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Prudential regulation:
is there a danger in reducing the volatility?

April 12,2015

Jacques Lévy Vehel *, Christian Walter ** !

Abstract

Prudential regulations adopted in response to recent crises aim to reduce
risks faced by financial institutions. Nevertheless, the feelings of a large
number of practitioners are mixed: if these rules seem to succeed in lower-
ing volatility, they appear to rigidify the financial structure of the economic
system and, consequently, tend to increase the probability of large jumps. In
other words, the volatility risk seemed to be swapped for a jump risk, pro-
ducing a negative spillover, in the sense that the aimed reduction of volatility
is accompanied by the increase of the intensity of jumps. Hence, the new
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rules of regulators seem create a new risk. This paper discusses this idea
in three ways. First, we introduce a conventionalist framework to be able
to enter the puzzle of the swap. We define two conventions of quantifica-
tion for the risk metrology, which allow us to introduce the risk swap effect.
Second, we define precisely the two kinds of risk (volatility and intensity of
jumps) and use them to document this risk swap effect by analysing a daily
time series of the S&P500. We find that the recent evolution of the index
indicates simultaneously a reduction in the volatility and an increase of the
intensity of jumps, a result that validates the intuition of practitioners. Third,
we analyse a model which allows one to appreciate a practical consequence
of this swap of risks on the risk measures: using a-stable motions, we find
that, for a given level of Value-at-Risk (VaR), the Tail Conditional Expec-
tation (TCE) increases with the risk swap. We conclude by challenging the
main objective of regulators: we argue that concentrating on reducing the
sole volatility can create a new type of risk, that we term regulation risk,
which increases the potential losses. This risk can be revealed with a con-
ventionalist approach of quantification.



1 Introduction

In the literature, “regulatory risk”” has multiple definitions. A 2014 research report
of the joint Risk Management Sections of Casualty Actuarial Society, Canadian
Institute of Actuaries and Society of Actuaries on ‘“Regulatory Risk and North
American Insurance Organizations”[21] proposes a survey of many instances,
which are related to a multitude of bodies that influence their framework. Among
others, regulatory risk can refer to the exposure to financial loss arising from the
probability that regulatory agencies will make changes in the current rules (or will
impose new rules) that will negatively affect the already-taken trading positions.
It can be also the inability to predict a regulatory outcome. More generally, the
research report emphasizes the fact that the notion of regulatory risk refers to two
main strands of thought: on the one hand, the potential and actual challenges
faced by insurers and regulators under a supervisory regime arising from changes
to products and regulations, and on the other hand, the unintended results of reg-
ulations that put at risk the ability of policyholders, shareholders or regulators to
achieve their legal or fiduciary objective. Our aim in this paper is to explore, ev-
idence and document some facts related the second meaning above of regulatory
risk. In order to delineate precisely our object of study, we shall use below the
term “regulation risk” to refer to the possibility that prudential regulations may
have, in some circumstances, the inverse effect of amplifying risk.

In the post-financial crisis environment, the US and EU are each pursuing
modernization of their regulatory frameworks [9]. Hence, the regulatory land-
scape is inherently more complex, and the recent regulations aiming at reducing
the risk to all financial institutions lead to a fundamental redesign of the concep-
tual frameworks. The paths taken by the US and EU are each impacted by these
conceptual frameworks. Although different, they share a same vision of the regu-
lation building: market risk regulations are now model based.

The negative spillover of risk modelling in regulatory design is the topic of
this paper: we argue that flaws in understanding the nature of financial uncertainty
may perversely lead to the amplification of risk. Saying that, we echo the feeling
of a large number of practitioners: more precisely, if the new rules achieve to
reduce the volatility, they seem to rigidify the financial structure of the economic
system and, consequently, tend to increase the probability of large moves, i.e. the
probability of large jumps. These rules seem to swap the volatility for the intensity
of jumps, in the sense that the aimed for reduction of volatility is accompanied by
an unwanted increase of the intensity of jumps. The volatility risk is apparently
exchanged for a jump risk. In this situation, the new rules of regulators seem



create a new risk, which is precisely the one we call regulation risk.

The remaining of this paper is organized as follows. Section 2 introduces a
conventionalist framework to emphasize the importance of the dichotomy conti-
nuity / discontinuity for the quantification of financial uncertainty and its implica-
tion for the policymaking about risk supervision. We build on the Comprehensive
Actuarial Risk Evaluation (CARE) 2010 report to explain how the fundamental
market risk methodologies are embedded in the regulatory process. Section 3
presents an empirical study of the S&P 500 based on a modelling with stable mo-
tion. We find that, for the recent period, a reduction of the volatility has come
along with an increase of the local intensity of the jumps. By analysing how these
evolutions echo on measures of risk as the VaR and TCE, we document the con-
jecture of [12] that the choice of the VaR by the regulator could lead to very large
increases of the market risk and provoke crashes. Finally, section 4 explicits how
this effect is translated into a regulation risk which, combined with a model risk,
produces a market risk.

Let us emphasize that this article does not try to develop new financial or
mathematical models. All those used here are well known. Our contribution lies
in: 1) the introduction of the notion of regulation risk by using a conventionalist
approach of quantification; 2) an empirical analysis showing the simultaneity of
the reduction of the volatility and in the increase of the local intensity of the jumps;
3) the quantification of a negative spillover illustrated with a simple example on
the calculation of the capital needs using the VaR and TCE measures with stable
motions.

2 A conventionalist approach to risk metrology

Building on the approach taken in several works in sociology (for example [10,
14]), this article rests on the idea that a connection can be established between
quantification conventions and regulation framework. When one decides to use
a mathematical model to quantify risk, an extremely large number of choices
must be made. These choices are not what we refer to here in the concept of
the ”quantification convention”. A quantification convention is more like a meta-
convention: its name covers a configuration or a coherent set of operations both
cognitive and normative, including selection of the items to take into account,
relevant judgment criteria, choices of mathematical schemas, etc.

The Comprehensive Actuarial Risk Evaluation (CARE) 2010 report [22] em-
phasizes that the use of convenient mathematical models to quantify risk can be



like looking for your lost keys under the nearest lamp post. To go beyond the
metaphor, we consider here the lamp post as a meta-convention of quantification
and we understand the warning of the CARE report in the light of the convention-
alist approach of models. The interest of this approach is that it allows the risk
managers and the regulators to be equipped with a valuable toolkit coming from
the social sciences, and also permits to address the issue of the “nearest lamp post”
and to avoid the negative spillovers due to a flawed regulation.

Every quantification convention has an epistemic, a pragmatic and a political
dimension. The epistemic dimension is built on a set of assumptions regarding un-
certainty; the pragmatic dimension makes certain actions possible, such as trad-
ing, arbitraging and managing risk; the political dimension of each convention
authorizes specific actors — not necessarily the same actors for each convention.
Each arrival of a new convention enables the growth of certain practices and recon-
figurations of some professions. Part of the epistemic dimension is the selection
of relevant predictive factors drawn from today’s world that can be used to con-
struct a decision, i.e. selection of what is true. Financial data, representations of
financial theory and the conceptualizations of the regulator joint to co-construct
a financial “reality”. In this sense, statistics must be conceived as simultaneously
conventional and real [15].

We now present the two main meta-conventions of quantification of uncer-
tainty and the resulting risk metrology.

2.1 The two quantification conventions of uncertainty

Risk management and financial regulation seek to grasp a future which, by defi-
nition, is uncertain. It therefore requires assumptions concerning what “shape” of
uncertainty the future will exhibit, which is in practice an assumption regarding
the stochastic dynamic of financial and economic variables.

There are two fundamentally different ways of viewing uncertainty in finance,
each of them being at the roots of a quantification convention. One assumes the
principle of continuity, the other does not. According to the first view, following
Bachelier (1900)’s legacy, price movements are modelled by continuous diffusion
processes, as for instance Brownian motion. According to the other view, follow-
ing Mandelbrot (1963)’s legacy, price movements are modelled by discontinuous
processes, as for instance Lévy processes [30]. The nature of the risk that we high-
light in this paper can essentially be described in one statement: some prudential
rules based on the first quantification convention picture the risk with only a single
dimension, as if the regulator’s belief was embedded in a Brownian (continuous)



representation of stock market fluctuations. In doing so, these rules leave aside
many factors which are nevertheless crucial to ensure a proper taming of risk in a
broader context.

To keep the discussion at an elementary level, we will focus here on the fact
that, in a discontinuous paradigm, price changes are due to two factors: the in-
stantaneous variance (or an equivalent scale parameter if the variance is infinite),
and the local intensity of jumps (see Section 3.1 for precise definitions). A cru-
cial point is that, by restricting the risk measurement to the sole “volatility”, the
regulator aggregates these two factors. This is a consequence of the belief that
prices essentially evolve in a continuous fashion. Under such an assumption, the
variance may be identified to volatility and it provides all the relevant information
needed to assess risk. But, as we shall quantify, ignoring the jumps, or at least
the fact that they produce variations non-reducible to variance, has damaging con-
sequences on both the measurement of risk and its perception. Therefore, the
volatility (understood as the variance) must be supplemented by another factor.
We meet again here the “nearest lamp post” syndrome (quantification convention)
emphasized in the CARE report.

2.2 Risk metrology

We now define the consequences of the choice of a quantification convention for
the risk metrology. Firstly, we recall that the volatility appears to be sufficient in
the continuity representation. Secondly, we address the issue of the jumps risks.

2.2.1 The first convention : continuity and volatility risk

In physics, the so-called principle of continuity states that change in nature is
continuous rather than discrete. Leibniz and Newton, inventors of differential cal-
culus, stated the maxim: “Natura non facit saltus” (nature does not make jumps).
This same principle underpinned not only the works of Linnaeus on the classifica-
tion of species and later Charles Darwin’s theory of evolution (1859). It is also a
crucial assumption in Alfred Marshall’s 1890 Principles of Economics, allowing
the use of differential calculus in economics and the subsequent development of
neoclassical economic theory. Modern financial theory grew out of neoclassical
economics and naturally assumes the same principle of continuity. One of the
great success stories of modern financial theory is the valuation of derivatives.
Examples include the formulas of Fisher Black, Myron Scholes, and Robert Mer-
ton (1973) for valuing options, and the subsequent fundamental theorem of asset



pricing that emerged from the work of Michael Harrison, Daniel Kreps, and Stan-
ley Pliska between 1979 and 1981. These success stories rest on the principle of
continuity.

Early in the 20th century, physics and genetics abrogated the principle of con-
tinuity in favour of discontinuity: it is now widely recognized that nature does
make jumps. Quantum mechanics postulated discrete energy levels while genet-
ics took discontinuities into account. But economics, including modern financial
theory, stood back from this intellectual revolution. The early attempt by Man-
delbrot in 1962 to take explicit into account discontinuities at all scales in stock
market prices led to huge controversies in the profession [40]. But, by the 1980’s,
despite the repeated financial crises following the 1987 stock market crash and de-
spite rather overwhelming empirical counterevidence, continuity maintained pop-
ularity and the academic consensus reaffirmed the principle of continuity. Many
popular financial techniques, such as portfolio insurance or the calculation of cap-
ital requirements in the insurance industry assume that (financial) nature does not
make jumps and therefore promote continuity. Most statistical descriptions of
time series in finance assume continuity. This is the epistemic dimension of the
quantification convention.

It follows that Brownian representation became the standard model, part and
parcel of finance curricula across the globe. It is the point of reference of most
top journals in the field of finance; it is the dominant view in the financial in-
dustry itself. This is the pragmatic dimension of the quantification convention.
And it underlies almost all prudential regulation worldwide: for instance, the so-
called square-root-of-time-rule underlying the regulatory requirements (Basel I1I
and Solvency II) for calculating minimum capital is a very narrow subset of time
scaling rules of risk, and comes directly from the hypothesis that returns are in-
dependent and stationary normal, i.e. a Brownian framework. In other words, the
principle of continuity was adopted not only in purely academic circles, but also
in policymaking. This is the political dimension of the quantification convention.

But if the volatility perfectly summarizes the risk in a Brownian universe, that
is to say with a continuous representation of financial fluctuations, this is no longer
the case as soon as we consider another representation of financial uncertainty
where discontinuities of all sizes exist.

2.2.2 The second convention : discontinuity and jump risk

There exist large sudden variations in the markets. This is a known and docu-
mented phenomenon. The first response of regulator to the presence of these large



variations was to prescribe the use of internal models. A look at the professional
practices for the implementation of internal models reveals the “come-back” of a
well-established statistical theory, the so-called extreme value theory. This theory
focuses on the most important variations of a random phenomenon, whether con-
tinuous or discontinuous. Without distinguishing between the two representations
of uncertainty (continuous or discontinuous), prudential regulations attempted to
deal with large variations in isolating them, that is to say by splitting the markets
into two regimes, in effect adding large variations to smooth and small variations.
The dissociation between these two market regimes is an intellectual consequence
of the adoption of a paradigm of continuity. On the contrary, [25] shows that, with
a discontinuous paradigm, it is not necessary to split market movements into two
regimes: this paradigm allows one to unify in the same mindset quiet periods and
periods of strong movements.

The first convention of quantification (continuous representation of stock mar-
ket fluctuations) is dangerous for this very precise reason: discontinuities occur
out of the blue, and only at large scales. Adopting this convention explains the
words of Alan Greenspan, former chairman of the Federal Reserve of the United
States: ‘We will never be able to anticipate all discontinuities in financial mar-
kets. Discontinuities are, of necessity, a surprise’ (Financial Times, March 16,
2008). With the second convention of quantification (discontinuous representation
of stock market fluctuations), however, discontinuity can not be reduced to large
variations, but remains present at small scales: discontinuity is a general property
of the stock paths [30], not just a consequence of liquidity or other crises. It is then
best to not separate large and small variations and to consider “quiet” periods, not
as phases of continuity, but as a succession of micro-discontinuities (see Section
3.1 for details). Analysing discontinuities at small scales helps understanding
the intrinsic fragility of a market and the occurrence of significant financial risks
[19, 25]. The financial large scale risk management can be improved by extrap-
olating large discontinuities (large risks) from small moves (small discontinuities
due to partial lack of liquidity, etc..).

In this framework, it is necessary to consider at least two independent factors
governing price movements: in addition to volatility, which is a scale parameter, it
is crucial to take into account the intensity of jumps, or erraticity, a factor which
calibrates the statistical distribution of the sizes of jumps. In addition, because of
the non-stationarity of the markets, it is essential to consider instantaneous ver-
sions of these two variates: an adequate understanding of risk requires measuring
the local volatility and local intensity jumps. Empirical studies confirm the rel-
evance of this view: typically, price changes exhibit jumps, and even an infinite



number of jumps [1]; the intensity of these jumps and the volatility change over
time; and all these market characteristics impact risk measures such as VaR [16].

3 Uncertainty modelling and risk of risk measures

In order to put the above elements in a form amenable to computations, we need
to precise the characteristics of the quantification convention with a class of mod-
els for prices variations. Our aim here is not to determine the most adequate
model but rather to evidence the impact of the presence of jumps on market risk.
For reasons given in [1], we will choose infinite activity additive processes (that
is, processes with infinite number of jumps) and we will base our discussion on
the simplest class of these processes, which is the one of stable motions. Note
however that more complex processes with infinite activity, such as CGMY ones,
could be considered instead.

3.1 Recalls on stable motions

We briefly recall some basic notions on stable motions. These will be used in
the empirical study of Section 3.2 as well as in Section 3.3. They will allow us
to define and estimate the instantaneous scale parameter and stability exponent,
which are respectively our local volatility and jump intensity measures.

Stable motions were introduced in financial modelling in [18, 30]. They have
been since the subject of numerous studies, for instance in relation with pricing
issues [7, 32, 36] or risk management [24, 31].

The main feature of interest to us is that paths of non-Gaussian stable motions
almost surely display jumps. In fact, they are so-called “pure jump” processes,
that is, they only move through jumps, and they possess almost surely a countably
infinite number of jumps on any time interval. This allows one to account for the
activity on markets in a way very different from the one provided by Brownian
motion, or, more generally, continuous diffusions. More precisely, one may argue
that in practice prices evolve in a discontinuous fashion, since their movements
are quantized. Now, all pure jumps processes considered in financial modelling
are such that “most” jumps are “small” (see below for a more precise statement),
and thus akin to account for price changes even in “quiet” periods. For this reason,
most of what is developed below would remain valid with other infinite activity
pure jump processes.



A stable motion is a stochastic process with stationary and independent incre-
ments (as is Brownian motion), whose increments follow an a-stable law. Such
laws are described by their characteristic function, which takes the following form
(sign(u) denotes the sign of u) :

o (u) = { exp {ipu — o [u|” [1 — ifsign (u) tan (%)]}  ifa #1 0

exp {ipu — o Ju| [1 + ifBsign (v) 2 In (u)] } ifa=1

Choosing @ = 2 above yields the characteristic function of a Gaussian RV, a
case we exclude from now on. As the definition of ¢ shows, stable laws are
characterized by four parameters:

1. The number « ranges between 0 and 2, and it quantifies the distribution
of the size of jumps: within a given period of time, and for any integer 7,
the mean number of jumps of a stable motion whose increments follow a
stable law with parameter o with size of order 27 is proportional to 277,
In particular, the mean number of jumps larger than any non-zero threshold
is always finite: “most” jumps are “small” as announced above. Besides,
when « is large (close to 2), the mean number of jumps decreases fast when
their size increases, while, when « is close to 0, it decreases slowly: a large
a corresponds to a small jump intensity, and vice-versa.

2. The positive real o is a scale parameter: multiplying the RV by a > 0
transforms ¢ into ao (in the Gaussian case, 202 is the variance). One may
thus identify o as governing volatility.

3. The real number p is a location parameter: adding a to the RV transforms p
into 1 + a. Also, when a > 1, i coincides with the expectation of the RV.

4. The real number /3, which ranges in [—1, 1], is a skewness parameter. A
distribution that is symmetric around g has 8 = 0.

Our focus in this work is on the parameters « et o, which we recall account
respectively for the jump intensity and the volatility. As there is no reason to be-
lieve that these numbers remain constant in time, we will consider local versions,
denoted «(t) and o (t).
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3.2 Empirical study

Figure 1 displays the local volatilities and jump intensities on daily data of the
S&P 500, between 01/03/1928 and 02/01/2012. Volatilities and jump intensities
were estimated using two classical statistical methods, namely the McCulloch and
Koutrouvelis ones.

We first note that both methods give very similar results as far as ¢ is con-
cerned. The difference between the estimated « values is somewhat larger. This is
however of little consequence for us, since both estimators yield roughly parallel
curves: as our aim is to compare the evolutions of ¢ and «, a constant shift in the
stability exponent does not modify our conclusions.

A second fact is that, since 1960 or so, the jump intensity and the volatility
evolve in opposite directions: when the volatility (that is, o) increases, the jump
intensity decreases (since « increases), and vice versa. In other words, o and o
almost always move in the same way. Thus, as was announced above, when the
market is less “rough”, or less “nervous”, it is more prone to large jumps.

A final noteworthy fact is that the evolution of the last years does confirm the
general feeling of practitioners: volatility has significantly decreased, but at the
expense of a notable increase of jump intensity. The market appears to be most of
the time “under control”, but the risk that it produces large jumps has increased.
In [27], we emphasized this as follows: “the market is very quiet, except when it
moves a lot”.

A legitimate question is then the following one: could it be the case that these
coordinated evolutions of o and « be themselves, at least in part, consequences
of the constraints imposed by certain prudential regulations under a given quan-
tification convention ? Indeed, these rules concentrate on the volatility, aiming at
reducing it. This effect is confirmed by our empirical study. However, it could
well be that the very mechanism that reduces volatility also leads to a decrease
of a. In such a scenario, we would have an example where regulation risk di-
rectly translates into a market risk, without being mediated by a model risk as in
the situation considered in the next section. A study of the potential influence of
prudential rules on the evolution of jump intensity and volatility is presented in
[26].

3.3 Consequences on risk measures

We now turn our attention to the risk measures. According to the International
Actuarial Association (IAA) note on the use of models for risk management [23],

11
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Figure 1: Compared evolutions of the local volatilities (top) and jump intensities
(bottom). Estimations performed with the McCulloch and Koutrouvelis methods
on daily data of the S&P 500 between 01/03/1928 and 02/01/2012. Each value is
estimated on a centred sliding window of size 2000 data points.

a risk measure is a numeric evaluator that can be used to help to determine the
solvency capital requirement for an insurer. In this context, VaR is the main risk
measure put forward by the regulator.

3.3.1 The coherency of risk measures

Recall that VaR at confidence level 1 — p and horizon 7" is simply the amount such
that the probability that losses at time 7" be smaller than VaR is equal to p, so that

P(Xy < —VaR) =1 — p.

12



VaR is simple to understand, and it reflects adequately certain aspects of risk.
There is a huge quantity of works devoted to its study, that cannot be reviewed
here. We just recall here some well-known shortcomings of VaR [12, 17, 23].
First, it is not a coherent measure of risk, in the sense that it is in particular not
sub-additive: in general, the VaR of X1 + Y7 is not necessarily smaller than or
equal to the sums of the VaRs of X, and of Y. This is counter-intuitive for
instance because it does not account for the reduction in risk typically entailed
by diversification. In this respect, we note however that, in our frame where X
follows an «-stable distribution, this problem does not arise: as shown in [39],
VaR is a coherent risk measure for sums of independent stable random variables
when o > 1.

Other limitations of VaR remain. For instance, it does not give any indica-
tion of what happens beyond VaR, although this is a crucial information. This is
why various other risk measures are considered to complement it. We shall be
interested in the quantity called Tail Conditional Expectation (TCE), which was
recommended by the IAA report [23] and has recently been adopted by the Basel
regulation [4]. TCE at confidence level 1 — p and horizon 7’ is defined as:

In words, TCE gives the mean loss beyond VaR. It is a coherent risk measure.

3.3.2 Risk measures and quantification conventions

We now turn our attention to the quantification conventions. In the second quan-
tification convention (discontinuous representation), when X follows an a-stable
distribution, one can compute explicit asymptotic values of VaR and TCE when
p tends to 1, that is, for very small risk levels. We note that, for given asset and
time horizon, it may well be the case that, even for a high confidence level, say
p = 99.5%, one is still far from the region where the asymptotic holds. As a con-
sequence, the computations presented below should be considered as indications
of a general behaviour rather than as exact values.
Let:
11—«

['(2 — a) cos(ma/2)

where we assume for simplicity that o # 1. Then, if X follows a stable distribu-
tion with parameters o < 2, o, i, f = 0, one has [37]:

Co, =

lim A*P(Xr < —)\) = ﬁoa.
A—00 2

13



A similar formula holds in the non-symmetric case (3 # 0), but we restrict to
£ = 0 for simplicity. Assuming that p is close enough to 1, and thus that VaR is
sufficiently large, one thus has, by definition,

Ca
VaR“(1 — p) ~ 70“,

c. \*
VaR ~ _ .
’ (2(1 —p>)

One checks that, as is intuitively clear, VaR increases linearly with volatility. How
it varies as a function of « is less obvious from the formula. Figure 2 displays the
evolution of VaR when « varies between 1.1 et 1.9. As one can see, VaR decreases
when « increases, a fact that fits with intuition: a larger jump intensity corresponds
to a riskier market and thus a larger VaR.

or

0.10
0.02 1
0.08 1
0.07

= 0.06-
0.05
0.04
0.03 1

0.02 4

Figure 2: VaR as a function of « for 0 = 0.005 and p = 0.99.

Let us now deal with TCE. Assuming o > 1, one can show [25, 42] that, when
p is sufficiently close to 1,

TCE ~ —2

VaR. 2)
a—1

The important point for us in the above formulas is the following one: assume
that the market evolves in such a way that the volatility decreases while the jump

14



intensity increases (whether this joint evolution is the result of prudential regu-
lations or not). This is what we have observed for recent years in our empirical
study. Then, at constant VaR?, one deduces from (2) and from the fact that the
function o« — ﬁ is decreasing, that TCE will increase. If, for instance,  moves
from 1.75 to 1.4, as is observed empirically on Figure 1, then, although the VaR
risk measure does not change, TCE is multiplied by 1.5. This is indeed a strong
negative impact on financial companies. This simple mechanism highlights how
model risk and regulation risk may combine to create a market risk.

4 Regulation risk in a conventionalist approach

We now conclude with the notion of regulation risk we introduced at the beginning
of this work.

In the financial and statistical literature, model risk is traditionally understood
as the existence of a discrepancy between a given probabilistic model and the
‘true’ nature of the financial phenomenon. This approach belongs to a classical
epistemology scheme in which idealized models are facing the ‘true’ world, either
with a descriptive or a prescriptive role. For instance, the following definition
explicitly displays this understanding: a model is “an idealized representation
of reality that highlights some aspects and ignores others” [34]. With such an
epistemology, it is possible to distinguish model risk (designer-based risk) and
market risk (reality-based risk), because one can consider separately the model
and the market, and thus the associated risks. This approach neglects an important
component of model risk: the risk that the model itself can induce by influencing
professional practices, either directly (tool-based influences) or through prudential
rules (regulatory-based influences). This so called reflexive effect of models is
crucial and must be taken into account in the management of financial risks [41].
For risk management issues, the ‘representational idiom’ of [34] has to be replaced
by a ‘performative idiom’ [35]: it advocates for a move from an understanding of
science as an attempt to represent ‘nature’ to an understanding of science as a
mechanism creating ‘reality’.

The CARE report [22] definition of model specification risk is that the struc-
ture of the model itself is incorrect. The CARE report illustrates this model risk
with the example of the erroneous use of the lognormal distribution when a Pareto

2The assumption of constant VaR is justified by the fact that the regulator imposes solvency
capital requirements which are increasing functions of VaR. In order to maintain these require-
ments at a reasonable level, companies wish to control their VaR as much as possible
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distribution would have been a better representation of the underlying process.
This is the sense in which we use the notion of model specification risk: the er-
roneous use of a continuity assumption when a discontinuity one would have led
to a better representation of the underlying process. But we also say something
more. Using the taxonomy of risks introduced in the CARE report, we argue that
the model specification risk combines with the regulatory risk to create a new type
of market risk we term regulation risk, a new risk which can be revealed with a
conventionalist approach.

In section 2, we highlighted how financial data and quantification conventions
of uncertainty join to co-construct a ‘reality’ of financial markets. We are now
in a position to understand more precisely what this co-construction carries: a
particular morphology of financial uncertainty. The so-called ‘observations’ are
nothing but chains of mediation and human choices: for example, a chart of mar-
ket path is the result of several steps of successive specific choices related to the
relevant variables, the time scale, the length duration etc. In the same manner, risk
metrology is the result of successive specific choices related to the convention of
quantification that underpins prudential regulations. The first convention consid-
ers that prices movements are only due to volatility®, while an adequate model
should distinguish at least two irreducible dimensions of risk, namely volatility
and jump intensity.

To summarize, the non trivial relationships between the calculations and the
institutions give birth to a morphology of uncertainty which may be different from
the one that is desired. This fact was conjectured in [5] and our study is an exam-
ple that makes precise the way it works. This negative spillover is exactly what
we call regulation risk: by conveying the first quantification convention with pru-
dential standards, economic incentives or regulatory constraints in order to reduce
financial uncertainty, regulators create the uncertainty they seek to curb. This
policymaking corresponds exactly to the political dimension of the quantification
convention we introduced above. Specifically, regulators can provoke the very ac-
cidents that they want to avoid: here, in a market with both large and small jumps,
imposing a VaR level increases TCE.

Furthermore, given its specific conventionalist characteristics, backtesting is a
poor way to capture regulation risk. This new risk can be analysed either from an
economic or statistical perspective [3, 11, 13] or from a sociological perspective

3Note that the danger of such a reduction has been emphasized rather early and has been
studied in a stream of research that tries to evaluate volatility risk model. For instance, the fact
that volatility alone is not sufficient for characterizing the dynamics of returns and how it may be
complemented is analysed in [2, 20].
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[6, 28, 29, 33]. Both approaches yield the same findings: model risk has an ef-
fect on the phenomenon they seek to understand because they shape professional
practices through regulations and technical tools that rely on the conventions of
quantification they carry. In this situation, our work shows that risk will also
come from a bad shaping of business practices by a inadequate regulation, which
itself rests on an erroneous representation of uncertainty, embedded in a particular
quantification convention.

We suggest that the effect evidenced in this article is a special case of a class
of regulation risks that remains to be explored.
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