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Abstract. The field of multi-stage stochastic programming provides a
rich modelling framework to tackle a broad range of real-world decision
problems. In order to numerically solve such programs - once they get
reasonably large - the infinite-dimensional optimization problem has to
be discretized. The stochastic optimization program generally consists of
an optimization model and a stochastic model. In the multi-stage case
the stochastic model is most commonly represented as a multi-variate
stochastic process. The most common technique to calculate an useable
discretization is to generate a scenario tree from the underlying sto-
chastic process. Scenario tree generation is examplified by reviewing one
specific algorithm based on multi-dimensional facility location applying
backward stagewise clustering.

1 Introduction

A large class of decision problems involve decision stages and uncertainty. Exam-
ples are multi-stage portfolio optimization or asset liability management prob-
lems, energy production models as well as models in telecommunication, trans-
portation, supply chain management (for a recent overview see [1]). A common
feature of these models is the fact that a stochastic process describing the uncer-
tain environment (asset prices, insurance claims, energy demand, communication
load and so on) is the most important part of the input data. Typically these
stochastic processes are estimated from historical data and calibrated using some
prior information. For the subsequent decision model however, one needs a nu-
merically tractable approximation, which is small enough to allow reasonable
calculation times and large enough to capture the important features of the
problem.

The main goal in modelling relevant stochastic process by scenario trees is
the following: assume that a discrete-time continuous space stochastic process
(ξt)t=0,1,2,...,T is given, where ξ0 = x0 represents the today’s value and is con-
stant. The distribution of this process may be the result of a parametric or
non-parametric estimation based on historical data. The state space may be
univariate (the R1) or multivariate (the Rk). We look for an approximate simple
stochastic process ξ̃t, which takes only finitely many values and which is as close
as possible to the original process (ξt) and at the same time has a predetermined
structure as a tree. Denote the finite state space of ξ̃t by St, i.e.

P{ξ̃t ∈ St} = 1.

Dagstuhl Seminar Proceedings 05031
Algorithms for Optimization with Incomplete Information
http://drops.dagstuhl.de/opus/volltexte/2005/61



Let c(t) = #(St) be the cardinality of St. We have that c(0) = 1. If x ∈ St, we
call the branching factor of x the quantity

b(x, t) = #{y : P{ξ̃t+1 = y|ξ̃t = x} > 0}.
In an obvious way, the process (ξ̃t)t=0,...,T may be represented as a tree, where
the root is (x0, 0) and the node (x, t) and (y, t + 1) is connected by an arc, if
P{ξ̃t = x, ξ̃t+1 = y} > 0. The collection of all branching factors b(x, t) determines
the size of the tree. Typically, we choose the branching factors beforehand and
independent of x. In this case, the structure of the tree is determined by the
vector [b(1), b(2), b(3), . . . , b(T )]. For example, a [5,3,3,2] tree has height 4 and
1 + 5 + 5 · 3 + 5 · 3 · 3 + 5 · 3 · 3 · 2 = 156 nodes. The number of arcs is always
equal the number of nodes minus 1.

The main approximation problem is an optimization problem of one of the
following types and is most often determined by the chosen scenario generation
method:

The given-structure problem. Which discrete process (ξ̃t), t = 0, . . . , T with
given branching structure [b(1), b(2), b(3), . . . , b(T )] is closest to a given process
(ξt), t = 0, . . . , T? The notion of closeness has to be defined in an appropriate
manner.

The free-structure problem. Here again the process (ξt), t = 0, . . . , T has to
be approximated by (ξ̃t), t = 0, . . . , T , but its branching structure is free
except for the fact that the total number of nodes is predetermined. This
hybrid combinatorial optimization problem is more complex than the given-
structure problem.

A summary of this methods developed until 2000 can be found in [2]. Meth-
ods published since include [3][4] for moment matching strategies, [5][6][7] for
probability metric minimization and [8][9] for an integration quadratures ap-
proach.

A methodology to compute valuable discretizations based on probability met-
ric minimization is the so called stagewise backward (tree) clustering, which is
based on a set of simulated underlying paths and generates the necessary tree
for optimization purposes. Table 1 summarizes this algorithm for the univariate
case with T stages (root t = 0) and n1, n2, . . . , nT nodes per stage.

Future research includes setting up an integrated framework to compare and
test different scenario generation methodologies.
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1 Cluster nT centers in RT with distance d(·)
2 Pop T th component of clusters, i.e. RT → RT−1

¤ Backward distance minimization
3 for i ← T − 1 downto 1 do
4 Cluster ni centers in Ri with distance d(·)
5 Pop ith component of cluster ∀ clusters
6 end for

¤ Forward tree buildup
7 for i ← 1 to T do
8 Push ith component to cluster ∀ clusters
9 end for

Table 1. Algorithm

4. Høyland, K., Kaut, M., Wallace, S.: A heuristic for moment-matching scenario
generation. Computational Optimization and Applications 24 (2003) 169–185

5. Pflug, G.C.: Scenario tree generation for multiperiod financial optimization by
optimal discretization. Mathematical Programming, Series B 89 (2001) 251–257

6. Heitsch, H., Römisch, W.: Scenario reduction algorithms in stochastic programming.
Computational Optimization and Applications 24 (2003) 187–206

7. Dupacova, J., Groewe-Kuska, N., Römisch, W.: Scenario reduction in stochastic
programming: An approach using probability metrics. Mathematical Programming,
Series A 95 (2003) 493–511

8. Pennanen, T.: Epi-convergent discretizations of multistage stochastic programs.
Mathematics of Operations Research 30 (2005) 245–256

9. Pennanen, T., Koivu, M.: Epi-convergent discretizations of stochastic programs via
integration quadratures. Numerische Mathematik. to appear. (2005)

3


