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Abstract

This paper presents a model for an insurance company that controls its risk and is
allowed to invest in a financial market with just two assets - a risk free asset and a stock.
The financial reserve of this company is modelled as an Ito process with positive drift
and constant diffusion coefficient. While the diffusion coefficient can be interpreted as
the risk exposure, the drift can be understood as the potential profit. The new feature
of this paper is to consider that the potential profit of this company depends on the
dynamical state of the economy. Thus, in order to take into account the state of the
economy, the drift process is modelled as a continuous time Markov chain. The aim is
to maximize the reserve of an insurance company whose manager is risk averse. The
optimal control problem is formulated and the Hamilton-Jacobi-Bellman equation is
solved to yield the solution.

1 Introduction

Since the seminal papers due to Merton [26], [27], the optimal stochastic control methods

have been among the most useful recent techniques to deal with problems in economics and

finance. This is due to the fact that many economical and financial problems present the

necessity of taking decisions based on an objective performance criterion and in the presence

of uncertainty. In this context, this paper presents a model for an insurance company that

controls its risk and is allowed to invest in a financial market with just two assets as in the

Black-Scholes market [4] – a risk free asset and a stock.

Recently, many works have dealt with diffusion models for insurance companies with con-

trollable risk exposure, for instance, [1], [20], [21], [22], [23], [30] and others. This paper,

as in the previous papers, considers that the financial reserve of the insurance company is

modelled as an Ito process with positive drift and constant diffusion coefficient. While the

diffusion coefficient can be interpreted as the risk exposure, the drift can be associated to

the potential profit when the number of sold policies is sufficiently large. The new feature

of this paper is to consider that the potential profit of the insurance company depends on

the dynamical state of the economy. In order to take into account this, the drift process is

modelled as a continuous time Markov chain, i.e., the reserve of the company is modelled
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as a switching diffusion model. This type of model intends to take into account a large

class of changes which can affect the potential profit of the insurance company, for instance,

legislation changes, population income changes and others. In Brazil, one may point out a

good example of a recent change in the federal legislation that had a strong impact on the

health insurance companies’ potential profit. Until 1998, there was no clear legislation to

deal with health insurances in Brazil, but from this date on the situation has completely

changed.

Switching diffusions have been used successfully to model a large class of systems with

random changes in their structures that may be consequences of abrupt phenomena, for

instance, econometric systems [5], manufacturing systems [15], [17] and others. Although

most of these works deal with linear models [5], [10], [12], [14], [16], [24], some of these results

could be extended to non-linear systems [15] and [17].

Although the idea of modelling by using switching models is not new in the finance litera-

ture, most works are set in the context of discrete time models, for instance, [6], [7], [8], [11]

and others. In the continuous time setting, few works are available, for instance, [9], [18], [28]

and [29]. On the other hand, one may see in this paper that although the control problem

is not a linear control problem with quadratic cost, an approach similar to [14] may be

conveniently adapted to the present case.

This paper is organized as follows. In section 2, the problem described above is formally

stated. In section 3, some properties of the switching diffusions are presented. In section 4,

the problem is solved. Finally, section 5 presents some conclusions of this work.

Notation: Stochastic process will be denoted by omitting the argument ω ∈ Ω. For

instance, X(t) instead of X(t, ω). The integrals with respect to dB(t) are taken in the sense

to Ito. Almost surely is abbreviated a.s.

2 The Model and the Problem Statement

This work addresses the problem of optimizing the wealth of a small investor in the general-

ized Black-Scholes model [4] where the risk asset price is modelled as a switching diffusion.

In this context, one should consider the following statistically mutually independent objects:

a) A two dimensional Brownian motion B = {B(t),FB
t ; s ≤ t ≤ T} where B(t) =[

BR(t)

BX1(t)

]
is defined on some probability space (ΩB,FB, PB);

b) A homogeneous continuous time Markov chain θ = {θ(t),Fθ
t ; s ≤ t ≤ T} defined

on some probability space (Ωθ,Fθ, P θ), with right continuous trajectories, and tak-

ing values on the finite set S = {1, 2, . . . , n}. One should also assume that p(t) =

{p1(t), p2(t), . . . , pn(t)}, with pi(t) = P θ(θ(t) = i), where i ∈ S, satisfies the following

Kolmogorov forward equation dp/dt = Λp(t) where Λ = [λij] is the stationary n × n

transition rate matrix of θ with λij ≥ 0 for i 6= j, and λii = −∑
i6=j λij , i.e., the
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process is supposed to be conservative.

Remark 2.1. One may denote a suitable complete probability space (Ω,F , P ) , where F =

FB × F θ denotes the σ-algebra generated by rectangles AB ∈ FB and Aθ ∈ F θ. Thus,

according to the Fubini’s theorem, since PB and P θ are σ-finite, it follows that P is unique

and given by P (AB × Aθ) = P (AB)P (Aθ). For details, see [3].

Remark 2.2. The filtration {Ft}t∈[0,∞) may be interpreted as the information available at

time t ∈ [0,∞).

On the other hand, one may assume that in the case of no risk or investment control, the

reserve of the company evolves according to

dR(t) = µRdt + σRdB(t) (2.1)

where µR is the potential profit and σR is the risk exposure of the insurance company. The

motivation of this model may be found in [1] and [30]. While σR is positive constant, it is

assumed that µR
∆
=

∑n
i=1 δ(i, θ)µRi where, for i, θ ∈ S, δ(i, θ) is the Kronecker’s symbol and

the state-wise drift processes µRi, for i = 1, . . . , n, are constants.

Additionally, according to the generalized Black-Scholes model [4], one may suppose that

the prices X0 of the risky-free asset and X1 of the stock are given by

dX0(t) = ρX0dt (2.2)

and

dX1(t) = ρX1dt + σX1dBX1(t) (2.3)

where ρ, µ and σ are constants.

Remark 2.3. Because Lipschitz continuity and linear growth conditions are satisfied the

equations (2.1), (2.2) and (2.3) have one unique strong solution. The proof follows the same

lines of theorem 4.6 on page 128 in [25].

If one considers that the company controls its risk and is allowed to invest in the financial

market, the resulting reserve process (liquid assets of the company or wealth of the company)

(W (t), θ(t)) ∈ R× S defined on a suitable probability space (Ω,F , P ) may be described by

dW (t) = u1(µRdt + σRdBR(t)) + u2(µW (t)dt + σW (t)dBX1(t))

+ (1− u2)(ρW (t)dt) (2.4)

= (u1µR + u2µW (t) + (1− u2)ρW (t))dt + u1σRdBR(t) + u2σW (t)dBX1

and

P (θ(t + ∆t) = j/θ(t) = i) = λij∆t + o(∆t) (2.5)
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where lim∆t→0
o(∆t)
∆t

= 0. In this paper, the control is the duple

[
u1

u2

]
. One should note that

u1, where 0 ≤ u1 ≤ 1, corresponds to the retention level, which is the fraction of all incoming

claims that the insuring company will insure by itself. Here, it has been considered that the

reinsuring company has the same safety loading as the insuring company, an assumption

that is known as ”cheap reinsurance”. On the other hand, u2 is the fraction of the agent’s

wealth that is invested in the risky asset, thereby investing the fraction (1− u2) in the safe

one, where 0 ≤ u2 ≤ 1.

Assumption 2.1. U is to be the set of admissible policies. Such a process u : R2×S → U is

called an admissible policy if, for l = 1, 2, ul ∈ [0, 1] and ul satisfies the following conditions:

a) Restriction on growth condition

u2
l (x(t), ε(t)) ≤ L1

∫ t

0

(1 + x2(s))dK(s) + L2(1 + ε2(t) + x2(t)) (2.6)

b) Lipshitz condition

|ul(x(t), ε(t))− ul(y(t), ε(t))|2 ≤ L1

∫ t

0

(x(t)− y(t))2dK(s) + L2(x(t)− y(t))2 (2.7)

where L1 and L2 are positive constants, K(·) is a non-decreasing right continuous

function, 0 ≤ K(·) ≤ 1, x(·) and y(·) are continuous measurable functions, ε(t) ∈ S
and s ≤ t ≤ T .

Remark 2.4. From assumption 2.1, the equation (2.4) has one unique strong solution. The

proof follows the same lines of theorem 4.6 on page 128 and theorem 4.9 on page 142 in [25].

Assumption 2.2. In this work, the jump sizes are considered predictable in θ = {θ(t),F θ
t ; s ≤

t ≤ T}, i.e. one does not know if a jump will occur, but if it does, its intensity is known.

Remark 2.5. One may see that assumption 2.2 is not too restrictive, since µR
∆
=

∑n
i=1 δ(i, θ)µRi

is the potential profit of the insurance company and this state may be accessed with some pre-

cision by the manager of this company.

One may define a function Φ : [s, T ]×R×S → R defined on a vector space endowed with

the product topology. Thus, again according to the Fubini’s theorem and assumption 2.6,

one may get EW [Φ] = EB×θ[Φ] =
∫
ΩB

∫
Ωθ φdPBdP θ . For details, see [3].

Problem 2.1. Suppose that, starting with the initial reserve W (s) = w at time t = s,

the manager of an insurance company wants to maximize the total expected profit given by

EW [
∫ T

s
exp(−γt)U(W (t))dt/W (s) = w, θ(s) = i], where T = inf{t > s : W (t) = 0}. In this

work, one should assume that the utility function U of the company manager is increasing
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and concave (the manager is risk averse). Thus, the problem is to find the value function

Φ(s, w, i) and a Markov control u∗(t,W, i) =

[
u∗1(t,W, i)

u∗2(t,W, i)

]
such that Φ(s, w, i) is given by

Φ(s, w, i) = sup
0≤ul≤1

J(s, w, i, u) for l = 1, 2 (2.8)

where

J = EW [

∫ T

s

exp(−γt)U(W (t))dt/W (s) = w, θ(s) = i]

= EB×θ[

∫ T

s

exp(−γt)U(W (t))dt/W (s) = w, θ(s) = i] (2.9)

Remark 2.6. The assumption that the manager of the insurance company is risk averse is a

significant difference between this work and [30] and many references in it. Moreover, if one

assumes that the utility function is a convenient concave function, it is possible to employ

similar tools to that ones presented by [26] and [27]. If the utility function were linear as in

[30], the problem that has been proposed here would become too hard and it would likely have

no closed solution. This would happen since the resultant Hamilton-Jacobi-Bellman partial

differential equation wouldn’t have separable variables as in [30], as well as many references

in it and also in [26] and [27].

3 Switching Diffusions: Basic Properties

This section intends to review some basic properties of switching diffusions . It follows the

same steps of [14].

Proposition 3.1. The process (W (t), θ(t)) is a Markov process.

Sketch of proof: Consider the following statements

a) θ(t) is a Markov process according to its definition. For details, see [19];

b) B(t) is also a Markov Process, since its increments are independent;

c) The sources of uncertainty in W (t) are B(t) and θ(t) and they are independent. On the

other hand, the process (W (t), θ(t)) is defined on a σ-algebra F = FB×F θ, generated

by rectangles AB ∈ FB and Aθ ∈ F θ.

Thus,(W (t), θ(t)) is a Markov process.

Proposition 3.2. The process {(W (t), θ(t)); s ≤ t ≤ T} has sample paths that are continu-

ous from the right.
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Proof: It is obvious from equation (2.4) and the definition of θ(t) .

Proposition 3.3. The process {(W (t), θ(t)); s ≤ t ≤ T} has a stochastically continuous

transition probability. Therefore, is uniquely defined by its infinitesimal generator.

Proof: It follows from proposition 3.1, proposition 3.2 and the Dynkin’s formula.

Definition 3.1. Let Th be the operator defined on the space of B(R × R × S) of bounded

measurable scalar functions Φ defined on R × R × S = X and equipped with the norm

‖Φ‖ = supx∈X |Φ(x)| as follows

ThΦ(s, w, i) = EW [Φ(s + h,W (s + h), θ(s + h))/W (s) = w, θ(s) = i] (3.1)

Thus, one may define the infinitesimal generator L of a family of transition probabilities of

the Markov process {(W (t), θ(t)); s ≤ t ≤ T} as

LΦ(s,W (s), i) = lim
h→0

ThΦ(s,W (s), i)− T0Φ(s,W (s), i)

h
(3.2)

where the limit is the uniform limit in B(R × R × S) . The domain of definition DL ⊂
B(R × R × S) consists of all functions for which limit in (3.2) exists. For details and

examples, see page 36 in [2].

Remark 3.1. LΦ can be interpreted as the infinitesimal ”average” change of the function

Φ.

Remark 3.2. If Φ ∈ DL then limh→0 ThΦ(t,W (t), θ(t)) = Φ(t,W (t), θ(t)).

Now, one should notice that Φ ∈ DL is the class of functions that continuous derivatives

of first order in t on [0, T ] and first and second orders in W (t) exists almost everywhere.

Proposition 3.4. The infinitesimal generator of {(W (t), θ(t)); s ≤ t ≤ T}, with {(W (t); s ≤
t ≤ T} that satisfies the equation (2.4) and {θ(t); s ≤ t ≤ T} that satisfies assumption 2.2

and u ∈ U is given by

LuΦ(t,W, i) =
∂Φ

∂t
+ (u1µRi + u2µW + (1− u2)ρW )

∂Φ

∂W

+
1

2
(u2

1σ
2
R + u2

2σ
2W 2)

∂2Φ

∂W 2
+

n∑
j=1

λijΦ(t,W, j) (3.3)

Proof: From equation 3.2, one may write

LuΦ(t,W, i) = lim
h→0

ThΦ(s, W (s), i)− T0Φ(s, W (s), i)

h

= lim
h→0

1

h
{EB×θ[Φ(s + h,W (s + h), θ(s + h))/W (s) = w, θ(s) = i]

− T0Φ(s,W (s), i)}
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Additionally, from equation (2.5), one may get

LuΦ(s, W, i) = lim
h→0

1

h
{

n∑
j=1

EB[Φ(s + h,W (s + h), j)/W (s) = w] · P θ[θ(s + h) = j/θ(s) = i]

− T0Φ(s,W (s), i)}

= lim
h→0

1

h
{

n∑
j=1
i 6=j

EB[Φ(s + h,W (s + h), j)/W (s) = w] · (λijh + o(h))

+ EB[Φ(s + h, W (s + h), i)/W (s) = w] · (1 + λiih + o(h))

− T0Φ(s,W (s), i)}
= lim

h→0

1

h
{EB[Φ(s + h,W (s + h), i)/W (s) = w]− T0Φ(s,W (s), i)}

+ lim
h→0

{
n∑

j=1

EB[Φ(s + h, W (s + h), j)/W (s) = w]λij}

And, from definition 3.1 and remark 3.2

LuΦ(s,W, i) = lim
h→0

1

h
{EB[Φ(s + h,W (s + h), i)/W (s) = w]− Φ(s,W (s), i)}

+
n∑

j=1

λijΦ(s,W (s), j)

Finally, from equation (2.4) and equations on pages 41 and 42 in [2], one can see that

lim
h→0

1

h
{EB[Φ(s + h,W (s + h), i)/W (s) = w]− Φ(s,W (s), i)} =

∂Φ

∂s
+ (u1µRi + u2µW + (1− u2)ρW )

∂Φ

∂W
+

1

2
(u2

1σ
2
R + u2

2σ
2W 2)

∂2Φ

∂W 2

Thus, the proof is complete.

Theorem 3.1. The Hamilton-Jacobi-Bellman equation associated to this problem is given

by

sup
u
{LuΦ(t,W, i) + exp(−γt)U(W )} = 0 (3.4)

with boundary conditions Φ(T, W, i) = U(W ).

Proof: It follows from the Dynkin’s formula and the Bellman’s optimality principle.

Theorem 3.2. (Dynamic Programming Verification Theorem) Let Φ be the solution of the

dynamic programming equation supu{LuΦ(t,W, i)+exp(−γt)U(W )} = 0 with boundary con-

ditions Φ(t,W, i) = U(W ). Then:

a) J(t,W, i, u) ≤ Φ(t,W, i) for any admissible feedback control u and any initial data;

b) If u∗ is an admissible feedback control such that Lu∗Φ(t,W, i) + exp(−γt)U(W ) =

supu{LuΦ(t,W, i) + exp(−γt)U(W )} = 0 . Thus u∗ is optimal;

Proof: This proof follows the same lines of [13].
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4 Problem Solution

The results presented in section 3 will be used to solve problem 2.1. In general, it is difficult

to find the explicit solution of the problem 2.1. However, one may circumvent this problem

when the utility function U(W ) is given by a power function U(W ) = W r, 0 < r < 1.

Theorem 4.1. If ∂2Φ
∂W 2 < 0 , ∂Φ

∂W
> 0, in equation (3.3), and U(W ) = W r, 0 < r < 1, then

the optimal control u∗ that solves the problem 2.1 is given by

u∗(W, i) =

[
u∗1
u∗2

]
(4.1)

where

u∗1(W, i) = min

(
µRiW

σ2
R(1− r)

, 1

)
for θ(t) = i (4.2)

and

u∗2(W, i) = min

(
µ− ρ

σ2(1− r)
, 1

)
for θ(t) = i (4.3)

and the value function is given by Φ(t, W, i) = f(t, i)W r where f(t, i) are the unique solutions

of the system of ordinary differential equations given by

df(t, i)

dt
+

(
ρr − µ2

Rir

2σ2
R(r − 1)

− (µ− ρ)2r

2σ2(r − 1)

)
f(t, i) +

n∑
j=1

λijf(t, j) + exp(−γt) = 0 (4.4)

with boundary conditions f(T, i) = 1, for i = 1, · · · , n.

Proof: Firstly, it is necessary to find u(t,W, i) that maximizes the Hamilton-Jacobi-

Bellman equation given by (3.4). If ∂2Φ
∂W 2 < 0 and ∂Φ

∂W
> 0, since equation (3.4) is a second

degree polynomial in u1 and u2, then

u∗1(W, i) = min

(
−µRi

∂Φ
∂W

σ2
R

∂2Φ
∂W 2

, 1

)
(4.5)

and

u∗2(W, i) = min

(
−(µ− ρ) ∂Φ

∂W

σ2W ∂2Φ
∂W 2

, 1

)
(4.6)

Thus, if one takes into account (3.3) and substitutes (4.5) and (4.6) into (3.4), then the

solution of (3.4) is given by Φ(t,W, i) = f(t, i)W r, for i = 1, · · · , n, where f(t, i) is the

solution of the system of n ordinary differential equations given by (4.4) where the final

conditions calculated from the boundary condition of the partial differential equation are

f(T, i) = 1 for i = 1, · · · , n . Substituting Φ(t,W, i) = f(t, i)W r in (4.5) and (4.6), one may

arrive to equation (4.2) and (4.3).

Remark 4.1. It is easy to prove that the system (4.4) is a real positive one. For details, see

theorem 4.1 on page 62 in [31].
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Remark 4.2. One may see that the control law given by equation (4.1) requires explicit

knowledge of the state of θ(t).

Remark 4.3. It is interesting to note that the system of n ordinary differential equations

given by equation (4.4) is similar to the set of interconnected Riccati equations that arises in

continuous time markovian jump linear quadratic control, for instance, see [14].

Remark 4.4. It is very interesting to interpret equation (4.2). One may see that there are

two different periods in the life of an insurance company. When the insurance company is

small as compared to the potential claims, i.e. W <
(1−r)σ2

R

µRi
, the manager of this insurance

company should think about the possibility of reducing the risk which the company is faced

and his or her decision depends on the dynamical state of the economy. On the other hand,

when the insurance company grows, sharing the risk, i.e. reinsuring, is not an interesting

procedure since the risk may not be a threat of bankruptcy anymore and it also means sharing

the profit.

Remark 4.5. The interpretation of equation (4.3) is the same as that one given by [26]

and [27]. The choice of the optimum portfolio depends on the risk premium (µ− ρ)/σ.

5 Conclusions

This paper has presented a model for an insurance company that controls its risk and is

allowed to invest in a financial market with just two assets as in the Black-Scholes market

[4] – a risk free asset and a stock. The interesting new feature of this model paper is

to consider that the potential profit of the insurance company depends on the dynamical

state of the economy. Based on this statement, the proposed problem has been completely

solved by means of dynamic programming arguments when the complete observation case is

considered. This paper can also be seen as an extension of some works that deal with linear

stochastic equations with jump parameters, for instance, see [14].
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