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We consider that the insurer purchases excess-of-loss reinsurance and invests its wealth in the constant elasticity of variance (CEV)
stock market. We model risk process by Brownian motion with drift and study the optimization problem of maximizing the
exponential utility of terminal wealth under the controls of excess-of-loss reinsurance and investment. Using stochastic control
theory and power transformation technique, we obtain explicit expressions for the optimal polices and value function. We also
show that the optimal excess-of-loss reinsurance is always better than optimal proportional reinsurance. Some numerical examples
are given.

1. Introduction

Many papers deal with optimal reinsurance or optimal
investment issues for diffusion approximation risk models
in the past ten years. In these papers, the insurer is allowed
to take reinsurance and/or invest its capital in the Black-
Scholes market. Some of the problems have been dealt with
through stochastic control theory and related methodolo-
gies for finding the minimum probability of ruin or the
maximum expected utility of terminal wealth. Browne [1]
used a Brownian motion with a drift to describe the surplus
of the insurer and found the optimal investment policy to
maximize the expected exponential utility of terminal wealth.
Later, Schmidli [2], Taksar and Markussen [3] considered
the optimal reinsurance policy which minimizes the ruin
probability of the cedent.

Recently, much research on insurance optimization in the
presence of both proportional reinsurance and investment
has been done. Luo et al. [4] studied optimal proportional
reinsurance and investment policy which minimizes the
probability of ruin. Bai and Guo [5] investigated the problem
of maximizing the expected exponential utility of terminal
wealth with multiple risky assets and proportional reinsur-
ance. For related works, see, for example, Promislow and
Young [6], Liang and Guo [7] and references therein.

The excess-of-loss reinsurance has also attracted inter-
est among academia and practitioners. Asmussen et al.
[8] studied a dynamic choice of excess-of-loss reinsurance
retention level and the dividend distribution policy which
maximizes the expected present value of the dividends in
a diffusion model. Zhang et al. [9] considered the problem
of minimizing the probability of ruin by controlling the
combinational quota-share and excess-of-loss reinsurance
strategy. Meng and Zhang [10] investigated optimal risk
control for the excess-of-loss reinsurance policy which min-
imizes the probability of ruin. Bai and Guo [11] explored
optimal dynamic excess-of-loss reinsurance andmultidimen-
sional portfolio selection under the Black-Scholes market
whichmaximizes the expected exponential utility of terminal
wealth.

Although many papers are dealing with risk models with
investment in the Black-Scholes market, there are analyses
based on the other kinds of risk assets process in the actuarial
literature. For example, Irgens and Paulsen [12] studied the
optimal reinsurance and investment strategy with a jump-
diffusion process risk asset market. In fact, there is strong
empirical evidence that the variance (or volatility) of asset
returns, particularly stockmarket returns, is not constant [13].
The constant elasticity of variance (CEV) process can describe
stochastic volatility of the risky asset to some extent.TheCEV
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model is expressed in terms of a stochastic diffusion process
with respect to a standard Brownian motion:

d𝑆 (𝑡) = 𝜇𝑆 (𝑡) d𝑡 + 𝜎𝑆(𝑡)
𝛽+1d𝑊(𝑡) , (1)

where 𝛽 ≤ 0 is the elasticity parameter. This model is
characterized by the dependence of the volatility rate, that is,
𝜎𝑆(𝑡)
𝛽+1 on the risk asset price. When the price increases, the

instantaneous volatility rate decreases.This seems reasonable
because the higher the stock price, the higher the equity
market value, and thus the lower the proportion of liability,
which results in a decrease in the risk of ruin. The volatility
rate or the risk measure is thus decreased. So, the CEV
model with stochastic volatility is a natural extension of
the GBM (geometric Brownian motion) model. The CEV
process was usually applied to calculating the theoretical
price, sensitivities and implied volatility of option (see, e.g.,
Schroder [14]).

In this paper, we consider that the insurer purchases
excess-of-loss reinsurance and invests its wealth in the CEV
stock market. Although Gu et al. [15] used the CEV model
to study the problems of reinsurance and investment under
diffusion claim process, they get the optimal strategies for the
proportional reinsurance. By the technique of stochastic con-
trol theory, we model risk process to Brownian motion with
a drift to study the optimization problem of maximizing the
exponential utility of terminal wealth under the controls of
excess-of-loss reinsurance and investment, which is very dif-
ferent from those in Gu et al. The excess-of-loss reinsurance
is a harder problem than proportional reinsurance from the
mathematical point of view. Our contribution in this paper is
to obtain explicit expressions for the optimal investment and
excess-of-loss polices and value function. Moreover, we show
that the excess-of-loss reinsurance dominates proportional
reinsurance under our objective function. To the best of our
knowledge, this is the first study to extend the research of
Gu et al. to the case that the insurer purchases excess-of-loss
reinsurance.

The rest of the paper is organized as follows. In Section 2,
the model and assumption are given. In Section 3, we show
that the optimal excess-of-loss reinsurance policy is always
better than proportional reinsurance policy. The solution of
the model is constructed in Section 4. In Section 5, some
numerical examples are given.

2. The Model and Assumptions

2.1. Notation. Before introducing the mathematical models,
some principal notations are listed.

{𝑁(𝑡), 𝑡 ≥ 0}: the claim arrival process;
𝑌𝑖: the claim size;
𝑐: the premium rate of the insurerwithout reinsurance
policy;
𝜂, 𝜃: the safety loading of the insurer and reinsurer,
respectively;
𝑎(𝑡): the retention level at time 𝑡;
𝜋(𝑡): the amount invested in the risky asset at time 𝑡;

𝛼 = (𝜋(𝑡), 𝑎(𝑡)): the admissible policy, denoted by
(𝜋, 𝑎) for simplicity;

𝑐
(𝑎): the premium rate under the given reinsurance
policy 𝑎;

�̃�𝑖(𝑎): the part of the claim held by the insurer under
the given reinsurance policy 𝑎;

𝜇(𝑎), 𝜎2(𝑎): the first and second moments of �̃�𝑖(𝑎),
respectively;

{𝑆0(𝑡), 𝑡 ≥ 0}, {𝑆(𝑡), 𝑡 ≥ 0}: the price process of the
risk-free asset and risky asset, respectively;

{𝑋(𝑡), 𝑡 ≥ 0}: the surplus process of the insurer;

𝑉(𝑡, 𝑥, 𝑠): the optimal value function at time 𝑡.

2.2. Problem Formulation. Let (Ω,F, 𝑃) be a probability
space with filtration {F𝑡, 𝑡 ≥ 0} containing all objects
defined as follows. In the classical Cramer-Lundberg model,
the reserve of an insurer at time 𝑡, denoted by 𝑃(𝑡), evolves
over time as

𝑃 (𝑡) = 𝑥0 + 𝑐𝑡 −

𝑁(𝑡)

∑

𝑖=1

𝑌𝑖, (2)

where 𝑥0 is the initial level of reserve and {𝑁(𝑡), 𝑡 ≥ 0} is a
Poisson process with intensity 𝜆. And𝑌1, 𝑌2, . . ., independent
of {𝑁(𝑡)}, are i.i.d. random variables with common contin-
uous distribution 𝐹 having finite first and second moments
𝜇∞, 𝜎

2
∞, respectively. The premium rate 𝑐 is assumed to be

calculated via the expected principle, that is,

𝑐 = (1 + 𝜂) 𝜆𝜇∞, (3)

where 𝜂 > 0 is the relative safety loading of the insurer.
We now consider a modification of the above Cramer-

Lundberg model that takes into account the presence of
reinsurance. Let 𝑎 be a retention level and �̃�𝑖(𝑎) denote the
part of the claims held by the insurer. In otherwords,𝑌𝑖−�̃�𝑖(𝑎)

is the residual part of𝑌𝑖 that is covered by the reinsurer.Then,
for a given reinsurance policy 𝑎, the corresponding reserve
process is

𝑃
(𝑎)

(𝑡) = 𝑥0 + 𝑐
(𝑎)

𝑡 −

𝑁(𝑡)

∑

𝑖=1

�̃�𝑖 (𝑎) , (4)

where premium rate is

𝑐
(𝑎)

= (1 + 𝜂) 𝜆𝜇∞ − (1 + 𝜃) 𝜆𝐸 [𝑌𝑖 − �̃�𝑖 (𝑎)]

= (1 + 𝜃) 𝐸 [�̃�𝑖 (𝑎)] 𝜆 + (𝜂 − 𝜃) 𝜆𝜇∞,

(5)

where 𝜃 denotes the safety loading of the reinsurer, the
reinsurer also used the expected value principle. In this paper,
we consider noncheap reinsurance, that is, 𝜃 > 𝜂, which is
reasonable in actuarial practice. Otherwise, the insurer could
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reinsure the whole claims. According to Grandell [16], 𝑃(𝑎)(𝑡)
can be approximated by the diffusion process {𝑅(𝑎)(𝑡), 𝑡 ≥ 0}:

d𝑅(𝑎) (𝑡) = 𝜆 [𝜃𝐸 [�̃�𝑖 (𝑎)] + (𝜂 − 𝜃) 𝜇∞] d𝑡

+ √𝜆𝐸 [(�̃�𝑖 (𝑎))
2
]d𝑊(𝑡) ,

(6)

where𝑊(𝑡) is a standard Brownian motion adapted toF𝑡.
For the excess-of-loss reinsurance with retention level 𝑎

(i.e., �̃�𝑖(𝑎) = min(𝑌𝑖, 𝑎) = 𝑌𝑖 ∧ 𝑎),

𝜇 (𝑎) = 𝐸 [𝑌𝑖 ∧ 𝑎]

= ∫

𝑎

0
𝑦d𝐹 (𝑦) + 𝑎𝐹 (𝑎)

= ∫

𝑎

0
𝐹 (𝑦) d𝑦,

𝜎
2
(𝑎) = 𝐸 [(𝑌𝑖 ∧ 𝑎)

2
]

= ∫

𝑎

0
𝑦
2d𝐹 (𝑦) + 𝑎

2
𝐹 (𝑎)

= ∫

𝑎

0
2𝑦𝐹 (𝑦) d𝑦,

(7)

where 𝐹(𝑦) = 𝑃(𝑌𝑖 > 𝑦). Without loss of generality,
we assume that 𝜆 = 1; then the corresponding diffusion
approximation claim process (6) becomes

d𝑅(𝑎) (𝑡) = [𝜃𝜇 (𝑎 (𝑡)) + (𝜂 − 𝜃) 𝜇∞] d𝑡 + 𝜎 (𝑎 (𝑡)) d𝑊(𝑡) .

(8)

We assumed that an insurer is allowed to invest its surplus
in financial market consisting of a risk-free asset (bond or
bank account) and a risky asset (stock or mutual fund).
Specifically, the risk-free price process is given by

d𝑆0 (𝑡) = 𝑟𝑆0 (𝑡) d𝑡, (9)

where 𝑟 > 0 is the risk-free interest rate.
As previously mentioned, the CEVmodel has advantages

over the GBMmodel because of the stochastic volatility rate.
We describe the risky asset price process by

d𝑆 (𝑡) = 𝜇𝑆 (𝑡) d𝑡 + 𝜎𝑆(𝑡)
𝛽+1d𝐵 (𝑡) , (10)

where 𝜇(> 𝑟) is an expected instantaneous rate of the risky
asset and 𝜎𝑆

𝛽+1
(𝑡) is a standard instantaneous volatility. 𝐵(𝑡)

is another F𝑡-adapted standard Brownian and independent
of the claim process.

Remark 1. If 𝛽 < 0, it can generate a distribution with heavy
left tail. Empirical evidence supports the CEV model in the
stock market (see, e.g., Schroder [14]). If 𝛽 > 0, the situation
is unrealistic.

Let 𝛼 = {(𝜋(𝑡), 𝑎(𝑡)), 𝑡 ≥ 0}, denoted by (𝜋, 𝑎) for sim-
plicity, be any admissible control policy which is a two-
dimensional F𝑡-adapted stochastic process, where 𝜋 repre-
sents the amount invested in the risky asset at time 𝑡, and

0 ≤ 𝑎(𝑡) ≤ ∞ represents the excess-of-loss level at time 𝑡;
the set of all admissible policies is denoted by Π.

The dynamics of resulting surplus process can be
described as

d𝑋 (𝑡) = 𝜋 (𝑡)
d𝑆 (𝑡)

𝑆 (𝑡)

+ (𝑋 (𝑡) − 𝜋 (𝑡))
d𝑆0 (𝑡)
𝑆0 (𝑡)

+ d𝑅(𝑎) (𝑡)

= [𝑟𝑋 (𝑡) + (𝜇 − 𝑟) 𝜋 (𝑡) + 𝜃𝜇 (𝑎 (𝑡)) + (𝜂 − 𝜃) 𝜇∞] d𝑡

+ 𝜎𝜋 (𝑡) 𝑆(𝑡)
𝛽d𝐵 (𝑡) + 𝜎 (𝑎 (𝑡)) d𝑊(𝑡) .

(11)

Remark 2. In this paper, we assume that continuous trading
is allowed and all assets are infinitely divisible. We allowed
𝜋(𝑡) < 0 and 𝜋(𝑡) > 𝑋(𝑡), that means we allowed the insurer
to short sell the risky asset and borrow money from a bank
for investing in the risky asset.

We are interested in maximizing the utility of the cedent’s
terminal wealth, say at time𝑇. Let 𝑢(𝑥) be the utility function
with 𝑢


> 0 and 𝑢


< 0. For 𝛼 ∈ Π, we define the return

function as

𝑉
𝛼
(𝑡, 𝑥, 𝑠) = 𝐸 [𝑢 (𝑋 (𝑇)) | 𝑋 (𝑡) = 𝑥, 𝑆 (𝑡) = 𝑠] . (12)

The optimal value function is defined as

𝑉 (𝑡, 𝑥, 𝑠) = sup
𝛼∈Π

𝑉
𝛼
(𝑡, 𝑥, 𝑠) . (13)

Our objective is finding an optimal policy 𝛼
∗
∈ Π

𝑉 (𝑡, 𝑥, 𝑠) = 𝑉
𝛼∗

(𝑡, 𝑥, 𝑠) . (14)

In the case of proportional reinsurance, an explicit solu-
tion to this problem was found by Gu et al. [15]. However,
the excess-of-loss reinsurance is a harder problem than
proportional reinsurance from the mathematical point of
view: the functional relation between 𝜇(𝑎) and 𝜎(𝑎) is much
more complicated even for a relatively simple distribution 𝐹

such as the exponential or uniform.

Remark 3. A variety of utility functions are studied for
investment and consumption strategies by an individual;
see, for example, Karatzas [17] and references therein. We
assume that the insurer is a closely-held corporationwith risk
aversion for reasonable utility analysis (see,Mayers and Smith
[18], Loubergé and Watt [19]).

3. The Gain of Excess-of-Loss Reinsurance

In this section, we will show that the optimal excess-of-
loss reinsurance policy is always better than proportional
reinsurance policy. For the proportional reinsurance with
retention level 𝑎pr (i.e., �̃�𝑖(𝑎pr) = 𝑎pr𝑌𝑖, 0 < 𝑎pr ≤ 1),

𝜇 (𝑎pr) = 𝐸 [𝑎pr𝑌𝑖] = 𝑎pr𝜇∞,

𝜎
2
(𝑎pr) = 𝐸 [(𝑎pr𝑌𝑖)

2
] = 𝑎
2
pr𝜎
2
∞.

(15)
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Then, the diffusion claim process (6) becomes

d𝑅(𝑎pr) (𝑡) = [𝜃𝑎pr𝜇∞ + (𝜂 − 𝜃) 𝜇∞] d𝑡 + 𝑎pr𝜎∞d𝑊(𝑡) .

(16)

Lemma 4. Let 0 < 𝑎pr ≤ 1 be a (fixed) retention level in pro-
portional reinsurance model satisfying the condition

𝜎
2
(𝑎) = 𝐸 [(𝑌𝑖 ∧ 𝑎)

2
] = 𝐸 [(𝑎 pr 𝑌𝑖)

2
] = 𝑎
2
pr 𝜎
2
∞, (17)

then

𝜇 (𝑎) = 𝐸 [𝑌𝑖 ∧ 𝑎] ≥ 𝑎 pr 𝐸 [𝑌𝑖] = 𝑎 pr 𝜇∞. (18)

Proof. The proof of the lemma can be found in Bai and Guo
[11].

Theorem 5. For all (𝑡, 𝑥, 𝑠) ∈ [0, 𝑇] ×𝑅×𝑅, there exists policy
𝛼 ∈ Π, satisfying

𝑉
𝛼
(𝑡, 𝑥, 𝑠) ≥ 𝑉

𝑎∗pr (𝑡, 𝑥, 𝑠) , (19)

where𝑉𝛼(𝑡, 𝑥, 𝑠) is the value function for the excess-of-loss rein-
surance model and 𝑉

𝑎∗pr (𝑡, 𝑥, 𝑠) is the optimal value function
for the proportional reinsurance model.

Proof. Let (𝑎
∗
pr, 𝜋
∗
) be the optimal feedback retention level

and investment policy for the proportional reinsurance
model (see Gu et al. [15]). The dynamics of the resulting
surplus process (11) becomes

d𝑋 (𝑡) = [𝑟𝑋 (𝑡) + (𝜇 − 𝑟) 𝜋
∗
(𝑡) + 𝜃𝑎

∗
pr𝜇∞ + (𝜂 − 𝜃) 𝜇∞] d𝑡

+ 𝜎𝜋
∗
(𝑡) 𝑆(𝑡)

𝛽d𝐵 (𝑡) + 𝑎
∗
pr𝜎∞d𝑊(𝑡) .

(20)

Since 𝜎
2
(𝑎) is continuous function with respect to 𝑎 and

𝜎
2
(∞) = ∫

∞

0
𝑦
2d𝐹(𝑦) = 𝜎

2
∞, we can choose a feedback

control 𝛼 = (𝜋, 𝑎) in the excess-of-loss model in such a way
that 𝜋 = 𝜋

∗ and 𝜎
2
(𝑎(𝑡)) = ∫

𝑎(𝑡)

0
𝑦
2d𝐹(𝑦) = (𝑎

∗
pr𝜎∞)

2. From
Lemma 4, we have 𝜇(𝑎(𝑡)) ≥ 𝑎

∗
pr𝜇∞. Hence, with the same

diffusion coefficient, the drift coefficient of excess-of-loss
reinsurance model is bigger, which implies that 𝑉𝛼(𝑡, 𝑥, 𝑠) ≥

𝑉
𝑎∗pr (𝑡, 𝑥, 𝑠).

Remark 6. From the proof of Theorem 5, we can know that
the preference for excess-of-loss reinsurance does not depend
on utility function. We can also see that the result is true
under our objective function in the case of cheap reinsurance
(similar to Asmussen et al. [8]). Note that the premium is
calculated by means of the expected value principle in the
model. However, other premium principles are used, for
example, the variance principle (see, Waters [20], Hesselager
[21]), there may be different from the result of Theorem 5. In
general this is a complicated matter. We leave this problem as
an area for future research.

From now on, we only consider the excess-of-loss rein-
surance model.

4. Solution to the Model under
Exponential Utility

Suppose now that the insurer has exponential utility

𝑢 (𝑥) = 𝜆0 −
𝛾

𝑚
𝑒
−𝑚𝑥

, (21)

where 𝛾 > 0 and 𝑚 > 0. This utility has constant absolute
risk aversion (CARA) parameter 𝑚. Such utility functions
play a prominent role in insurancemathematics and actuarial
practice, since they are the only utility functions under which
the principle of “zero utility” gives a fair premium, that is,
independent of the level of reserves of an insurer (see Gerber
[22]).

We use the standard dynamic programming approach to
solve the problemofmaximizing expected exponential utility.
We see that if the optimal value function 𝑉 and its partial
derivatives 𝑉𝑡, 𝑉𝑥, 𝑉𝑥𝑥, 𝑉𝑠, 𝑉𝑠𝑠, and 𝑉𝑠𝑥 are continuous on
[0, 𝑇)×𝑅×𝑅, then𝑉 satisfies the following Hamilton-Jacobi-
Bellman (HJB) equation:

sup
𝜋∈𝑅,𝑎∈[0,𝑁]

A
𝛼
𝑉 (𝑡, 𝑥, 𝑠) = 0, (22)

with boundary condition

𝑉 (𝑇, 𝑥, 𝑠) = 𝑢 (𝑥) , (23)

where

A
𝛼
𝑉 (𝑡, 𝑥, 𝑠)

= 𝑉𝑡 + [𝑟𝑥 + (𝜇 − 𝑟) 𝜋 + 𝜃𝜇 (𝑎) + 𝜇∞ (𝜂 − 𝜃)]𝑉𝑥

+ 𝜇𝑠𝑉𝑠 +
1

2
[𝜋
2
𝜎
2
𝑠
2𝛽

+ 𝜎
2
(𝑎)] 𝑉𝑥𝑥

+
1

2
𝜎
2
𝑠
2𝛽+2

𝑉𝑠𝑠 + 𝜋𝜎
2
𝑠
2𝛽+1

𝑉𝑥𝑠,

𝑁 = sup {𝑦 : 𝐹 (𝑦) < 1} ≤ ∞.

(24)

The following verification theorem is essential in solving the
associated stochastic control problem.

Theorem7. Let𝑊 ∈ 𝐶
1,2 be concave solution to HJB equation

(22) subject to the boundary condition (23). Then, the value
function 𝑉 given by expression (13) coincides with 𝑊. That is,

𝑊(𝑡, 𝑥, 𝑠) = 𝑉 (𝑡, 𝑥, 𝑠) . (25)

Furthermore, let (𝜋∗, 𝑎∗) be such that

A
(𝜋∗ ,𝑎∗)

𝑉 (𝑡, 𝑥, 𝑠) = 0 (26)

for all (𝑡, 𝑥, 𝑠) ∈ [0, 𝑇) × 𝑅 × 𝑅. Then, the feedback (Markov)
strategies

(𝜋
∗
(𝑡, 𝑋
∗
(𝑡) , 𝑆 (𝑡)) , 𝑎

∗
(𝑡, 𝑋
∗
(𝑡) , 𝑆 (𝑡))) (27)

are the optimal policies.

Proof. The proof of the verification theorem is standard (see
chapter III in Fleming and Soner [23]).
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Remark 8. In order to use the verification theorem in its
basic form, a sufficient condition is that the following kind
of expectation is finite:

𝐸∫

𝑡

𝑡


A
(𝜋∗ ,𝑎∗)

𝑊(𝑢,𝑋
∗
(𝑢) , 𝑆 (𝑢))


d𝑢 < ∞, ∀𝑡


≥ 𝑡,

(28)

so as to be able to use Dynkin’s formula and conclude that
𝑊(𝑡, 𝑥, 𝑠) is indeed 𝑉(𝑡, 𝑥, 𝑠). This point can be verified from
the following conclusion of Theorem 9: 𝜋∗(𝑡) = 𝑂(1/𝑆(𝑡)

2𝛽
)

and 𝑎
∗
(𝑡) = 𝑂(1).

Theorem 9. When 𝑁𝑚 > 𝜃, the optimal value function is

𝑉 (𝑡, 𝑥, 𝑠) = 𝜆0 −
𝛾

𝑚
exp [−𝑚𝑥𝑒

𝑟(𝑇−𝑡)
+ 𝐾1 (𝑡) + 𝐿 (𝑡) 𝑠

−2𝛽
] ,

(29)

where

𝐿 (𝑡) = −
(𝜇 − 𝑟)

2

4𝑟𝜎2
(1 − 𝑒

−2𝑟(𝑇−𝑡)
) ,

𝐾1 (𝑡)

=
𝛽 (2𝛽 + 1) (𝜇 − 𝑟)

2

4𝑟
[(𝑇 − 𝑡) −

1 − 𝑒
−2𝑟(𝑇−𝑡)

2𝑟
]

+
𝑚𝜇∞ (𝜂 − 𝜃) 𝑒

𝑟(𝑇−𝑡)

𝑟

− ∫

𝑇

𝑡
[−𝜃𝑚𝑒

𝑟(𝑇−𝑧)
∫

𝜃𝑒−𝑟(𝑇−𝑧)/𝑚

0
𝐹 (𝑦)d𝑦

+𝑚
2
𝑒
2𝑟(𝑇−𝑧)

∫

𝜃𝑒−𝑟(𝑇−𝑧)/𝑚

0
𝑦𝐹 (𝑦)d𝑦]d𝑧.

(30)

In this case, the optimal excess-of-loss reinsurance and invest-
ment policy is

𝜋
∗
(𝑡) =

2𝑟 (𝜇 − 𝑟) + 𝛽(𝜇 − 𝑟)
2
(1 − 𝑒

−2𝑟(𝑇−𝑡)
)

2𝑟𝜎2𝑠2𝛽

×
𝑒
−𝑟(𝑇−𝑡)

𝑚
= 𝑂(

1

𝑆(𝑡)
2𝛽

) ,

𝑎
∗
(𝑡) =

𝜃𝑒
−𝑟(𝑇−𝑡)

𝑚
= 𝑂 (1) .

(31)

When 𝑁𝑚 ≤ 𝜃, the optimal value function is 𝑉(𝑡, 𝑥, 𝑠) =

𝜆0 −
𝛾

𝑚
exp [−𝑚𝑥𝑒

𝑟(𝑇−𝑡)
+ 𝐾1 (𝑡) + 𝐿 (𝑡) 𝑠

−2𝛽
+ 𝑘] ,

0 ≤ 𝑡 < 𝑇,

𝜆0 −
𝛾

𝑚
exp [−𝑚𝑥𝑒

𝑟(𝑇−𝑡)
+ 𝐾2 (𝑡) + 𝐿 (𝑡) 𝑠

−2𝛽
] ,

𝑇 ≤ 𝑡 < 𝑇,

(32)

where 𝑇 = 𝑇 + (ln(𝑁𝑚) − ln 𝜃)/𝑟,

𝐾2 (𝑡) = −
𝛽 (2𝛽 + 1) (𝜇 − 𝑟)

2

4𝑟
[(𝑇 − 𝑡) −

1 − 𝑒
−2𝑟(𝑇−𝑡)

2𝑟
]

−
𝑚𝜇∞𝜂

𝑟
(𝑒
𝑟(𝑇−𝑡)

− 1) −
𝑚𝜎
2
∞

4𝑟
(1 − 𝑒

2𝑟(𝑇−𝑡)
) ,

(33)

and 𝑘 = 𝐾2(𝑇)−𝐾1(𝑇). In this case, the corresponding optimal
excess-of-loss reinsurance and investment policy is

(𝜋
∗
(𝑡) , 𝑎
∗
(𝑡)) =

{{

{{

{

(𝜋
∗
(𝑡) ,

𝜃𝑒
−𝑟(𝑇−𝑡)

𝑚
) , 0 ≤ 𝑡 < 𝑇,

(𝜋
∗
(𝑡) ,𝑁) , 𝑇 ≤ 𝑡 < 𝑇,

(34)

where 𝜋∗(𝑡) = ((2𝑟(𝜇 − 𝑟) + 𝛽(𝜇 − 𝑟)
2
(1 − 𝑒
−2𝑟(𝑇−𝑡)

))/2𝑟𝜎
2
𝑠
2𝛽
)

(𝑒
−𝑟(𝑇−𝑡)

/𝑚) = 𝑂(1/𝑆(𝑡)
2𝛽
).

Remark 10. FromTheorem 9, we can see that when the total
expected claims exceed the ratio of the reinsurer’s safety
loading to the coefficient of risk aversion, that is, 𝑁 > 𝑚/𝜃,
the optimal excess-of-loss portfolio retention is the ratio of
discounted reinsurer’s safety loading to the coefficient of risk
aversion. If 𝑁 ≤ 𝑚/𝜃, the optimal excess-of-loss policy is no
reinsurance when 𝑡 ≥ 𝑇 and is also the ratio of discounted
reinsurer’s safety loading to the coefficient of risk aversion
when 𝑡 ≤ 𝑇.

Proof. Following the methods of Browne [1] or Liang et al.
[24], we conjecture a solution of the form

𝑉 (𝑡, 𝑥, 𝑠) = 𝜆0 −
𝛾

𝑚
exp [−𝑚𝑥𝑒

𝑟(𝑇−𝑡)
+ 𝐺 (𝑡, 𝑠)] , (35)

where𝐺(𝑡, 𝑠) is a suitable function to be determined. And the
boundary condition 𝑉(𝑇, 𝑥, 𝑠) = 𝑢(𝑥) implies that

𝐺 (𝑇, 𝑠) = 0. (36)

Let 𝐺𝑡, 𝐺𝑠, and 𝐺𝑠𝑠 be the partial derivatives of 𝐺(𝑡, 𝑠). Note
that

𝑉𝑡 = [𝑉 (𝑡, 𝑥, 𝑠) − 𝜆0] [𝑚𝑥𝑟𝑒
𝑟(𝑇−𝑡)

+ 𝐺𝑡] ,

𝑉𝑥 = [𝑉 (𝑡, 𝑥, 𝑠) − 𝜆0] [−𝑚𝑒
𝑟(𝑇−𝑡)

] ,

𝑉𝑠 = [𝑉 (𝑡, 𝑥, 𝑠) − 𝜆0] [𝐺𝑠] ,

𝑉𝑥𝑥 = [𝑉 (𝑡, 𝑥, 𝑠) − 𝜆0] [𝑚
2
𝑒
2𝑟(𝑇−𝑡)

] ,

𝑉𝑠𝑠 = [𝑉 (𝑡, 𝑥, 𝑠) − 𝜆0] [𝐺
2
𝑠 + 𝐺𝑠𝑠] ,

𝑉𝑥𝑠 = [𝑉 (𝑡, 𝑥, 𝑠) − 𝜆0] [−𝑚𝑒
𝑟(𝑇−𝑡)

𝐺𝑠] .

(37)
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Substituting (37) back into the HJB equation (22), since
𝑉(𝑡, 𝑥, 𝑠) − 𝜆0 < 0, we get

𝐺𝑡 − 𝑚𝜇∞ (𝜂 − 𝜃) 𝑒
𝑟(𝑇−𝑡)

+ 𝜇𝑠𝐺𝑠 +
1

2
𝜎
2
𝑠
2𝛽+2

(𝐺
2
𝑠 + 𝐺𝑠𝑠)

+ inf
𝜋∈𝑅

{[ − (𝜇 − 𝑟) 𝜋 − 𝜋𝜎
2
𝑠
2𝛽+1

𝐺𝑠

+
1

2
𝜎
2
𝜋
2
𝑠
2𝛽
𝑚𝑒
𝑟(𝑇−𝑡)

]𝑚𝑒
𝑟(𝑇−𝑡)

}

+ inf
𝑎∈[0,𝑁]

{[−𝜇 (𝑎) 𝜃 +
1

2
𝜎
2
(𝑎)𝑚𝑒

𝑟(𝑇−𝑡)
]𝑚𝑒
𝑟(𝑇−𝑡)

} = 0.

(38)

Let
𝑓1 (𝜋, 𝑡)

= [− (𝜇 − 𝑟) 𝜋 − 𝜋𝜎
2
𝑠
2𝛽+1

𝐺𝑠 +
1

2
𝜎
2
𝜋
2
𝑠
2𝛽
𝑚𝑒
𝑟(𝑇−𝑡)

]𝑚𝑒
𝑟(𝑇−𝑡)

,

𝑓2 (𝑎, 𝑡) = [−𝜇 (𝑎) 𝜃 +
1

2
𝜎
2
(𝑎)𝑚𝑒

𝑟(𝑇−𝑡)
]𝑚𝑒
𝑟(𝑇−𝑡)

.

(39)

Differentiating𝑓1(𝜋, 𝑡)with respect to 𝜋 yields theminimizer

𝜋
∗
=

(𝜇 − 𝑟) + 𝜎
2
𝑠
2𝛽+1

𝐺𝑠

𝜎2𝑠2𝛽

𝑒
−𝑟(𝑇−𝑡)

𝑚
, (40)

and the value of 𝑓1(𝜋, 𝑡) at this minimizer is

𝑓1 (𝜋
∗
, 𝑡) = −

1

2

[(𝜇 − 𝑟) + 𝜎
2
𝑠
2𝛽+1

𝐺𝑠]
2

𝜎2𝑠2𝛽
.

(41)

Similarly, from the first order condition

𝜕𝑓2 (𝑎, 𝑡)

𝜕𝑎
= [−𝜃𝐹 (𝑎) + 𝑎𝐹 (𝑎)𝑚𝑒

𝑟(𝑇−𝑡)
]𝑚𝑒
𝑟(𝑇−𝑡)

= 0,

(42)

we know that without restriction with respect to 𝑎,

𝑎 =
𝜃

𝑚
𝑒
−𝑟(𝑇−𝑡)

, (43)

which leads to

𝑓2 (𝑎, 𝑡) = [−𝜇 (𝑎) 𝜃 +
1

2
𝜎
2
(𝑎)𝑚𝑒

𝑟(𝑇−𝑡)
]𝑚𝑒
𝑟(𝑇−𝑡)

= − 𝜃𝑚𝑒
𝑟(𝑇−𝑡)

∫

𝜃𝑒−𝑟(𝑇−𝑡)/𝑚

0
𝐹 (𝑦) d𝑦

+ 𝑚
2
𝑒
2𝑟(𝑇−𝑡)

∫

𝜃𝑒−𝑟(𝑇−𝑡)/𝑚

0
𝑦𝐹 (𝑦) d𝑦.

(44)

We need to discuss the two cases according to the value
of 𝑎.

Case 1. When𝑁𝑚 > 𝜃

if 𝑡 < 𝑇 + (ln(𝑁𝑚) − ln 𝜃)/𝑟, then 𝑎 ∈ [0,𝑁). So,

(𝜋
∗
(𝑡) , 𝑎
∗
(𝑡)) = (

(𝜇 − 𝑟) + 𝜎
2
𝑠
2𝛽+1

𝐺𝑠

𝜎2𝑠2𝛽
⋅
𝑒
−𝑟(𝑇−𝑡)

𝑚
,
𝜃𝑒
−𝑟(𝑇−𝑡)

𝑚
)

(45)

coincides with the optimal policy. Since 𝑇 < 𝑇 + (ln(𝑁𝑚) −

ln 𝜃)/𝑟, (𝜋∗(𝑡), 𝑎∗(𝑡)) is optimal policy on [0, 𝑇].
Up to now, we still need to solve 𝐺(𝑡, 𝑠) to find 𝜋

∗
(𝑡)

and 𝑉(𝑡, 𝑥, 𝑠) in this case. Substituting (𝜋
∗
(𝑡), 𝑎
∗
(𝑡)) (i.e.,

expression (45)) back to (38), we can get

𝐺𝑡 − 𝑚𝜇∞ (𝜂 − 𝜃) 𝑒
𝑟(𝑇−𝑡)

+ 𝑟𝑠𝐺𝑠 +
1

2
𝜎
2
𝑠
2𝛽+2

𝐺𝑠𝑠

−
(𝜇 − 𝑟)

2

2𝜎2𝑠2𝛽
+ 𝑓2 (𝑎

∗
, 𝑡) = 0.

(46)

We appeal to power transformation technique and variable
change method to solve the problem.

Let

𝐺 (𝑡, 𝑠) = ℎ (𝑡, 𝑦) , 𝑦 = 𝑠
−2𝛽

, (47)

with boundary condition

ℎ (𝑇, 𝑦) = 0,

𝐺𝑡 = ℎ𝑡, 𝐺𝑠 = −2𝛽𝑠
−2𝛽−1

ℎ𝑦,

𝐺𝑠𝑠 = 2𝛽 (2𝛽 + 1) 𝑠
−2𝛽−2

ℎ𝑦 + 4𝛽
2
𝑠
−4𝛽−2

ℎ𝑦𝑦,

(48)

where ℎ𝑡, ℎ𝑦, and ℎ𝑦𝑦 are partial derivatives of ℎ(𝑡, 𝑦).
Putting the partial derivatives of 𝐺(𝑡, 𝑠) into (46), we

obtain

ℎ𝑡 + [𝜎
2
(2𝛽 + 1) − 2𝑟𝑦] 𝛽ℎ𝑦 + 2𝜎

2
𝛽
2
𝑦ℎ𝑦𝑦

−
(𝜇 − 𝑟)

2

2𝜎2
𝑦 + 𝑀1 (𝑡) = 0,

(49)

where𝑀1(𝑡) = −𝑚𝜇∞(𝜂 − 𝜃)𝑒
𝑟(𝑇−𝑡)

+ 𝑓2(𝑎
∗
, 𝑡). We try to find

a solution of the above equation with the following form

ℎ (𝑡, 𝑦) = 𝐾1 (𝑡) + 𝐿1 (𝑡) 𝑦, (50)

with boundary condition

𝐾1 (𝑇) = 0, (51)

𝐿1 (𝑇) = 0, (52)

ℎ𝑡 = 𝐾

1 + 𝐿

1𝑦, ℎ𝑦 = 𝐿1, ℎ𝑦𝑦 = 0, (53)

where 𝐾

1, 𝐿

1 are the derivatives of 𝐾1, 𝐿1, respectively.

Putting (53) into (49), we derive

𝐾

1 + 𝜎
2
𝛽 (2𝛽 + 1) 𝐿1 + [𝐿


1 − 2𝑟𝐿1 −

(𝜇 − 𝑟)
2

2𝜎2
]𝑦

+ 𝑀1 (𝑡) = 0.

(54)

By matching coefficients, we have

𝐾

1 + 𝜎
2
𝛽 (2𝛽 + 1) 𝐿1 + 𝑀1 (𝑡) = 0,

𝐿

1 − 2𝑟𝐿1 −

(𝜇 − 𝑟)
2

2𝜎2
= 0.

(55)



ISRNMathematical Analysis 7

Taking into account the boundary condition, we have the
solution of (55):

𝐿1 (𝑡) = −
(𝜇 − 𝑟)

2

4𝑟𝜎2
(1 − 𝑒

−2𝑟(𝑇−𝑡)
) ,

𝐾1 (𝑡) = ∫

𝑇

𝑡
[𝛽 (2𝛽 + 1) 𝜎

2
𝐿1 (𝑧) + 𝑀1 (𝑧)] d𝑧

= −
𝛽 (2𝛽 + 1) (𝜇 − 𝑟)

2

4𝑟
[(𝑇 − 𝑡) −

1 − 𝑒
−2𝑟(𝑇−𝑡)

2𝑟
]

−

𝑚𝜇∞ (𝜂 − 𝜃) (𝑒
𝑟(𝑇−𝑡)

− 1)

𝑟

+ ∫

𝑇

𝑡
[−𝜃𝑚𝑒

𝑟(𝑇−𝑧)
(∫

𝜃𝑒−𝑟(𝑇−𝑧)/𝑚

0
𝐹 (𝑦) d𝑦)

+𝑚
2
𝑒
2𝑟(𝑇−𝑧)

(∫

𝜃𝑒−𝑟(𝑇−𝑧)/𝑚

0
𝑦𝐹 (𝑦) d𝑦)] d𝑧.

(56)

Putting these parameters into 𝐺(𝑡, 𝑠), we obtain

𝐺 (𝑡, 𝑠) = 𝐾1 (𝑡) + 𝐿1 (𝑡) 𝑠
−2𝛽

. (57)

So, the optimal investment policy is

2𝑟 (𝜇 − 𝑟) + 𝛽(𝜇 − 𝑟)
2
(1 − 𝑒

−2𝑟(𝑇−𝑡)
)

2𝑟𝜎2𝑠2𝛽
⋅
𝑒
−𝑟(𝑇−𝑡)

𝑚
, (58)

and the corresponding value function has the form

𝑉 (𝑡, 𝑥, 𝑠) = 𝜆0 −
𝛾

𝑚
exp [−𝑚𝑥𝑒

𝑟(𝑇−𝑡)
+ 𝐾1 (𝑡) + 𝐿1 (𝑡) 𝑠

−2𝛽
] ,

(59)

where 𝐿1(𝑡) and𝐾1(𝑡) are determined by (56), respectively.

Case 2. When𝑁𝑚 ≤ 𝜃

If 𝑡 < 𝑇 + (ln(𝑁𝑚) − ln 𝜃)/𝑟 (noting that 𝑇 + (ln(𝑁𝑚) −

ln 𝜃)/𝑟 ≤ 𝑇), we know that 𝑎 ∈ [0,𝑁) from expression
(43). Similar to Case 1, incorporating the constants of the
calculations, we get the optimal value function

𝑉 (𝑡, 𝑥, 𝑠)

= 𝜆0 −
𝛾

𝑚
exp [−𝑚𝑥𝑒

𝑟(𝑇−𝑡)
+ 𝐾1 (𝑡) + 𝐿1 (𝑡) 𝑠

−2𝛽
+ 𝑘] ,

(60)

where the constant 𝑘 will be determined from the following
(70), and the optimal policies are

(𝜋
∗
(𝑡) , 𝑎
∗
(𝑡)) = (

(𝜇 − 𝑟) + 𝜎
2
𝑠
2𝛽+1

𝐺𝑠

𝜎2𝑠2𝛽

𝑒
−𝑟(𝑇−𝑡)

𝑚
,
𝜃𝑒
−𝑟(𝑇−𝑡)

𝑚
) ,

(61)

where𝐺(𝑡, 𝑠) = 𝐾1(𝑡)+𝐿1(𝑡)𝑠
−2𝛽

+𝑘. If𝑇+(ln(𝑁𝑚)−ln 𝜃)/𝑟 ≤

𝑡 ≤ 𝑇, then 𝑎 ≥ 𝑁. We get that the optimal retention level is

𝑎
∗
(𝑡) = 𝑁. In this case, 𝜇(𝑁) = 𝜇∞ and 𝜎

2
(𝑁) = 𝜎

2
∞. Putting

the optimal policies

(𝜋
∗
(𝑡) , 𝑎
∗
(𝑡)) = (

(𝜇 − 𝑟) + 𝜎
2
𝑠
2𝛽+1

𝐺𝑠

𝜎2𝑠2𝛽

𝑒
−𝑟(𝑇−𝑡)

𝑚
,𝑁) , (62)

into (38), we obtain

𝐺𝑡 − 𝑚𝜇∞𝜂𝑒
𝑟(𝑇−𝑡)

+ 𝑟𝑠𝐺𝑠 +
1

2
𝜎
2
𝑠
2𝛽+2

𝐺𝑠𝑠

−
1

2

(𝜇 − 𝑟)
2

𝜎2𝑠2𝛽
+

1

2
𝜎
2
∞𝑚
2
𝑒
2𝑟(𝑇−𝑡)

= 0.

(63)

Again, we use the power transformation technique and
variable change method to solve (63) with the boundary
condition (21).

Similarly, let 𝐺(𝑡, 𝑠) = ℎ(𝑡, 𝑦), 𝑦 = 𝑠
−2𝛽, we have

ℎ𝑡 + [𝜎
2
(2𝛽 + 1) − 2𝑟𝑦] 𝛽ℎ𝑦 + 2𝜎

2
𝛽
2
𝑦ℎ𝑦𝑦

−
(𝜇 − 𝑟)

2

2𝜎2
𝑦 − 𝑚𝜇∞𝜂𝑒

𝑟(𝑇−𝑡)
+

1

2
𝜎
2
∞𝑚
2
𝑒
2𝑟(𝑇−𝑡)

= 0.

(64)

And we try the following form and match coefficients,

ℎ (𝑡, 𝑦) = 𝐾2 (𝑡) + 𝐿2 (𝑡) 𝑦. (65)

Therefore, we get

𝐿2 (𝑡) = −
(𝜇 − 𝑟)

2

4𝑟𝜎2
(1 − 𝑒

−2𝑟(𝑇−𝑡)
) , (66)

which is the same as the expression 𝐿1(𝑡), denoted by 𝐿(𝑡) for
simplicity:

𝐾2 (𝑡) = −
𝛽 (2𝛽 + 1) (𝜇 − 𝑟)

2

4𝑟
[(𝑇 − 𝑡) −

1 − 𝑒
−2𝑟(𝑇−𝑡)

2𝑟
]

−
𝑚𝜇∞𝜂

𝑟
(𝑒
𝑟(𝑇−𝑡)

− 1) −
𝑚𝜎
2
∞

4𝑟
(1 − 𝑒

2𝑟(𝑇−𝑡)
) ,

𝐺 (𝑡, 𝑠) = 𝐾2 (𝑡) + 𝐿2 (𝑡) 𝑠
−2𝛽

.

(67)

Let 𝑇 = 𝑇 + (ln(𝑁𝑚) − ln 𝜃)/𝑟. So, in this case, the optimal
excess-of-loss reinsurance and investment policies are

(𝜋
∗
(𝑡) , 𝑎
∗
(𝑡)) =

{{

{{

{

(𝜋
∗
(𝑡) ,

𝜃𝑒
−𝑟(𝑇−𝑡)

𝑚
) , 0 ≤ 𝑡 < 𝑇,

(𝜋
∗
(𝑡) ,𝑁) , 𝑇 ≤ 𝑡 < 𝑇,

(68)

where 𝜋∗(𝑡) = ((2𝑟(𝜇−𝑟)+𝛽(𝜇−𝑟)
2
(1− 𝑒
−2𝑟(𝑇−𝑡)

))/2𝑟𝜎
2
𝑠
2𝛽
) ⋅

(𝑒
−𝑟(𝑇−𝑡)

/𝑚). And the corresponding value function has the
form 𝑉(𝑡, 𝑥, 𝑠) =

𝜆0 −
𝛾

𝑚
exp [−𝑚𝑥𝑒

𝑟(𝑇−𝑡)
+ 𝐾1 (𝑡) + 𝐿 (𝑡) 𝑠

−2𝛽
+ 𝑘] ,

0 ≤ 𝑡 < 𝑇,

𝜆0 −
𝛾

𝑚
exp [−𝑚𝑥𝑒

𝑟(𝑇−𝑡)
+ 𝐾2 (𝑡) + 𝐿 (𝑡) 𝑠

−2𝛽
] ,

𝑇 ≤ 𝑡 < 𝑇,

(69)
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,𝑠
)

𝑠
𝑡
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1

1.5
2

2.5
3

Figure 1: The surface of 𝜋∗(𝑡, 𝑠) with 𝑚 = 0.1, 𝜎 = 0.19, 𝑟 = 0.04,
𝜇 = 0.08, and 𝛽 = −1/3.

where choose 𝑘 in the way that 𝑉(𝑡, 𝑥, 𝑠) given by (69) is
continuous at 𝑇; that is,

𝑘 = 𝐾2 (𝑇) − 𝐾1 (𝑇) . (70)

Thus, we complete the proof.

Remark 11. From Theorem 9, we can see that the optimal
investment policy is independent of claim size distribution
𝐹 and the value of 𝑥 but is dependent on the value of the risk
asset price 𝑠 and time 𝑡.

5. Numerical Examples of the Optimal Policies

In this section, to give some intuitive interpretation of
optimal investment and reinsurance policies, we demonstrate
numerical examples of two main claim sizes distributions—
the exponential and uniformdistributions.We set the riskless
rate at 𝑟 = 0.04 per year, the mean excess returns at 𝜇 − 𝑟 =

0.04 per year, and the parameter 𝜎 in the expression of an
annual standard volatility at 0.19.The estimates of parameters
can be based on annual equity return on the stock price index.
We refer the readers to Chacko and Viceira [13] and Schroder
[14] and references therein.

Let the time horizon 𝑇 = 3 years be fixed. Because the
optimal investment policy is independent of claim size dis-
tribution, we firstly give the graph of the optimal investment
policies in Figure 1 with the risk aversion parameter 𝑚 = 0.1

and the elasticity parameter 𝛽 = −1/3.
From Figure 1, we can see that the effect of the risky

asset price on the optimal investment policies 𝜋
∗
(𝑡, 𝑠) is

relatively small. In practice, the optimal investment policy
is comparatively more responsive to changes of the mean
excess return and volatility of returns. We provide some
reports concerning the sensitivity to these parameterizations
in Figures 2 and 3.

𝜋
∗
(𝜎
)

15

10

5

0
0.1 0.15 0.2 0.25 0.3 0.35 0.4

𝜎

𝑚 = 0.75

𝑚 = 2.5
𝑚 = 10

Figure 2: The effect of 𝜎 on 𝜋
∗
(2, 5) with 𝛽 = −1/3.

𝜋
∗
(𝜇

−
𝑟)

55

50

45

40

35

30

25

20

15

10
0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

𝜇 − 𝑟

𝛽 = −1

𝛽 = −1/3

𝛽 = 0

Figure 3: The effect of 𝜇 − 𝑟 on 𝜋
∗
(2, 5) with𝑚 = 2.5.

Let time 𝑡 = 2 and the risky asset price 𝑠 = 5 are fixed. We
consider values of 𝜎 between 0.1 and 0.4, 𝜇 − 𝑟 = 0.04, and
𝛽 = −1/3 in Figure 2, and values of 𝜇 − 𝑟 between 0.04 and
0.2, 𝜎 = 0.19, and𝑚 = 2.5 in Figure 3.

Figure 2 shows that the optimal investment policy
decreases as the standard volatility increases. Moreover, a
higher level𝑚 yields a lower value of the optimal investment
policy, which is the natural consequence since the larger value
of𝑚means more risk aversion.

Figure 3 reports that the optimal investment policy
increases as the excess return 𝜇 − 𝑟 increases. The result also
shows that a higher elasticity parameter𝛽 yields a larger value
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𝜃/𝑚 = 2.2

𝑁 = +∞

𝜃/𝑚 = 0.5

𝑁 = +∞

2.2

2

1.8

1.6

1.4

1.2

1

0.8

0.6

0.4

𝑎
∗
(𝑡

)

𝑡

0 0.5 1 1.5 2 2.5 3

Figure 4: 𝑌 ∼ 𝑒(1), the optimal excess-of-loss reinsurance level
𝑎
∗
(𝑡) with 𝜃/𝑚 = 0.5, 2.2, respectively.

of the optimal investment policy. Especially, when𝛽 attains its
maximum 0, the model degenerates to a GBMmodel.

The following examples are about reinsurance policy.

Example 1. Assume that the claim size is a standard expo-
nential distribution, 𝐹(𝑦) = 𝑒

−𝑦, then 𝑁 = +∞. In this
case, 𝑁𝑚 > 𝜃 is always true. Thus, the optimal excess-of-
loss reinsurance level 𝑎∗(𝑡) = (𝜃/𝑚)𝑒

−𝑟(𝑇−𝑡) on [0, 𝑇]. Figure
4 presents the optimal excess-of-loss reinsurance level for
different 𝜃/𝑚 = 0.5, 2.2, respectively.

Example 2. Assume that the claim size is a uniform distri-
bution on (0, 2), then 𝑁 = 2. If 𝜃/𝑚 = 0.5, then 𝑁𝑚 > 𝜃.
Thus, 𝑎∗(𝑡) = (𝜃/𝑚)𝑒

−𝑟(𝑇−𝑡) on [0, 𝑇]. If 𝜃/𝑚 = 2.2, then
𝑁𝑚 < 𝜃.Thus, 𝑎∗(𝑡) = (𝜃/𝑚)𝑒

−𝑟(𝑇−𝑡) on [0, 0.617) and 𝑎
∗
(𝑡) =

2 on [0.617, 3]. Figure 5 presents the optimal excess-of-loss
reinsurance level for different 𝜃/𝑚 = 0.5, 2.2, respectively.

From Figure 5, we can see that if 𝜃/𝑚 = 2.2, the optimal
retention 𝑎

∗
(𝑡) is a linear increasing function with respect

to 𝑡 when 𝑡 ∈ [0, 0.617) and is flat for all 𝑡 ≥ 0.617. But,
in Figure 4, the optimal retention 𝑎

∗
(𝑡) is always a linear

increasing function with respect to 𝑡 since the potential
maximal value of the claim size 𝑌𝑖 is infinity.
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