−`

(j − `)!
.

Therefore,

ψ(x, t) = 1− φ(x, t) = 1− φ0(x, t) +
∞X

j=1

−φj(x, t),
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the result of asymptotics (8.25) follows immediately.

Remark 8.4.4. Set L(t) = 1 − ϑ
ρ δe−δt and t = 0 in Theorem 8.3.1, then,

R∞
0 L(s)ds = ϑ

ρ and it
recovers κ0(t)e−R0x, the first-order asymptotics of the ruin probability obtained by Theorem 8.4.3.
The higher orders of asymptotics depend on the distributional property of the general distribution
function L.

Remark 8.4.5. We can rewrite φ̂0(w, t) of (8.28) by

φ̂0(w, t) = eϑe−δt[1−ẑ(w)] 1
w

p0

1− (1− p0)
1−ẑ(w)
µ1Z

w

= eϑe−δt[1−ẑ(w)] 1
w

∞X
i=0

p0 (1− p0)
i
�

1− ẑ(w)
µ1Z

w

�i

, p0 = 1− ρµ1Z

c
.

The third term of φ̂0(w, t) above is the Laplace transform of a compound geometric distribution

∞X
i=0

p0 (1− p0)
i
d
(i)
0 (x),

where d
(i)
0 (x) is the i−fold convolution of a proper density function

d0(x) =:
Z(x)
µ1Z

,

since 0 < p0 < 1 and

Lw {d0(x)} =
1− ẑ(w)

µ1Z
w

,Z ∞

0
d0(x)dx = Lw {d0(x)}

����
w=0

=
1

µ1Z

lim
w→0

1− ẑ(w)
w

=
1

µ1Z

µ1Z
= 1.

For, j = 1, 2, ..., we can also rewrite φ̂j(w, t) of (8.29) by

φ̂j(w, t)

=
w −W+

j

cw − ρ [1− ẑ(w)]− δj −
�
cW+

j − ρ
�
1− ẑ(W+

j )
�
− δj

� ceϑe−δt[1−ẑ(w)]e−jδt

w −W+
j

jX̀
=0

r`
[ϑẑ(w)]j−`

(j − `)!

=
w −W+

j

c(w −W+
j )− ρ

�
ẑ(W+

j )− ẑ(w)
� ceϑe−δt[1−ẑ(w)]e−jδt

w −W+
j

jX̀
=0

r`
[ϑẑ(w)]j−`

(j − `)!

=
pj

1− (1− pj)
W+

j

1−ẑ(W+
j

)

ẑ(W+
j

)−ẑ(w)

w−W+
j

1
pj

eϑe−δt[1−ẑ(w)]e−jδt

w −W+
j

jX̀
=0

r`
[ϑẑ(w)]j−`

(j − `)!
,

=
∞X

i=0

pj(1− pj)i

�
W+

j

1− ẑ(W+
j )

ẑ(W+
j )− ẑ(w)

w −W+
j

�i

× 1
pj

eϑe−δt[1−ẑ(w)]e−jδt

w −W+
j

jX̀
=0

r`
[ϑẑ(w)]j−`

(j − `)!
,

where pj = δj

cW+
j

. The first term of φ̂j(w, t) above is the Laplace transform of a compound geometric

distribution ∞X
i=0

pj (1− pj)
i
d
(i)
j (x),
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where d
(i)
j (x) is the i−fold convolution of a proper density function

dj(x) =:
W+

j

1− ẑ(W+
j )

eW+
j

x
Z ∞

x
e−W+

j
zdZ(z),

since

0 < pj = 1− ρ

c

1− ẑ(W+
j )

W+
j

=
δj

cW+
j

=
δj

ρ
�
1− ẑ(W+

j )
�

+ δj
< 1,

and

Lw {dj(x)} =
W+

j

1− ẑ(W+
j )

ẑ(W+
j )− ẑ(w)

w −W+
j

,Z ∞

0
dj(x)dx =

W+
j

1− ẑ(W+
j )

ẑ(W+
j )− ẑ(w)

w −W+
j

����
w=0

= 1.

Note that, for a constant ν, we have

Lw

§
eνx

Z ∞

x
e−νzdZ(z)

ª
=

ẑ(ν)− ẑ(w)
w − ν

,

which is a special case of the double Dickson-Hipp operator introduced by Dickson and Hipp (2001).

8.5 Ruin with Exponentially Delayed Claims and Exponentially Distributed Sizes

The asymptotic formula of (8.25) becomes exact if the claim sizes follow an exponential distribution.

Theorem 8.5.1. Assume c > ρµ1Z
, L ∼ Exp(δ) and Z follows an exponential distribution, we

have the ruin probability

ψ(x, t) =
∞X

j=0

κj(t)e−Rjx. (8.30)

Proof. By Theorem 8.4.2, if Z ∼ Exp(γ), then, for j = 0, we have

φ̂0(w) =
c− ρ

γ

cw − ρ w
γ+w

=
�

1− ρ

cγ

�
γ + w

(w + R0)w
. (8.31)

For j = 1, 2, ..., we have

φ̂j(w) = ρ

W+
j

γ+W+
j

φ̂j−1(W+
j )− w

γ+w φ̂j−1(w)

cw − ρ w
γ+w − δj

= ρ

W+
j

γ+W+
j

φ̂j−1(W+
j )(γ + w)− wφ̂j−1(w)

c(w + Rj)(w −W+
j )

= ρ

W+
j

γ+W+
j

φ̂j−1(W+
j )(γ + W+

j + w −W+
j )− wφ̂j−1(w)

c(w + Rj)(w −W+
j )

= ρ
W+

j φ̂j−1(W+
j )− wφ̂j−1(w) +

W+
j

γ+W+
j

φ̂j−1(W+
j )(w −W+

j )

c(w + Rj)(w −W+
j )

= ρ

W+
j

φ̂j−1(W
+
j

)−wφ̂j−1(w)

w−W+
j

+
W+

j

γ+W+
j

φ̂j−1(W+
j )

c(w + Rj)
.
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In particular, for j = 1, we observe

φ̂1(w) = ρ

W+
1 φ̂0(W

+
1 )−wφ̂0(w)

w−W+
1

+ W+
1

γ+W+
1

φ̂0(W+
1 )

c(w + R1)

= ρ

�
1− ρ

cγ

�
γ−R0

W+
1 +R0

1
w+R0

+ W+
1

γ+W+
1

φ̂0(W+
1 )

c(w + R1)

= ρ

�
1− ρ

cγ

�
γ−R0

W+
1 +R0

+ W+
1

γ+W+
1

φ̂0(W+
1 )(w + R0)

c(w + R0)(w + R1)
,

which is the Laplace transform of a linear combination of e−R0x and e−R1x.
In general, for j = 1, 2, ..., assume

φ̂j(w) =
Pj(w)

c
Qj

i=0(w + Ri)
, j = 1, 2, ...,

where {Pj(w)}j=1,2,... are functions of w, then,

Pj(w)

c
Qj

i=0(w + Ri)
= ρ

W+
j

Pj−1(W
+
j

)

c

Qj−1

i=0
(W

+
j

+Ri)
−w

Pj−1(w)

c

Qj−1

i=0
(w+Ri)

w−W+
j

+
W+

j

γ+W+
j

Pj−1(W
+
j

)

c
Qj−1

i=0
(W+

j
+Ri)

c(w + Rj)
,

or,

Pj(w) =
ρ

c

j−1Y
i=0

(w + Ri)

2664W+
j

Pj−1(W
+
j

)Qj−1

i=0
(W+

j
+Ri)

− w
Pj−1(w)Qj−1

i=0
(w+Ri)

w −W+
j

+
W+

j

γ + W+
j

Pj−1(W+
j )Qj−1

i=0 (W+
j + Ri)

3775 ,

then, we have

Pj(w)

=
ρ

c

2664W+
j

Pj−1(W
+
j

)Qj−1

i=0
(W+

j
+Ri)

Qj−1
i=0 (w + Ri)− wPj−1(w)

w −W+
j

+
W+

j

γ + W+
j

Pj−1(W+
j )Qj−1

i=0 (W+
j + Ri)

j−1Y
i=0

(w + Ri)

3775 , j = 2, 3, ...,

P1(w) = ρ

��
1− ρ

cγ

�
γ −R0

W+
1 + R0

+
W+

1

γ + W+
1

φ̂0(W+
1 )(w + R0)

�
.

Note that, for j = 2, 3, ..., w = W+
j is one of the roots of the numerator of the first term,

the denominator w − W+
j then is canceled. P1(w) is a polynomial function with degree of 1,

and obviously, by the method of induction, {Pj(w)}j=1,2,... are polynomial functions of w with
maximum degree of j. Hence, for any j = 1, 2, ..., we can have a partial fraction decomposition

Pj(w)

c
Qj

i=0(w + Ri)
=

jX
i=0

bji
1

w + Ri
,

where {bji}i=0,1,...,j are all constants. Since

Lw

¦
e−Rix

©
=

1
w + Ri

, i = 0, 1, ..., j,
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we have

φj(x) =
jX

i=0

bjie
−Rix, j = 1, 2, ....

For j = 0, we have R0 = γ − ρ
c , and rewrite (8.31) as

φ̂0(w) =
�

1− ρ

cγ

��
γ

R0

1
w

+
�

1− γ

R0

�
1

w + R0

�
=

1
w
− ρ

cγ

1
w + R0

,

which is the Laplace transform of

φ0(x) = 1− ρ

cγ
e−R0x.

Then, the ruin probability ψ(x, t) is a linear combination of
�
e−Rjx

	
j=0,1,..., since

ψ(x, t) = 1−φ(x, t) = 1−φ0(x)−
∞X

j=1

e−jδtφj(x) =
ρ

cγ
e−R0x−

∞X
j=1

e−jδt
jX

i=0

bjie
−Rix =

∞X
j=0

Bj(t)e−Rjx,

where {Bj(t)}j=0,1,... are all deterministic functions of time t. Then, (8.5.1) should hold, because
the asymptotic representation given by Theorem 8.4.3 is also a linear combination of

�
e−Rjx

	
j=0,1,....
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9

Conclusions and Future Research

This thesis produces a general mathematical framework for modelling the dependence structure of
arriving events with contagion dynamics, mainly based on generalising the Hawkes process (with
exponential decay) and the Cox process with shot noise intensity (with exponential decay). In
Chapter 2, 5, 6 and 7, the dynamic contagion process as well as its extensions dynamic contagion
process with diffusion and discretised dynamic contagion process newly introduced here have been
systemically studied by representing different mathematical definitions, analysing various distri-
butional properties and comparing with other processes. Theoretical results such as the moments,
Laplace transforms, probability generating functions of the point processes and intensity processes,
methods of change of measures as well as computational methodology such as Monte Carlo simu-
lation algorithm and numerical examples are presented.

These new point processes newly introduced in the thesis could have significant potential to
be applicable to a variety of problems in economics, finance and insurance. Here, we only look at
some applications to credit risk in finance in Chapter 3 and ruin problem in insurance in Chapter
4 and 8: the probability of default for a single name and probability distribution of multiple-name
defaults are investigated and calculated by using various methods; the ruin probabilities and es-
timations such as bounds and asymptotics are derived and expressed in different representations.
However, other applications such as managing portfolio credit risk, pricing credit derivatives as well
as modelling the dynamics of risk contagion in economics could be the object of further research.

Some problems are proposed as future research (particularly, from Section 2.5, 3.2, 5.3 and
Chapter 6):

• develop methods of calibration and estimation for a dynamic contagion process;

• apply the one-dimensional dynamic contagion process to pricing derivatives (such as CDS
and CDO) and portfolio risk management (such as capital reserve calculation), with the
parameters calibrated on the real financial data;

• extend to two-dimension or higher-dimension of dynamic contagion processes, and apply to
modelling the contagion risk of two underlying companies (such as counterparty risk);

• prove Assumption 4.4.1, i.e. limx→∞ eE�e−m+
0 eλτ∗−

��X0 = x, λ0 = λ
�

exists and independent of
λ;



Conclusions and Future Research

• investigate the distributional properties of the intensity process at ruin time, i.e. E
�
eη+

0 λτ∗ |τ∗ <

∞
�
.

• change of measure for pricing financial derivatives and improving the simulation of the a
dynamic contagion process;

• investigate the asymptotics of limn→∞ P{NT = n} for the point process Nt of the dynamic
contagion process at a fixed time T ;

• develop the simulation algorithm of the multi-dimensional dynamic contagion processes;

• extend to choose other distributions, rather than exponential distributions.
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