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Abstract. Minimizing VaR, as estimated from a set of scenarios, is a diffi-
cult integer programming problem. Solving the problem to optimality may

demand using only a small number of scenarios, which leads to poor out-of-

sample performance. A simple alternative is to minimize CVaR for several
different quantile levels and then to select the optimized portfolio with the

best out-of-sample VaR. We show that this approach is both practical and

effective, outperforming integer programming and an existing VaR minimiza-
tion heuristic. The CVaR quantile level acts as a regularization parameter and,

therefore, its ideal value depends on the number of scenarios and other problem

characteristics.

1. Introduction. Minimizing a portfolio’s Value-at-Risk (VaR) is a challenging
optimization problem. One reason for this is that, aside from certain special cases,
such as when losses are elliptically distributed, VaR is not a simple function of the
positions in the portfolio. As a result, it is common practice to approximate the
portfolio’s loss distribution with a finite number of scenarios, and to optimize the
VaR as estimated from this sample. Obtaining an accurate risk estimate, so that
the optimized portfolio performs well on an out-of-sample basis, may demand an
extremely large number of scenarios. This in itself is not necessarily problematic;
optimizing other risk measures, such as the conditional VaR (CVaR), i.e., the av-
erage loss exceeding the VaR, also requires scenario approximation. However, VaR
presents an additional challenge in that minimizing its estimator, the sample quan-
tile, entails integer programming. This makes it increasingly difficult to find an
optimal solution as the number of scenarios increases, so that this approach offers
limited practical benefit. In contrast, CVaR optimization is a linear program, which
can be solved much more readily. This computational advantage motivates using
CVaR as a substitute, or proxy, for VaR in optimization problems.1

Further justification for optimizing CVaR in place of VaR stems from the fact
that, for a given quantile level α, CVaR is an upper bound for VaR, i.e., CVaRα ≥
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90C20, 90C11, 65K05.
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1 Unlike CVaR, VaR generally is not subadditive, and thus only the former is a coherent risk

measure [4]. While this makes CVaR preferable to VaR on theoretical grounds, herein we consider
only their computational aspects, rather than their respective merits as risk measures per se. For
discussion of the latter see, for example, Acerbi and Tasche [1] and Dańıelsson et al. [6].

1109

http://dx.doi.org/10.3934/jimo.2014.10.1109


1110 HELMUT MAUSSER AND OLEKSANDR ROMANKO

VaRα.2 Thus, one way to reduce VaR is simply to minimize its upper bound; intu-
itively, a portfolio that minimizes CVaRα will also tend to have a low, if not minimal,
VaRα (see, for example, Rockafellar and Uryasev [17], Natarajan et al. [13]).

While minimizing an upper bound for VaR has a certain appeal, there is no
reason to limit the CVaR quantile level only to α. A more general approach is
to optimize CVaRα′ for several quantile levels, αmin ≤ α′ ≤ αmax, and then to
select the optimized portfolio having the lowest VaRα. For example, Mausser and
Rosen [12] used 95% ≤ α′ ≤ 99.9% in order to minimize VaRα, for α = 99% and
99.9%, with 20000 scenarios. However, they reported only in-sample results, making
it impossible to assess the true performance of the CVaR proxies. Pagnoncelli et
al. [15] considered a portfolio optimization problem with a chance-constraint, in the
form of an upper bound for VaR. They used CVaR proxies with 80% ≤ α′ ≤ 97%
to bound VaR0.90 with a scenario approximation of size 5000. Their results showed
that, for α′ in this range, the optimized portfolios were typically too conservative,
i.e., on an out-of-sample basis, their VaR0.90 was usually below the upper bound.

Given these rather limited studies, questions remain about the effectiveness of
using CVaR proxies in practice. Thus, one goal of this paper is to compare this
approach, on both an in-sample and out-of-sample basis, with other scenario-based
techniques for minimizing VaR. Specifically, we consider integer programming, sub-
ject to a computational time limit, as well as a heuristic procedure proposed by
Larsen et al. [9]. The heuristic also makes use of CVaR proxies but allows certain
scenarios to have arbitrarily large losses (by excluding them from the CVaR calcu-
lation). This is consistent with the fact that the VaR measure ignores the sizes of
the losses that exceed the quantile while CVaR does not.

Additionally, this paper examines the relationship between the CVaR quantile
level and the quality of the proxy. Since it is not possible, as far as we know, to
determine the best quantile level for a given problem a priori, a trial-and-error ap-
proach that evaluates several different values of α′ remains necessary in practice.
A better understanding of the interplay between the CVaR quantile level, prob-
lem characteristics and performance, can help to identify good candidates for α′.
In particular, we study how the portfolio loss distribution and the number of sce-
narios affect the best-performing CVaR quantile level. Similar investigations have
been conducted previously in slightly different contexts. For example, when solving
chance-constrained problems, the specified constraint violation probability needs to
be chosen in accordance with the size of the scenario approximation (Luedtke and
Ahmed [10], Pagnoncelli et al. [16]).3 Recently, Mausser and Romanko [11] showed
that CVaRα′ is an effective proxy for minimizing CVaRα, where α′ ≤ α and α′

approaches α as the number of scenarios increases. Note that in the case of CVaRα,
the proxy was chosen purely to improve out-of-sample performance, rather than for
computational reasons.

The layout of this paper is as follows. Section 2 describes the estimators for VaR
and CVaR. Section 3 formulates the VaR and CVaR optimization problems and

2 Nemirovski and Shapiro [14] show that CVaRα is, in fact, the best conservative convex ap-

proximation to VaRα.
3 This approach, which effectively uses VaRα′ (rather than CVaRα′ ) as a proxy for VaRα, still

requires solving integer programs. Thus, its applicability to financial risk management, where
problems typically entail a large number of scenarios, is rather limited in practice.
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explains the heuristic procedure of Larsen et al. [9]. The results of our computa-
tional experiments are reported in Section 4. Finally, Section 5 contains concluding
remarks.

2. Estimators of VaR and CVaR. Let the continuous random variable L, having
distribution function F , denote the proportion of a portfolio’s value that is lost over
a given time horizon, i.e., L represents the “loss return”, or the negative of the
typical return.4 VaRα is the loss that is exceeded with probability 1− α, i.e.,

P(L > VaRα) = 1− α, (1)

or, equivalently, VaRα = F−1(α). CVaRα is the expected loss given that it exceeds
VaRα, i.e.,

CVaRα = E(L |L > VaRα). (2)

More generally, for continuous or discrete random variables, the respective defi-
nitions are

VaRα := inf {x ∈ R |P(L > x) ≤ 1− α} (3)

and (see, for example, Acerbi and Tasche [2], Rockafellar and Uryasev [18])

CVaRα :=
1

1− α
[E(L |L ≥ VaRα)−VaRα · (P(L ≥ VaRα)− 1 + α)] . (4)

Consider a sample of N losses, drawn randomly from F . Let `(k) denote the kth

order statistic of the sample losses, so that `(1) ≤ `(2) ≤ . . . ≤ `(N). A common
estimator of VaRα, consistent with Equation 3, is the sample α-quantile

qα,N = `(dNαe), (5)

where dxe is the smallest integer greater than or equal to x. It follows that in a
sample of size N , the loss exceeds qα,N in no more than bN(1−α)c scenarios, where
bxc is the integer part of x. From Equation 4, an estimator of CVaRα is

hα,N =
1

N(1− α)

(dNαe −Nα) `(dNαe) +

N∑
k=dNαe+1

`(k)

 , (6)

or equivalently,

hα,N =
1

1− α

∫ 1

α

qp,Ndp. (7)

For example, suppose N = 100 and that the three largest losses are `(98) = 0.42,
`(99) = 0.44 and `(100) = 0.50. The respective estimates of VaR0.98 and CVaR0.98

are q0.98,100 = `(98) = 0.42 and h0.98,100 = (`(99) + `(100))/2 = 0.47. Conversely,
estimates of VaR0.975 and CVaR0.975 are q0.975,100 = `(98) = 0.42 and h0.975,100 =
(`(98) + 2`(99) + 2`(100))/5 = 0.46, respectively. Note that, under mild conditions,
both qα,N and hα,N are consistent and asymptotically unbiased (Arnold et al. [3],
Brazauskas et al. [5]).

4 We use this convention so that losses are positive rather than negative.
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3. Problem formulations. Let w = {wj , j = 1, . . . , J} denote a portfolio of J
assets, where wj is the weight of asset j, and suppose that the asset returns, r,
follow the continuous multivariate distribution Ψ. If the return of asset j is rj then
the portfolio’s loss is

L(w) =

J∑
j=1

−rjwj . (8)

The actual VaR of portfolio w is denoted VaRα(w,Ψ), explicitly recognizing its
dependence on the asset weights and the joint asset returns.

Let Ω ⊆ RJ be the set of acceptable portfolios. For example, Ω may comprise
only portfolios with no short positions, or those for which no stock represents more
than 5% of the total value. We assume that Ω is convex, specifically, that it is
defined by one or more linear constraints, i.e., Ω = {w ∈ RJ |Aw ≤ b} for some
matrix A and vector b. Our goal is to find w∗ ∈ Ω for which VaRα(w∗,Ψ) is
minimal, i.e., w∗ is a solution to the optimization problem

min
w

VaRα(w,Ψ)

s.t. w ∈ Ω.
(9)

If Ψ is a multivariate elliptical distribution, such as the normal, then VaRα(w,Ψ)
can be expressed in terms of the means and covariances of the asset returns. Specif-
ically, if r ∼ EJ(r,Σ, φ) and each rj has finite variance then Problem 9 becomes

min
w

−rTw + Zα
√
wTΣw

s.t. w ∈ Ω,
(10)

where Zα is the α-quantile of the standardized distribution. Problem 10 can be
solved efficiently using second order conic programming (SOCP).

In practice, however, solving Problem 9 often is complicated by the fact that
Ψ is unavailable in closed-form, or results in a computationally complex objective
function. In light of this, suppose that we generate a sample So comprising N
random observations (scenarios) from Ψ. If rij is the return of asset j in scenario i
then the associated loss return of the portfolio w is

`i(w, S
o) =

J∑
j=1

−rijwj . (11)

We then minimize qα,N (w, So), an estimate of VaRα(w,Ψ), by solving the fol-
lowing scenario approximation to Problem 9

min
w,q,z

q

s.t. `i(w, S
o)−Mzi − q ≤ 0, i = 1, . . . , N

N∑
i=1

zi ≤ bN(1− α)c

zi ∈ {0, 1}, i = 1, . . . , N
w ∈ Ω.

(12)

Observe that the binary variable zi = 1 if the loss exceeds q in scenario i (M is a
suitably large constant that bounds the excess loss). It is apparent that q will take
on the smallest possible value that is exceeded in at most bN(1 − α)c scenarios,
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which is consistent with minimizing the sample α-quantile. Problem 12, a mixed-
integer program (MIP) with N binary variables, becomes increasingly difficult to
solve as the number of tail scenarios, bN(1− α)c, increases.

Let w∗(qα,N , S
o) identify the optimal solution to Problem 12. The in-sample risk

of this portfolio is qα,N (w∗(qα,N , S
o), So) while its actual risk is

VaRα(w∗(qα,N , S
o),Ψ). Typically, instances of Problem 12 that can be solved

optimally require N to be so small that the inherent estimation error limits the
usefulness of the results, i.e., qα,N (w∗(qα,N , S

o), So) is extremely small but
VaRα(w∗(qα,N , S

o),Ψ) is much larger than VaRα(w∗,Ψ).
When CVaRα′ is used as a proxy for VaRα, we minimize hα′,N (w, So) by solving

the following scenario approximation problem (Rockafellar and Uryasev [17])

min
w,u,y

u+
1

N(1− α′)

N∑
i=1

yi

s.t. `i(w, S
o)− u− yi ≤ 0, i = 1, . . . , N

yi ≥ 0, i = 1, . . . , N
w ∈ Ω.

(13)

Note that u is effectively an estimate of VaRα′ while yi is the amount, if any,
by which the loss return exceeds the estimated VaRα′ in scenario i. Problem 13
is a linear optimization problem. While the solution time increases with N ,
it does so much more slowly than for Problem 12, so that Problem 13
can be solved efficiently even for large sample sizes. The in-sample VaR of the
resulting optimal portfolio w∗(hα′,N , S

o) is qα,N (w∗(hα′,N , S
o), So) and its

actual VaR is VaRα(w∗(hα′,N , S
o),Ψ). The proxy is said to be effective if

VaRα(w∗(hα′,N , S
o),Ψ) < VaRα(w∗(qα,N , S

o),Ψ).
To highlight the differences between the VaR and CVaR scenario approximation

problems, suppose N = 100 and α = α′ = 95%. In this case, Problem 12 allows five
losses to be arbitrarily large while minimizing the sixth-largest loss. In contrast,
Problem 13 minimizes the average of the five largest losses. Clearly, reducing the
five largest losses tends (indirectly) to lower the sixth-largest loss as well, so that
h0.95,100 is an intuitively appealing proxy for q0.95,100.

Since the VaR measure is indifferent to the sizes of losses that exceed the quantile,
one might expect further reductions in the VaR, i.e., the sixth-largest loss, to be
obtained if the CVaR problem ignores the magnitudes of the five largest losses.
This motivates the VaR minimization heuristic of Larsen et al. [9], which iteratively
constructs a set of “inactive” scenarios from the initial sample So, whose losses are
allowed to become arbitrarily large, while minimizing CVaR at a specified quantile
level for the remaining “active” scenarios. In each iteration, a constant proportion,
0 < ξ ≤ 1, of the active scenarios whose losses exceed the current VaR estimate is
discarded, or made inactive. The process terminates when no more active scenarios
can be discarded.

More precisely, to minimize VaRα, the heuristic first solves Problem 13 with
α′ = α to obtain an initial solution w∗0 ≡ w∗(hα,N , S

o). In iteration k > 0, So

is partitioned into sets of active (Sok) and inactive (S̄ok) scenarios, of size Nk and
N −Nk, respectively, where Nk = bN(α+ (1−α)(1− ξ)k)c. The inactive scenarios
are those in which w∗k−1, the solution from iteration k−1, incurs the N−Nk largest
losses. The algorithm then minimizes hαk,Nk

(w, Sok) for some quantile level αk by
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solving

min
w,u,y,γ

u+
1

Nk(1− αk)

Nk∑
i=1

yi

s.t. `i(w, S
o
k)− u− yi ≤ 0, i = 1, . . . , Nk

yi ≥ 0, i = 1, . . . , Nk
`i(w, S

o
k) ≤ γ, i = 1, . . . , Nk

`i(w, S̄
o
k) ≥ γ, i = Nk + 1, . . . , N

w ∈ Ω,

(14)

where the variable γ is a loss threshold which ensures that no active scenario incurs
a loss return greater than that of any inactive scenario.

The quantile level αk in Problem 14 is chosen so that the CVaR of w∗k−1, as
estimated from the active scenarios in iteration k, is as close as possible to VaRα of
w∗k−1, as estimated from the full sample, i.e., hαk,Nk

(w∗k−1, S
o
k) ≈ qα,N (w∗k−1, S

o).
Since qα,N (w∗k, S

o) may increase as k increases (i.e., solutions are not guaranteed to
improve monotonically), the heuristic simply returns the best solution encountered.5

Note that no iterations are performed if N(1 − α) < 1, as no scenarios can be
discarded in this case. Otherwise, the heuristic performs a total of K iterations
after solving the initial problem, where

K =

 1 if ξ = 1 or N(1− α) = 1,⌈
ln (dNαe+ 1−Nα)− ln (N(1− α))

ln(1− ξ)

⌉
otherwise.

(15)
It follows that K increases with N and decreases with α and ξ. Larsen et al. [9]

found that the in-sample solution quality improves as more iterations are performed,
i.e., as ξ decreases.

While Problem 13 and Problem 14 both minimize CVaR, the former has some
computational advantages. First, since there is no need to distinguish active and
inactive scenarios, Problem 13 does not require the additional N constraints (in-
volving γ), making it only about half the size of Problem 14. Second, both the
heuristic and the CVaR proxy approaches typically require solving a sequence of
optimization problems with different quantile levels. Since instances of Problem 13
differ only in terms of α′, while successive iterations of the heuristic modify αk as
well as the sets Sok and S̄ok in Problem 14, it is somewhat easier to “warm start” an
optimization with an existing solution in the former case.

4. Numerical experiments. For evaluation purposes, we optimized two portfo-
lios of international stocks, selected based on historical data from Reuters Data
Scope Select (DSS). Consideration was given only to those stocks having

• a complete set of monthly data from January 2003 to June 2010 (i.e., 90 months
of data);

• a share price of at least 1 USD throughout the entire period;
• a market capitalization of at least 50 million USD throughout the entire pe-

riod.

5 The procedure described refers to Algorithm A2 in Larsen et al. [9]. A related procedure,
Algorithm A1, was found to be less effective both in the original paper and in our computational

experiments, and therefore is not discussed herein.
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Table 1. Historical return data and simulation errors.

Returns Mean Std Dev Skewness Kurtosis Correlation

Normal

Historical Average 0.0103 0.0897 0.0135 3.0249 0.1984

Historical Minimum -0.0073 0.0371 -0.1300 2.7374 -0.3054

Historical Maximum 0.0397 0.1996 0.1263 3.2582 0.8009

Largest Error 6.71E-09 9.74E-08 1.40E-06 3.18E-06 5.71E-04

Non-Normal

Historical Average 0.0102 0.1272 -0.9424 15.3818 0.1672

Historical Minimum -0.0106 0.0455 -3.0507 13.5686 -0.4194

Historical Maximum 0.0397 0.3134 2.7327 17.6680 0.9022

Largest Error 2.44E-08 1.59E-07 1.67E-06 2.58E-05 1.16E-01

We first computed monthly USD returns for all candidates, thereby capturing
the effects of both equity and currency risks. Two sets of 100 stocks then were
selected based on the degree of normality of their returns:

• “normal” stocks have Jarque-Bera statistics between 0 and 0.27 (p-values, as
tabulated by Wuertz and Katzgraber [19], above 0.85);

• “non-normal” stocks have Jarque-Bera statistics between 500 and 822 (p-
values below 0.0001).

We generated scenarios of joint returns for each set of 100 stocks, consistent
with the historical moments and correlations, using the procedure of Høyland et
al. [8].6 For normal stocks, root mean squared error tolerances were 0.001 for
the moments and 0.001 for the correlations. In the non-normal case, we found
that the procedure did not converge (i.e., did not produce a valid sample) if the
correlation tolerance was 0.001. Therefore, we specified error tolerances of 0.001 for
the moments and 0.1 for the correlations, and then simply discarded samples whose
correlation error exceeded 0.02. A total of 1.5 million scenarios were generated in
each case; 25 samples of size 20000 were designated scenario approximations for
optimization purposes while the other one million scenarios were taken to represent
the “true” (out-of-sample) asset return distribution Ψ, i.e., VaRα(w,Ψ) is given by
the sample α-quantile from the one million scenarios.

Table 1 shows the statistical properties of the historical returns along with the
largest simulation errors, computed as the maximum difference between a historical
statistic and the corresponding out-of-sample statistic, for any stock. The results
indicate that the scenarios are consistent with historical observations. Clearly, any
portfolio of normal stocks will have a loss distribution that is close to normal, while
this will not necessarily be true for non-normal stock portfolios.

Our goal is to find portfolios that minimize the out-of-sample VaR at quantile
levels α = 90%, 95%, 99% and 99.9%, subject to there being no short positions,
i.e.,

Ω :=

w ∈ R100 :

100∑
j=1

wj = 1, wj ≥ 0 for j = 1, . . . , 100

 . (16)

We considered scenario approximations of size N = 1000, 5000, 10000 and 20000.
Thus, each sample of 20000 scenarios (recall that there are 25 such samples for
both normal and non-normal returns), gives rise to 16 VaR minimization problems,
corresponding to all possible combinations of sample sizes and quantile levels. Note

6 The source code was downloaded from http://work.michalkaut.net.

http://work.michalkaut.net


1116 HELMUT MAUSSER AND OLEKSANDR ROMANKO

Table 2. Normal and out-of-sample VaR in basis points.

α (%)

90 95 99 99.9

Normal VaR 189.45 269.72 416.59 578.58

Out-of-sample VaR 189.98 270.02 415.50 574.12

that a scenario approximation of size N was obtained by selecting the first N
scenarios from the sample.

For each α and N , we performed the following optimizations:7

1. Minimize qα,N (w, So) by solving Problem 12 subject to a 30 minute time
limit;

2. Minimize qα,N (w, So) by applying the heuristic with ξ = 1.0, 0.5 and 0.1;
3. Minimize hα′,N (w, So) by solving Problem 13 for α′ = 50%, 50.1%, . . . , 99.9%,

i.e., 500 quantile levels in total.

The in-sample and out-of-sample VaR were recorded for each optimized portfolio,
and the results were averaged over 25 trials.

4.1. Normal returns. First, consider the portfolio of stocks with (almost) normal
returns. Since the deviation from multivariate normality is small, in addition to
using scenario approximation we also solved Problem 10 with r and Σ computed
from the historical returns and Zα given by the standard normal α-quantile. Table 2
shows that for the resulting optimal portfolios, the normal, historical VaR agrees
well with the true VaR as computed from the one million out-of-sample scenarios.

Table 3 reports the average in-sample VaR of portfolios obtained by minimizing
qα,N (w, So) using the MIP formulation and the heuristic, as well as minimizing the
CVaR proxy hα′,N (w, So) at quantile levels α′ = α, α+ and α∗, where

• α corresponds to the standard CVaR upper bound for VaR;
• α+ yields the lowest average in-sample VaR of all α′ considered;
• α∗ yields the lowest average out-of-sample (actual) VaR of all α′ considered.

By definition, solving the MIP must yield the lowest in-sample VaR for a given
problem (since this approach minimizes the sample α-quantile directly). As seen
in Table 3, this is the case whenever a near-optimal MIP solution can be obtained
within the 30 minute time limit, i.e., generally, when the number of tail scenarios,
N(1− α), is sufficiently small. When the MIP solution is of poor quality, the best
in-sample result is obtained by the heuristic procedure with ξ = 0.1.

Minimizing the upper bound hα,N (w, So) consistently fails to match the per-
formance of the heuristic on an in-sample basis. Even the best in-sample CVaR
proxy, hα+,N (w, So), yields solutions whose quality is comparable only to that of
the poorest heuristic solutions (ξ = 1.0). Evidently, iteratively discarding scenarios
is critical for reducing the in-sample VaR.

On an out-of-sample basis, however, the results are markedly different (Table 4).
Now, the best CVaR proxy, hα∗,N (w, So), always outperforms the MIP and the
heuristic methods (note that no single value of ξ consistently yields the best heuris-
tic result). Moreover, simply minimizing the upper bound also outperforms these
methods unless N(1−α) is small. When N = 20000, the best proxy results almost

7 The optimizations were performed using the CPLEXr solver version 12.3 on a server with
8 Quad-Core AMD Opteron Processors 8356 (32 cores in total) and 256 Gb of RAM. Four threads

were used for solving all problems and CPLEX parameters remained at their default values.
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Table 3. In-sample VaR in basis points (percentage difference
from upper bound minimization in parenthesis) for normal returns.
Shading identifies the best results.

α (%) Method
N

1000 5000 10000 20000

90

MIP 168.27 (-10.2) 212.51 (11.5) 217.12 (13.6) 217.06 (13.6)

Heur (ξ = 0.1) 143.81 (-23.3) 173.47 (-9.0) 179.65 (-6.0) 183.63 (-3.9)

Heur (ξ = 0.5) 150.57 (-19.7) 178.77 (-6.2) 184.33 (-3.5) 187.15 (-2.0)

Heur (ξ = 1.0) 174.09 (-7.1) 187.55 (-1.6) 189.74 (-0.7) 190.17 (-0.4)

CVaR(α) 187.43 (0.0) 190.64 (0.0) 191.08 (0.0) 191.01 (0.0)

CVaR(α+) 174.29 (-7.0) 187.65 (-1.6) 189.26 (-1.0) 189.46 (-0.8)

CVaR(α∗) 182.96 (-2.4) 188.28 (-1.2) 189.41 (-0.9) 189.86 (-0.6)

95

MIP 214.22 (-18.9) 285.04 (5.2) 296.32 (9.8) 298.97 (10.5)

Heur (ξ = 0.1) 216.58 (-18.0) 250.02 (-7.7) 256.33 (-5.1) 261.36 (-3.4)

Heur (ξ = 0.5) 223.71 (-15.3) 254.35 (-6.1) 259.94 (-3.7) 264.60 (-2.2)

Heur (ξ = 1.0) 245.86 (-6.9) 266.15 (-1.8) 267.41 (-1.0) 269.43 (-0.4)

CVaR(α) 264.01 (0.0) 270.98 (0.0) 269.99 (0.0) 270.56 (0.0)

CVaR(α+) 244.28 (-7.5) 265.40 (-2.1) 267.21 (-1.0) 268.90 (-0.6)

CVaR(α∗) 261.13 (-1.1) 267.81 (-1.2) 268.22 (-0.7) 269.51 (-0.4)

99

MIP 314.74 (-17.5) 389.45 (-5.2) 434.89 (4.7) 451.78 (8.6)

Heur (ξ = 0.1) 320.15 (-16.0) 376.62 (-8.3) 390.40 (-6.1) 398.80 (-4.1)

Heur (ξ = 0.5) 337.21 (-11.6) 381.31 (-7.1) 394.02 (-5.2) 402.50 (-3.3)

Heur (ξ = 1.0) 351.43 (-7.8) 398.57 (-2.9) 407.75 (-1.9) 411.99 (-1.0)

CVaR(α) 381.30 (0.0) 410.67 (0.0) 415.54 (0.0) 416.06 (0.0)

CVaR(α+) 348.11 (-8.7) 398.19 (-3.0) 407.31 (-2.0) 411.11 (-1.2)

CVaR(α∗) 403.40 (5.8) 413.98 (0.8) 416.23 (0.2) 415.46 (-0.1)

99.9

MIP 383.01 (-5.9) 475.55 (-9.7) 503.84 (-9.1) 535.63 (-4.8)

Heur (ξ = 0.1) 402.52 (-1.1) 490.90 (-6.8) 505.58 (-8.8) 522.91 (-7.1)

Heur (ξ = 0.5) 402.52 (-1.1) 502.76 (-4.6) 520.40 (-6.2) 528.57 (-6.1)

Heur (ξ = 1.0) 402.52 (-1.1) 511.70 (-2.9) 530.68 (-4.3) 546.99 (-2.8)

CVaR(α) 406.89 (0.0) 526.91 (0.0) 554.51 (0.0) 562.91 (0.0)

CVaR(α+) 400.66 (-1.5) 501.66 (-4.8) 527.03 (-5.0) 547.15 (-2.8)

CVaR(α∗) 536.20 (31.8) 570.09 (8.2) 568.94 (2.6) 570.53 (1.4)

match those obtained by minimizing the normal, historical VaR (see Table 2); the
discrepancy ranges from 0.07% for α = 90% to 0.59% for α = 99.9%.

To clarify these results, Figure 1 plots the average in-sample and out-of-sample
VaR at the 99% quantile level against the number of scenarios for the various
methods (to improve readability, we exclude the results of the heuristic with ξ = 0.5
and 1.0). For all methods, the difference between the in-sample and out-of-sample
VaR declines as N increases; intuitively, the approximation to the true loss return
distribution improves with more scenarios.

Perhaps surprisingly, a lower in-sample VaR generally implies a higher out-of-
sample VaR (with the exception of the MIP solutions for large N). This can be
attributed to the optimization exploiting the idiosyncracies of the scenarios, essen-
tially overfitting the data in order to obtain the best possible objective function
value. In other words, when N(1− α) is relatively small, an in-sample VaR that is
“too good” indicates that the optimization has seized upon sampling errors in the
scenario approximation, which degrades out-of-sample performance.
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Table 4. Out-of-sample VaR in basis points (percentage difference
from upper bound minimization in parenthesis) for normal returns.
Shading identifies the best results.

α (%) Method
N

1000 5000 10000 20000

90

MIP 214.80 (7.3) 212.38 (10.0) 216.19 (12.4) 216.80 (13.1)

Heur (ξ = 0.1) 208.66 (4.2) 195.62 (1.4) 193.27 (0.5) 191.65 (0.0)

Heur (ξ = 0.5) 205.28 (2.5) 194.04 (0.5) 192.31 (0.0) 191.45 (-0.1)

Heur (ξ = 1.0) 203.04 (1.4) 193.81 (0.4) 192.58 (0.2) 191.91 (0.1)

CVaR(α) 200.26 (0.0) 193.00 (0.0) 192.25 (0.0) 191.66 (0.0)

CVaR(α+) 199.39 (-0.4) 192.08 (-0.5) 190.51 (-0.9) 190.36 (-0.7)

CVaR(α∗) 196.67 (-1.8) 191.25 (-0.9) 190.50 (-0.9) 190.11 (-0.8)

95

MIP 296.68 (3.4) 290.73 (5.9) 295.84 (8.6) 299.16 (10.1)

Heur (ξ = 0.1) 294.43 (2.6) 277.83 (1.2) 274.45 (0.7) 272.55 (0.3)

Heur (ξ = 0.5) 290.53 (1.2) 275.63 (0.4) 273.18 (0.2) 271.74 (0.0)

Heur (ξ = 1.0) 290.15 (1.1) 275.62 (0.4) 273.22 (0.3) 272.00 (0.1)

CVaR(α) 286.97 (0.0) 274.49 (0.0) 272.52 (0.0) 271.63 (0.0)

CVaR(α+) 284.88 (-0.7) 273.85 (-0.2) 272.31 (-0.1) 270.87 (-0.3)

CVaR(α∗) 278.97 (-2.8) 272.04 (-0.9) 270.79 (-0.6) 270.27 (-0.5)

99

MIP 458.56 (-1.3) 437.49 (2.1) 438.48 (3.7) 451.62 (7.5)

Heur (ξ = 0.1) 457.00 (-1.6) 431.11 (0.6) 426.30 (0.8) 422.59 (0.6)

Heur (ξ = 0.5) 462.04 (-0.5) 430.07 (0.4) 425.04 (0.5) 421.02 (0.2)

Heur (ξ = 1.0) 465.53 (0.2) 430.87 (0.6) 424.47 (0.3) 421.05 (0.2)

CVaR(α) 464.45 (0.0) 428.47 (0.0) 423.02 (0.0) 420.12 (0.0)

CVaR(α+) 455.26 (-2.0) 427.22 (-0.3) 422.30 (-0.2) 419.82 (-0.1)

CVaR(α∗) 431.59 (-7.1) 420.21 (-1.9) 418.23 (-1.1) 417.02 (-0.7)

99.9

MIP 644.85 (-1.8) 610.26 (-3.3) 602.72 (-2.0) 596.17 (-0.9)

Heur (ξ = 0.1) 651.80 (-0.7) 614.87 (-2.6) 602.78 (-2.0) 595.50 (-1.0)

Heur (ξ = 0.5) 651.80 (-0.7) 626.68 (-0.7) 609.72 (-0.8) 596.48 (-0.8)

Heur (ξ = 1.0) 651.80 (-0.7) 633.80 (0.4) 612.57 (-0.4) 600.75 (-0.1)

CVaR(α) 656.66 (0.0) 631.34 (0.0) 614.83 (0.0) 601.46 (0.0)

CVaR(α+) 647.90 (-1.3) 615.49 (-2.5) 601.23 (-2.2) 590.84 (-1.8)

CVaR(α∗) 600.54 (-8.5) 583.23 (-7.6) 579.64 (-5.7) 577.49 (-4.0)

Conversely, a solution with an extremely poor in-sample VaR is also undesirable,
as this suggests that the optimization has failed to structure the portfolio in a
beneficial manner. This is apparent in the MIP solutions for N = 10000 and
N = 20000, where the 30 minute time limit prevents finding a solution of sufficiently
high quality.

Evidently, the best out-of-sample results are associated with solutions whose in-
sample VaR is “good, but not too good”, i.e., the optimized portfolio is structured
to have a low VaR, without being overly tuned to a particular scenario approxima-
tion. This suggests that the optimization should be restrained, or dampened, as
necessary to account for the level of sampling error in the scenario approximation.
The standard way to do this is through regularization, which may involve shrink-
age estimators or adding constraints to the problem (see, for example, DeMiguel et
al. [7]). Our experiments indicate that a similar effect can be obtained by modifying
parameters of the solution algorithm (e.g., decreasing the time limit for the MIP
solver, increasing ξ for the heuristic) or by using a CVaR proxy.
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in-sample and out-of-sample VaR declines as N increases; intuitively, the approximation to the true 
loss return distribution improves with more scenarios.  
 

310

330

350

370

390

410

430

450

470

0 5000 10000 15000 20000

V
aR

 9
9
%

N

MIP (In)

Heur 0.1 (In)

CVaR(a) (In)

CVaR(a+) (In)

CVaR(a*) (In)

MIP (Out)

Heur 0.1 (Out)

CVaR(a) (Out)

CVaR(a+) (Out)

CVaR(a*) (Out)

MIP - In
Heur ( = 0.1) - In
CVaR () - In
CVaR () - In
CVaR (*) - In
MIP - Out
Heur ( = 0.1) - Out
CVaR () - Out
CVaR (+) - Out
CVaR (*) - Out

 

Figure 1: In- and out-of-sample VaR (basis points) as a function of sample size. 
Figure 1. In- and out-of-sample VaR (basis points) as a function
of sample size.

Table 5. α+ and α∗ (%) for normal returns.

α
α+ α∗

N = 1000 N = 5000 N = 10000 N = 20000 N = 1000 N = 5000 N = 10000 N = 20000

90 88.5 84.9 75.8 80.4 72.6 76.6 73.6 73.4

95 93.7 94.0 94.4 92.3 81.0 85.5 85.5 86.3

99 98.0 98.7 98.8 98.9 85.4 91.0 93.5 94.6

99.9 99.3 99.7 99.8 99.8 86.7 92.2 97.2 96.9

When using a CVaR proxy, the quantile level α′ effectively controls the amount of
dampening. Thus, the proxy quantile level that performs best on an out-of-sample
basis, α∗, depends on the amount of sampling error in the scenario approximation.
As shown in Table 5, α∗ is always less than α, the VaR quantile level, and it tends
to increase with N , the number of scenarios (i.e., α∗ becomes larger as the sampling
error declines).8

For normal distributions, it is possible to compute the limiting value of α∗ as
N →∞. Recall that if losses are normally distributed then both VaR and CVaR can
be expressed as a weighted sum of the mean and the standard deviation. Specifically,
suppose that losses are distributed N (µ, σ) and denote the normal distribution and
density functions by Φ and φ, respectively. Then

VaRα = µ+ Zασ (17)

and

CVaRα = µ+Kασ (18)

8 In contrast, α+ remains more or less constant for a given α.
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Table 6. α̃ for selected VaR quantile levels α (%).

α 90 95 99 99.9

α̃ 75.44 87.45 97.42 99.74

where Zα = Φ−1(α) and Kα = φ(Zα)(1 − α)−1. As such, minimizing VaRα is
equivalent to minimizing CVaRα̃, where α̃ satisfies φ(Zα̃) = Zα · (1 − α̃). Table 6
gives α̃ for the quantile levels considered in this paper.

In our experiments, the optimized out-of-sample loss distributions are close to
normal; all loss distributions referenced in Table 4, regardless of the sample, have
skewness between -0.03 and 0.03, and excess kurtosis between -0.04 and 0.02. Thus,
α∗ should approach α̃ as N increases and, in fact, the results in Table 5 exhibit this
trend. Essentially, the difference (α̃− α∗) reflects the amount of dampening. Note
that α∗ approaches α̃ more quickly as α decreases. This is consistent with the fact
that the volatility of VaR and CVaR estimates increases with α, i.e., for a given N ,
more dampening is required as α→ 1.

To show the effect of the CVaR proxy level in more detail, Figure 2 plots the
in- and out-of-sample VaR against α′ for α = 99% and N = 1000, 5000 and 20000
(graphs for other values of α and N exhibit similar characteristics). While the in-
sample VaR attains a sharp minimum, the out-of-sample VaR profile is much flatter
(see Table 5 for the quantile levels, α+ and α∗, corresponding to the respective
minima). This lack of curvature is attractive from a practical perspective; a trial-
and-error approach that evaluates only a limited number of α′ values is likely to
produce a good CVaR proxy, even if it does not find α∗ precisely. For example,
while α∗ = 85.4% for N = 1000, any 56.5% ≤ α′ ≤ 98.4% yields an out-of-sample
VaR of less than 457 basis points, thereby improving on the best result obtained by
the heuristic or MIP methods. As shown in Table 7, for any combination of α and
N , it is relatively easy to find a good value of α′ by trial-and-error.
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Figure 2: In- and out-of-sample VaR (basis points) as a function of CVaR quantile level for 
normal returns. 

 

Table 7: Range of  (%) for which the CVaR proxy outperforms MIP and heuristic methods  
for normal returns.  

Figure 2. In- and out-of-sample VaR (basis points) as a function
of CVaR quantile level for normal returns.

4.2. Non-normal returns. We now consider stocks with non-normal returns. The
methods that deliver the best in-sample (Table 8) and out-of-sample (Table 9)
performance are identical to those for normal asset returns. However, the differences
between methods are larger in this case.

Figure 3 plots the average skewness and excess kurtosis of the out-of-sample loss
distributions of portfolios obtained by minimizing hα′,N (w, So) for 50% ≤ α′ ≤
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Table 7. Range of α′ (%) for which the CVaR proxy outperforms
MIP and heuristic methods for normal returns.

α
N

1000 5000 10000 20000

90 [54.5, 93.4] [59.8, 91.9] [60.8, 90.1] [62.3, 88.9]

95 [57.2, 96.2] [66.2, 96.5] [69.3, 96.1] [72.8, 95.2]

99 [56.5, 98.4] [68.3, 99.1] [73.6, 99.2] [79.6, 99.3]

99.9 [53.6, 99.4] [61.6, 99.6] [66.3, 99.8] [70.7, 99.8]

Table 8. In-sample VaR in basis points (percentage difference
from upper bound minimization in parenthesis) for non-normal re-
turns. Shading identifies the best results.

α (%) Method
N

1000 5000 10000 20000

90

MIP 156.74 (-17.8) 233.06 (17.8) 252.38 (27.6) 283.25 (42.7)

Heur (ξ = 0.1) 132.89 (-30.3) 168.97 (-14.6) 175.83 (-11.1) 181.94 (-8.3)

Heur (ξ = 0.5) 147.04 (-22.9) 181.08 (-8.4) 187.61 (-5.1) 192.46 (-3.0)

Heur (ξ = 1.0) 173.94 (-8.8) 194.30 (-1.8) 195.92 (-0.9) 197.62 (-0.4)

CVaR(α) 190.66 (0.0) 197.79 (0.0) 197.72 (0.0) 198.47 (0.0)

CVaR(α+) 177.01 (-7.2) 187.54 (-5.2) 186.91 (-5.5) 187.69 (-5.4)

CVaR(α∗) 181.31 (-4.9) 187.67 (-5.1) 187.08 (-5.4) 187.77 (-5.4)

95

MIP 217.35 (-24.8) 313.43 (6.0) 343.00 (15.7) 376.14 (26.2)

Heur (ξ = 0.1) 224.02 (-22.5) 265.05 (-10.3) 273.91 (-7.6) 280.22 (-6.0)

Heur (ξ = 0.5) 236.08 (-18.3) 273.95 (-7.3) 282.81 (-4.6) 289.63 (-2.9)

Heur (ξ = 1.0) 263.52 (-8.8) 289.97 (-1.9) 293.63 (-0.9) 296.59 (-0.5)

CVaR(α) 289.10 (0.0) 295.62 (0.0) 296.38 (0.0) 298.15 (0.0)

CVaR(α+) 265.34 (-8.2) 287.09 (-2.9) 289.27 (-2.4) 289.85 (-2.8)

CVaR(α∗) 275.71 (-4.6) 288.73 (-2.3) 289.73 (-2.2) 290.39 (-2.6)

99

MIP 348.83 (-20.5) 445.15 (-7.5) 514.18 (5.9) 546.75 (11.7)

Heur (ξ = 0.1) 360.10 (-17.9) 429.70 (-10.7) 449.68 (-7.4) 463.11 (-5.4)

Heur (ξ = 0.5) 375.90 (-14.3) 440.31 (-8.5) 457.26 (-5.9) 469.22 (-4.1)

Heur (ξ = 1.0) 398.72 (-9.1) 463.56 (-3.7) 476.06 (-2.0) 484.25 (-1.0)

CVaR(α) 438.59 (0.0) 481.20 (0.0) 485.76 (0.0) 489.29 (0.0)

CVaR(α+) 395.75 (-9.8) 463.10 (-3.8) 475.74 (-2.1) 481.03 (-1.7)

CVaR(α∗) 442.09 (0.8) 475.42 (-1.2) 478.80 (-1.4) 483.00 (-1.3)

99.9

MIP 440.05 (-6.4) 565.87 (-10.1) 614.90 (-10.0) 673.99 (-4.7)

Heur (ξ = 0.1) 465.81 (-1.0) 583.19 (-7.3) 618.29 (-9.5) 646.00 (-8.6)

Heur (ξ = 0.5) 465.81 (-1.0) 599.73 (-4.7) 634.39 (-7.2) 659.97 (-6.6)

Heur (ξ = 1.0) 465.81 (-1.0) 606.29 (-3.7) 651.97 (-4.6) 679.16 (-3.9)

CVaR(α) 470.30 (0.0) 629.28 (0.0) 683.40 (0.0) 706.91 (0.0)

CVaR(α+) 467.00 (-0.7) 608.63 (-3.3) 645.90 (-5.5) 682.77 (-3.4)

CVaR(α∗) 635.96 (35.2) 696.35 (10.7) 709.38 (3.8) 720.18 (1.9)

99.9%. All distributions exhibit positive excess kurtosis while negative skewness
is apparent when α′ > 65% (α′ > 70% if N = 1000). Intuitively, as α′ increases,
CVaRα′ is minimized by lengthening the left tail relative to the right tail and making
the distribution more peaked.

The lack of normality affects the values of α+ and α∗ (Table 10). When α = 90%
or 95%, both α+ and α∗ are generally lower than they are for normal returns. In
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Table 9. Out-of-sample VaR in basis points (percentage difference
from upper bound minimization in parenthesis) for non-normal re-
turns. Shading identifies the best results.

α (%) Method
N

1000 5000 10000 20000

90

MIP 229.42 (10.3) 233.97 (15.5) 250.74 (24.6) 280.63 (39.9)

Heur (ξ = 0.1) 214.90 (3.3) 196.90 (-2.8) 193.55 (-3.8) 192.13 (-4.2)

Heur (ξ = 0.5) 210.10 (1.0) 198.92 (-1.8) 198.15 (-1.5) 198.37 (-1.1)

Heur (ξ = 1.0) 210.92 (1.4) 203.18 (0.3) 201.44 (0.1) 200.72 (0.1)

CVaR(α) 208.01 (0.0) 202.61 (0.0) 201.23 (0.0) 200.59 (0.0)

CVaR(α+) 203.07 (-2.4) 192.34 (-5.1) 190.98 (-5.1) 190.47 (-5.0)

CVaR(α∗) 199.23 (-4.2) 192.16 (-5.2) 190.96 (-5.1) 190.44 (-5.1)

95

MIP 333.61 (5.0) 319.81 (4.5) 345.45 (13.7) 383.99 (26.7)

Heur (ξ = 0.1) 324.23 (2.1) 303.84 (-0.7) 299.42 (-1.5) 296.82 (-2.0)

Heur (ξ = 0.5) 319.47 (0.6) 302.73 (-1.1) 301.08 (-0.9) 300.25 (-0.9)

Heur (ξ = 1.0) 322.01 (1.4) 306.57 (0.2) 304.31 (0.1) 303.15 (0.1)

CVaR(α) 317.60 (0.0) 306.00 (0.0) 303.86 (0.0) 302.97 (0.0)

CVaR(α+) 314.06 (-1.1) 296.36 (-3.1) 294.36 (-3.1) 294.04 (-2.9)

CVaR(α∗) 306.02 (-3.6) 295.81 (-3.3) 294.27 (-3.2) 293.43 (-3.1)

99

MIP 561.20 (-0.6) 522.92 (0.7) 530.58 (3.2) 588.24 (15.1)

Heur (ξ = 0.1) 553.82 (-1.9) 517.09 (-0.4) 508.97 (-1.0) 503.65 (-1.5)

Heur (ξ = 0.5) 558.61 (-1.1) 515.14 (-0.8) 509.55 (-0.9) 504.98 (-1.2)

Heur (ξ = 1.0) 567.51 (0.5) 520.40 (0.2) 512.58 (-0.3) 510.93 (0.0)

CVaR(α) 564.70 (0.0) 519.29 (0.0) 514.00 (0.0) 511.12 (0.0)

CVaR(α+) 552.02 (-2.2) 515.56 (-0.7) 503.61 (-2.0) 499.43 (-2.3)

CVaR(α∗) 529.06 (-6.3) 501.85 (-3.4) 497.82 (-3.1) 494.90 (-3.2)

99.9

MIP 912.10 (-2.0) 829.02 (-2.6) 802.73 (-6.0) 799.32 (-6.2)

Heur (ξ = 0.1) 942.59 (1.3) 839.44 (-1.4) 815.61 (-4.5) 809.44 (-5.0)

Heur (ξ = 0.5) 942.59 (1.3) 854.55 (0.3) 828.19 (-3.0) 811.47 (-4.8)

Heur (ξ = 1.0) 942.59 (1.3) 853.42 (0.2) 840.59 (-1.6) 851.30 (-0.1)

CVaR(α) 930.42 (0.0) 851.59 (0.0) 853.94 (0.0) 852.45 (0.0)

CVaR(α+) 920.72 (-1.0) 846.17 (-0.6) 824.06 (-3.5) 823.62 (-3.4)

CVaR(α∗) 856.22 (-8.0) 777.32 (-8.7) 766.03 (-10.3) 759.03 (-11.0)
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Figure 3. Average skewness and excess kurtosis of out-of-sample
portfolio loss distributions when minimizing CVaR at quantile level
α′ for non-normal returns.
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Table 10. α+ and α∗ (%) for non-normal returns.

α
α+ α∗

N = 1000 N = 5000 N = 10000 N = 20000 N = 1000 N = 5000 N = 10000 N = 20000

90 84.2 71.5 68.0 67.5 69.1 68.5 68.1 68.2

95 93.5 84.4 83.0 85.2 81.5 80.8 81.1 81.4

99 98.1 98.8 98.1 97.8 92.4 94.0 95.5 95.3

99.9 99.4 99.8 99.8 99.8 95.8 97.5 98.0 97.9

Table 11. α̃ and α∗ for selected VaR quantile levels α (%) for one
million non-normal return scenarios.

α 90 95 99 99.9

α̃ 73.8 86.7 97.3 99.7

α∗ 69.6 82.6 96.8 99.7

contrast, when α = 99% or 99.9%, α∗ is higher than for normal returns while α+ is
about the same.

Since neither the limiting value of α∗ nor the quantile level α̃, for which CVaRα̃

equals VaRα, can be found analytically, we obtain their approximate values by
minimizing CVaRα′ using the one million out-of-sample scenarios (Table 11). The
values of α̃ are lower than those for normally distributed losses (see Table 6), consis-
tent with positive excess kurtosis, i.e., heavier-than-normal tails. While the limiting
value of α∗ equals α̃ for normal distributions, in this case α∗ ≤ α̃.

The out-of-sample VaR profile (Figure 4) exhibits greater curvature than when
losses are normally distributed (Figure 2), indicating that VaR is more sensitive
to the quantile level used when optimizing CVaR in this case. Intuitively, this is
because the skewness and the kurtosis of the optimized portfolio loss distributions
vary with α′ (see Figure 3), unlike when the loss distributions are normal. As
such, the ranges of α′ values for which the CVaR proxy outperforms the MIP and
heuristics methods tend to be smaller for non-normal loss distributions (Table 12).
Nevertheless, the ranges suggest that it is still relatively easy to find a good value
for α′ by trial-and-error.
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Table 12. Range of α′ (%) for which the CVaR proxy outperforms
MIP and heuristic methods for non-normal returns.

α
N

1000 5000 10000 20000

90 [50.0, 91.4] [52.9, 83.3] [55.7, 80.3] [57.7, 77.9]

95 [59.7, 95.5] [64.5, 93.4] [67.4, 92.2] [70.5, 90.5]

99 [76.0, 98.2] [82.0, 98.7] [85.0, 98.6] [87.3, 98.4]

99.9 [82.4, 99.2] [87.0, 99.6] [91.1, 99.6] [90.6, 99.5]

increasing their historical correlations by approximately 25% (yielding average, min-
imum and maximum correlations of 0.20, -0.34 and 0.96, respectively). The results
were practically identical to those with the historical correlations, and are therefore
not reported here.

4.3. Computational performance. Table 13 and Table 14 show the average so-
lution times for the normal and non-normal stock portfolios, respectively. To aid in
comparing the various methods, we also report the number of CVaR proxy prob-
lems (i.e., instances of Problem 13) that can be solved in an equivalent amount of
time. Evidently, the ability of the CVaR proxy approach to leverage warm starts
is advantageous, allowing a relatively large number of CVaR problems to be solved
in the time taken by other methods. Note, however, that such comparisons depend
on the range and the granularity of the quantile levels for the CVaR proxy. For
example, our experimental approach, which starts with α′ = 99.9% and then de-
creases α′ by 0.1% in subsequent iterations, allows each CVaR problem to be solved
extremely quickly but may entail a relatively large number of iterations. Alterna-
tively, starting at a lower quantile level and/or using a larger step size may prove
to be more computationally effective, even if the individual CVaR problems take
longer to solve.

Indeed, while we evaluated a total of 500 CVaR-optimized portfolios for each
problem in order to accurately relate VaR and the CVaR quantile level, our ex-
periments suggest that this level of precision is unnecessary in practice. Rather,
finding a quantile level that produces a good CVaR proxy (i.e., yielding an out-of-
sample VaR better than both the MIP and heuristic methods) requires only a small
number of trials. For example, trying only the six values α′ = 70%, 75%, 80%,
85%, 90% and 95% is sufficient to outperform the MIP and heuristic methods for
all 32 problems considered in this paper.

Certainly, further tuning of the methods may improve their respective results.
Algorithms for solving the MIP, for instance, typically have a large number of pa-
rameters that affect the solution quality, particularly when a time limit is imposed.
Likewise, the performance of the heuristic depends on the parameter ξ, for which we
considered only three possible values. However, we maintain that from a practical
standpoint, finding suitable parameter values for these methods takes longer than
tuning the CVaR proxy by varying α′. While both the CVaR proxy and the heuris-
tic solve similar problems (respectively, Problem 13 and Problem 14), evaluating
a single ξ parameter value requires iteratively solving many such problems. For
each problem considered in our experiments (aside from the case of α = 99.9% and
N = 1000, where all of ξ = 0.1, 0.5 and 1.0 perform only one iteration), obtaining
the three heuristic solutions entailed solving at least 21 instances of Problem 14. As
noted above, the CVaR proxy yields better results while solving only six instances of
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Table 13. Solution time in seconds (equivalent number of CVaR
proxy problems) for normal returns.

α (%) Method
N

1000 5000 10000 20000

90

MIP 1805.67 (41,039) 1800.36 (3,887) 1801.08 (656) 1823.65 (573)

Heur (ξ = 0.1) 9.69 (220) 155.87 (337) 300.36 (109) 793.22 (249)

Heur (ξ = 0.5) 3.33 (76) 54.83 (118) 95.71 (35) 258.09 (81)

Heur (ξ = 1.0) 1.10 (25) 8.17 (18) 21.73 (8) 44.88 (14)

CVaR(α) 0.35 (8) 6.43 (14) 17.80 (6) 36.45 (11)

95

MIP 1807.25 (41,075) 1800.39 (3,887) 1800.90 (656) 1847.37 (581)

Heur (ξ = 0.1) 7.71 (175) 128.40 (277) 241.77 (88) 613.29 (193)

Heur (ξ = 0.5) 2.43 (55) 43.03 (93) 72.90 (27) 193.79 (61)

Heur (ξ = 1.0) 1.09 (25) 6.21 (13) 16.13 (6) 42.57 (13)

CVaR(α) 0.29 (7) 4.52 (10) 12.10 (4) 33.81 (11)

99

MIP 1812.67 (41,198) 1800.32 (3,887) 1800.66 (656) 1802.31 (567)

Heur (ξ = 0.1) 4.63 (105) 84.35 (182) 145.47 (53) 365.68 (115)

Heur (ξ = 0.5) 1.66 (38) 25.88 (56) 47.75 (17) 106.47 (33)

Heur (ξ = 1.0) 0.93 (21) 4.88 (11) 15.08 (5) 23.91 (8)

CVaR(α) 0.24 (6) 3.14 (7) 11.04 (4) 15.46 (5)

99.9

MIP 13.13 (298) 1395.99 (3,014) 1801.06 (656) 1801.27 (566)

Heur (ξ = 0.1) 0.75 (17) 32.30 (70) 65.10 (24) 170.08 (53)

Heur (ξ = 0.5) 0.76 (17) 10.58 (23) 20.91 (8) 52.95 (17)

Heur (ξ = 1.0) 0.81 (18) 3.98 (9) 7.36 (3) 14.03 (4)

CVaR(α) 0.23 (5) 2.32 (5) 3.34 (1) 6.30 (2)

CVaR(α′), 50 ≤ α′ ≤ 99.9 22.00 (500) 231.57 (500) 1372.60 (500) 1590.50 (500)

Table 14. Solution time in seconds (equivalent number of CVaR
proxy problems) for non-normal returns.

α (%) Method
N

1000 5000 10000 20000

90

MIP 1806.49 (39,944) 1800.47 (3,466) 1801.54 (635) 1837.13 (541)

Heur (ξ = 0.1) 9.46 (209) 171.46 (330) 322.46 (114) 787.94 (232)

Heur (ξ = 0.5) 2.90 (64) 53.76 (103) 97.75 (34) 258.04 (76)

Heur (ξ = 1.0) 1.10 (24) 8.91 (17) 22.41 (8) 49.80 (15)

CVaR(α) 0.34 (7) 7.23 (14) 18.32 (6) 41.32 (12)

95

MIP 1806.07 (39,934) 1800.35 (3,466) 1801.14 (635) 1820.54 (536)

Heur (ξ = 0.1) 7.18 (159) 127.25 (245) 232.00 (82) 629.80 (185)

Heur (ξ = 0.5) 2.45 (54) 43.09 (83) 70.18 (25) 192.52 (57)

Heur (ξ = 1.0) 1.03 (23) 6.99 (13) 15.92 (6) 43.25 (13)

CVaR(α) 0.27 (6) 5.27 (10) 11.87 (4) 34.83 (10)

99

MIP 1812.21 (40,070) 1800.34 (3,466) 1800.85 (635) 1802.97 (531)

Heur (ξ = 0.1) 4.32 (95) 79.27 (153) 143.25 (51) 356.54 (105)

Heur (ξ = 0.5) 1.64 (36) 24.06 (46) 45.03 (16) 104.55 (31)

Heur (ξ = 1.0) 0.79 (18) 4.92 (9) 14.31 (5) 24.62 (7)

CVaR(α) 0.23 (5) 3.19 (6) 10.38 (4) 16.20 (5)

99.9

MIP 9.31 (206) 1768.25 (3,404) 1800.45 (635) 1800.81 (530)

Heur (ξ = 0.1) 0.77 (17) 32.80 (63) 63.78 (22) 169.22 (50)

Heur (ξ = 0.5) 0.80 (18) 10.32 (20) 21.33 (8) 51.45 (15)

Heur (ξ = 1.0) 0.71 (16) 3.90 (8) 7.39 (3) 14.19 (4)

CVaR(α) 0.22 (5) 2.23 (4) 3.38 (1) 6.27 (2)

CVaR(α′), 50 ≤ α′ ≤ 99.9 22.61 (500) 259.74 (500) 1418.20 (500) 1697.70 (500)
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Problem 13. Of course, a more refined search for α∗, such as bisection, may further
improve the efficiency and/or the solution quality of the CVaR proxy approach.

5. Conclusions. When using scenario approximation, minimizing CVaR is an ef-
fective way to obtain portfolios with a low out-of-sample VaR. Optimizing CVaR
for a number of different quantile levels and then selecting the portfolio with the
lowest VaR works well in practice for several reasons. First, the procedure is robust,
i.e., good results are obtained for a wide range of quantile levels. Second, changing
the quantile level in the objective function allows a series of CVaR problems to be
solved efficiently by warm start methods. Our experiments show that it is possible
to outperform MIP and heuristic methods for minimizing VaR by trying only a
small number of different CVaR quantile levels.

Minimizing CVaR in place of VaR is a form of regularization, as it tends to limit
overfitting. While CVaR proxies typically cannot match the in-sample results of
MIP and heuristic methods, their out-of-sample performance is often much better,
particularly when the number of tail scenarios is small. The CVaR quantile level
effectively controls the amount of regularization. Thus, the quantile level that yields
the best CVaR proxy depends on the size of the scenario approximation, as well as
on problem characteristics like the loss distribution. All else being equal, the best
CVaR quantile level for a problem increases as the number of scenarios increases.
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