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1. Introduction

Decision making and optimization under uncertainty constitute
a broad and popular area of operations research and management
sciences. Various approaches to modeling of uncertainty are seen
in such fields as stochastic programming, simulation, theory of
stochastic processes, etc. This survey presents an account of
the recent advances in decision making under uncertainty, and,
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specifically, the methods for modeling and control of risk in the
context of their relation to mathematical programming models
for dealing with uncertainties, which are broadly classified as
stochastic programming methods.

To illustrate the issues pertinent to modeling of uncertainties
and risk in the mathematical programming framework, it is
instructive to start in the deterministic setting, where a typical
decision making or design problem can be formulated in the form

max fx)

Xed (1)
subjectto gi(x) <0, i=1,...,k,

with x being the decision or design vector from R" or Z".
Uncertainty, usually described by a random element &, leads to
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situations where instead of just f (X) and g;(X) one has to deal with
f(x, & and g;(x, &) (herein the set £ is reserved to representing
the deterministic requirements on the decision vector X that are
not affected by uncertainty, such as nonnegativity constraints,
etc.). Often it is appropriate to think of & as being governed by a
probability distribution that is known or can be estimated.

A serious difficulty, however, is that the decision x must be
chosen before the outcome from this distribution can be observed.
One cannot then simply replace f(x) by f(x, &) in (1), because
a choice of x only produces a random variable X = f(x, &)
whose realization is not yet known, and it is difficult to make
sense of “minimizing a random variable” as such. Likewise, g;(x)
cannot just be replaced by g;(x, &) in (1), at least not without
some careful thinking or elaboration. Over the years, a number of
approaches have been developed to address these issues; a familiar
and commonly used approach is to replace functions f(x, &) and
gi(x, &) with their expected values, e.g.,

fx, &) — Eflfx, )]

Being intuitively appealing and numerically efficient, this generic
method has its limitations, which have long been recognized in
literature (see, for example, [1]). In particular, replacing a random
objective function with its expected value implies that (i) the
decision obtained as a solution of the stochastic programming
problem will be employed repeatedly under identical or similar
conditions (also known as the “long run” assumption); and (ii)
the variability in realizations of the random value f(x, §) is not
significant. As it poses no difficulty to envisage situations when
these two assumptions do not hold, a work-around has to be
devised that will allow for coping with models that do not comply
with (i) and (ii).

A rather general remedy is to bring the concept of risk into the
picture, with “risk” broadly defined as a quantitative expression
of a system of attitudes, or preferences with respect to a set
of random outcomes. This general idea has been omnipresent
in the field of decision making for quite a long time, tracing
as far back as 1738, when Daniel Bernoulli has introduced the
concept of utility function (symptomatically, the title of Bernoulli’s
paper [2] paper translates from Latin as “Exposition of a New
Theory on the Measurement of Risk”). Bernoulli’s idea represents
an integral part of the utility theory of theory of von Neumann
and Morgenstern [3], one of the most dominant mathematical
paradigms of modern decision making science. Another approach,
particularly popular in the investment science, is the Markowitz
mean-variance framework that identifies risk with the volatility
(variance) of the random outcome of the decision [4].

In this paper, we survey the major developments that stem
from these two fundamental approaches, with an emphasis
on recent advances associated with measurement and control
of risks via the formalism of risk measures, and their relation
to mathematical programming methods, and, particularly, the
stochastic programming framework.

Let us introduce some notations that will be used throughout
the paper. The random element X = X(X, w), which depends on
the decision vector x as well as on some random event w € §£2,
will denote some performance measure of the decision x under
uncertainty. In relation to the example used in the beginning of this
section, the random element X may be taken as X = f(x, é(w)),
where &(w) is a vector of uncertain (random) parameters. In
general, the random quantity X (x, ) will be regarded as a payoff,
or profit function, in the sense that the higher values of X are
preferred, while its lower-value realizations must be avoided. This
convention is traditional to the risk management literature, which

is historically rooted in economic and financial applications.! It is
also customary to assume that the profit function X(x, w) is
concave in the decision vector X, over some appropriate (convex)
feasible set of decisions, which facilitates formulation of well-
behaved convex mathematical programming models.

In the cases when more formality is required, we will consider
X to be an outcome from some probability space (£2, ,P),
where §2 is a set of random events, ¥ is a sigma-algebra, and
P is a probability measure, which belongs to a linear space X
of #F-measurable functions X 2 +— R. For the purposes
of this work, in most cases (unless noted otherwise) it suffices
to take X = L>(£, F,P), a space of all bounded functions
X, which also includes constants. To cast the corresponding
results in the context of stochastic programming, we will follow
the traditional method of modeling uncertainty in stochastic
programming problems (see, e.g., [1,5-7]) by introducing a finite
set of scenarios {w1,...,wy} < £2, whereby each decision x
results in a range of outcomes X (X, w1), ..., X(X, wy) that have the
respective probabilities py, .. ., py, where p; = P{w;} € (0, 1) and
Z;['V:1 p=1

Finally, we would like to mention that this review focuses
mostly on models and approaches formulated in a “static”, or
single-period setting, and does not cover the corresponding
“dynamic” or multi-period decision making and risk optimization
methods.

In our exposition, we made an attempt to adhere to the
historical timeline, whenever appropriate. In Section 2, we briefly
recount the most important facts from the topics that are
relatively more familiar to the general audience: the expected
utility theory, stochastic dominance, Markowitz risk-reward
framework, etc., along with some new developments, such as
the stochastic dominance constraints. Section 3 discusses some
of the most popular downside risk models and related concepts,
including Value-at-Risk and probabilistic (chance) constraints.
Section 4 deals with the topic of coherent measures of risk
and some of the most prominent coherent measures, including
the Conditional Value-at-Risk. Finally, Section 5 presents a
comprehensive discussion of deviation measures of risk and
related topics.

2. Utility theory, stochastic dominance, and risk-reward opti-
mization paradigms

2.1. Utility theory and stochastic dominance

The von Neumann and Morgenstern [3] utility theory of
choice under uncertainty represents one of the major pillars of
modern decision making science, and plays a fundamental role in
economics, finance, operations research, and other related fields
(see, among others, [8-11]).

The von Neumann-Morgenstern utility theory argues that
when the preference relation > of the decision maker satisfies cer-
tain axioms (completeness, transitivity, continuity, and indepen-
dence), there exists a function u : R +— R, such that an outcome X
is preferred to outcome Y (“X > Y”) if and only if

E[u(X)] = E[u(Y)]. (2)
Thus, in effect, a decision making problem under uncertainty

for a rational decision maker reduces to maximization of his/her
expected utility:

max{E[u(X)] | X € X}.

1 engineering literature, the outcome X is often considered as a cost, or loss
function, whose lower values are preferred; obviously, these two interpretations
can be reconciled by replacing X with —X and vice versa.
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If the function u is non-decreasing and concave, the corresponding
preference is said to be risk averse. In many applications, however,
itis often difficult to obtain an explicit form of the utility function u.

The von Neumann-Morgenstern expected utility approach is
closely related to the concepts of stochastic dominance [ 12-14]; see
also an account of earlier works in [ 15]. Namely, a random outcome
X is said to dominate outcome Y with respect to the first-order
stochastic dominance (FSD) relation, X >, Y, if

PX <t} <P{Y <t}, or F(t) <Fy(t) forallt € R, (3)

where Fy and Fy are the distribution functions of X and Y,
respectively. Intuitively, FSD corresponds to the notion that X is
preferred over Y if X assumes larger values than Y. The second-
order stochastic dominance (SSD) relation is defined as

t

t
XZ(Z)Y<:>/ Fx(ﬂ)dﬁf/

and, in general, the kth order stochastic dominance (kSD) relation
is stated in the form

Fy(n)dn forallt € R, (4)

oo

X=gY & FPw) <FP ) forallt eR, (5)

where F®(t) is the so-called kth degree distribution function
defined recursively as

t
F)ﬁk)(t):/ - Vadn KO = Fx. ®)

It follows from the above definition that X >_;) Y entails that
X > Y, provided, of course, that X, Y € L1, The corresponding
strict stochastic dominance relations, X >, Y, are defined by
requiring that strict inequality in (5) holds for at least one t € R.
For a comprehensive exposition of stochastic dominance, see [16].

Rothschild and Stiglitz [17] have bridged the von Neu-
mann-Morgenstern utility theory with the stochastic dominance
principles by showing that X dominating Y in the SSD sense,
X > Y, is equivalent to relation (2) holding true for all concave
non-decreasing functions u; similarly, X >, Y if and only if (2)
holds for all non-decreasing utility functions u. Strict stochastic
dominance means that relation (2) holds strictly for at least one
such u.

The dual utility theory, also known as rank-dependent expected
utility theory, was proposed in [18,19] and [20]. It is based on
a system of axioms different from those of von Neumann and
Morgenstern; in particular, it introduces an axiom dual to the von
Neumann-Morgenstern independence axiom, which was brought
to question in a number of studies that showed it being violated in
actual decision making [21,22]. Then, it follows that a preference
relation over uniformly bounded on [0, 1] outcomes satisfies these
axioms if and only if there exists a non-decreasing function v :
[0, 1] — [0, 1], called dual utility function, such that v(0) = 0
and v(1) = 1, and which expresses preference X > Y in terms of
Choquet integrals [23-25]:

1 1
/‘M&anm2/1MRGDM. )
0 0

Here, Fx(t) is the decumulative distribution function, Fx(t) =
P{X > t}. Just as in the expected utility theory [3], the dual
utility function v defines the degree of risk aversion of the decision
maker; in particular, a concave increasing v introduces an ordering
consistent with the second-order stochastic dominance [19].

The deep connections among the expected utility theory,
stochastic dominance (particularly, SSD), and dual utility theory
have been exploited in numerous developments pertinent to
decision making under uncertainty and risk. One of the most
recent advances in this context involves optimization problems
with stochastic dominance constraints.

2.1.1. Stochastic dominance constraints
Recently, Dentcheva and Ruszczynski [26,27] have introduced
optimization problems with stochastic dominance constraints

max{f(X) | X = Y, X € ¢}, (8)

where Y € £ is a given reference (benchmark) outcome, the
objective f is a concave functional on X and the feasible set € is
convex. Of particular practical significance are the special cases of
(8)with k = 2 and k = 1, corresponding to the second- and first-
order stochastic dominance, respectively. Using the equivalent
representation for second-order stochastic dominance relation
(compare to (4)),

X =@ Y < E[(X —n)_] <E[(Y —n)_] forallneR, (9)
where X denotes the positive (negative) part of X:
X4+ = max{0, £X},

Dentcheva and Ruszczyniski [26] considered the following relax-
ation of problem (8) with k = 2:

max{f (X) | E[(X —n)-1 < E[(Y —n)-]

foralln € [a, b], X € G}, (10)
where the range of n was restricted to a compact interval [a, b]
in order to formulate constraint qualification conditions. In many
practical applications, where the reference outcome Y has a

discrete distribution over {y1, ...,¥m} C [a, b], formulation (10)
admits significant simplifications [26]:

max{f (X) [ E[((X —yi)-] < E[(Y —y)_-1,

i=1,...,mXee}. (11)
In the case when X has a discrete distribution P{X = x;} = p;,
i = 1,...,N, the m constraints in (11) can be represented via

O(Nm) linear inequalities by introducing Nm auxiliary variables
wix > 0:

N m
Y opwa <Y GOx—y)y, k=1,....m,
i=1 =1

(12)
Wik +X >y, i=1,...,N, k=1,...,m,
wyg >0, i=1,...,N, k=1,...,m,
where g, = P{Y = y}, k = 1,...,m. In [28], a formulation of

SSD constraints was suggested that also employed O(Nm) variables
but only O(N + m) inequalities. A cutting plane scheme for
SSD constraints (12) based on a cutting plane representation for
integrated chance constraints (see Section 3.1) due to [29] was
employed in [30].

Using the following characterization of second-order domi-
nance via quantile functions,

X>@Y & F_y(X,p) = F_(Y,p) forallp € [0, 1], (13)
where F_y (X, p) is the absolute Lorentz function [31],

p
F(,z)(X,p):/ F-1y(X, t)dt, where
0

Fy(X, p) = inf{n | P{X < n} = p}, (14)
Dentcheva and Ruszczyriski [32] introduced optimization under
inverse stochastic dominance constraints:
max{f(X) | F—2 (X, p) > F_ (Y, p) forall

pela,BlC(0,1),X € C}. (15)

Arelationship between (inverse) stochastic dominance constraints
and certain class of risk functionals was established in [33],
see also Section 4.1. Further extensions of (8)-(10) include non-
linear SSD constraints [34], robust SSD constraints where the SSD
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relation is considered over a set of probability measures [35].
Optimization problems of the form (8) with k = 1, corresponding
to the (generally non-convex) first-order stochastic dominance
constraints, were studied in [27], where it was shown that the
SSD constraints can be considered as a convexification of the FSD
constraint. Portfolio optimization with second-order stochastic
dominance constraints has been considered in [36], see also [37].

2.2. Markowitz risk-reward optimization

The prominent result of Markowitz [4,38], who advocated
identification of the portfolio’s risk with the volatility (variance)
of its returns, represents a cornerstone of the modern theory of
risk management. Markowitz’s work was also among the first
that emphasized the optimizational aspect of risk management
problems. In its traditional form, Markowitz’s mean-variance (MV)
model can be stated using the notations adopted above as the
problem of minimization of risk expressed by the variance of
decision’s payoff o2(X(X, w)) while requiring that the average
payoff of the decision exceeds a predefined threshold ry:

min{o” (X (x, )) | EX(x, )] = ro}, (16)

where 8§ C R" is the set of feasible decisions x. Provided that the
feasible set 4§ is convex and X (X, w) is concave in X on 4§, problem
(16) is convex, and thus efficiently tractable. The computational
tractability of the MV approach, along with its intuitively appealing
interpretation, have contributed to widespread popularity of the
decision making models of type (16) in finance and economics,
as well as in operations research, management science, and
engineering. For a survey of developments of the Markowitz MV
theory, see, for instance, [39].

In a more general context, Markowitz’s work led to formaliza-
tion of the fundamental view that a decision under uncertainties
may be evaluated in terms of tradeoff between its risk and reward. ?
Such an approach is different from the expected utility framework;
in particular, an SSD efficient outcome is not generally efficient in
the risk-reward sense as described below (the original Markowitz
model is consistent with the second-order stochastic dominance in
the special case when X is normally distributed).

Given a payoff (profit) function X = X (x, w) that is dependent
on the decision vector x and random element w € £2, let p(X) =
p (X (X, )) represent the measure of risk, and 7 (X) = 7 (X (X, w))
be the measure of performance, or reward associated with X. It is
natural to presume the reward measure 7 (X (X, )) to be concave
in x over some closed convex set of decisions 4 C R", and the
risk measure p (X (X, w)) to be convex over $. Then, the risk-reward
optimization problem generalizing the classical MV model can be
formulated as finding the decision X whose risk is minimal under
the condition that the reward exceeds a certain predefined level:

r)l‘qei?{p(X(x, w)) | T (X(X, w)) > 7o} (17)
Alternatively, the following two formulations are frequently

employed: select the decision X that maximizes the reward 7 (X)
while assuring that the risk does not exceed py:

min{—7 (X (x, @)) | P(X(X, )) < po}. (18)

or a weighted combination of risk and reward is optimized:
mig{p(X(x, w)) — AT (X (X, w)) | A > O} (19)
Xe4

2 The term “risk” here has many interpretations; in the context of the original
Markowitz's contribution it refers to a dispersion type of uncertainty, and a
complementary interpretation refers to risk as a shortfall uncertainty. Both these
interpretations are explored in detail in Sections 3-5, correspondingly.

In view of the risk-reward formulations (17)-(19), an outcome
X1 = X(X1, w) is said to weakly (p, 7r)-dominate outcome X, =
X(Xz, a)), Ol'X] z(p.n) Xz, if

pX) < pXz) and 7w(Xp) = w(X).

Strong (p, m)-dominance, X; >, r) X2, implies that at least one
of the inequalities above is strict. An outcome X; = X(X, w)
corresponding to the decision X; € 4 is considered efficient, or
(p, m)-efficient, if there is no X, € 4 such that X, >(, ) X, or,
equivalently,

pX2) = p(X1) and 7 (X) > 7 (X1)
or

7(X2) =7 (Xy) and p(X) < p(Xy).
Then, the set

&€={(p,m) | p=pX), 7 =7X),
X = X (X, w) is efficient, x € §}

is called the efficient frontier. In the case when the sets {x € § |
T(X(X,w)) > mp}and {X € 8 | p(X(X, w)) < po} have internal
points, problems (17)-(19) are equivalent in the sense that they
generate the same efficient frontier via varying the parameters A,
po, and 1o [40]. The equivalence between problems (17)-(19) is
well known for mean-variance [39] and mean-regret [41] efficient
frontiers.

Although the original Markowitz approach is still widely used
today, it has been acknowledged that variance o2 (X) as a measure
of risk in (17)-(19) does not always produce adequate estimates of
risk exposure. Part of the criticism is due to the fact that variance
0?(X) = E[(X — E[X])?] penalizes equally the “gains” X >
E[X] and “losses” X < E[X]. Secondly, variance has been found
ineffective for measuring the risk of low-probability events. This
led to development of the so-called mean risk models, where the
reward measure in (17)-(19) is taken as the expected value of
X, t1(X) = E[X], for some choice of risk measure p [42-44].
In particular, to circumvent the symmetric attitude of variance
in (16), a number of the so-called downside risk measures have
been considered in the literature. Next we outline the most notable
developments in this area, including the semivariance risk models,
lower partial moments, Value-at-Risk, etc.

Another major development of the classical Markowitz frame-
work is associated with the recent advent of the deviation measures
that generalize variance as a measure of risk in (16) and are dis-
cussed in detail in Section 5.

3. Downside risk measures and optimization models

3.1. Risk measures based on downside moments

The shortcomings of variance -2 (X) as a risk measure have been
recognized as far back as by Markowitz himself, who proposed
to use semivariance o2 (X) for a more accurate estimation of risk
exposure [38]:

o2 (X) = E[(X — E[XD*] = |(X — E[XD_II3. (20)
where || - || is the p-norm in £, p € [1, 00]:
IXIlp = ELIX[PDP. (21)

Applications of semivariance risk models to decision making under
uncertainty in the context of mean risk models have been studied
in [43,44,31]. Namely, it was shown in [43] that the mean risk
model that corresponds to (P3) with 7(X) = E[X] and p(X) =
o_(X) is SSD consistent for > = 1, i.e,,

Xz(z)y = N(X) > 7T(Y) and

22
T7(X) —ApX) = w(Y) — Ap(Y). (22)
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The same relation holds for po(X) being selected as the absolute
semideviation, p(X) = E[(X — E[X])_]. In [44], it was shown
that a generalization of (22) involving central semi-moments of
higher orders holds for the kth order stochastic dominance relation
(5). Namely, X dominating Y with respect to the (k + 1)-order
stochastic dominance, X > .1y Y, implies

E[X] = E[Y] and

23
E[X] — (X — E[X)_[le = E[Y] — (Y — E[Y])_ s (23)

The semivariance risk measure o2 (X) reflects asymmetric risk
preferences; observe, however, that in accordance to its definition
(20), the risk is associated with X falling below its expected level,
E[X]. In many applications, it is desirable to view the risk of X as
its shortfall with respect to a certain predefined benchmark level a.
Then, if risk is identified with the average shortfall below a target
(benchmark) level a € R, the corresponding Expected Regret (ER)
measure (see, e.g., [41,45]) is defined as

ER(X) = E[(a = X)1] = E[(X —a)_]. (24)

The Expected Regret is a special case of the so-called Lower Partial
Moment measure [46,47]:

LPM,(X,a0) =E[(X —a)’], p>0, aeR. (25)

A special case of (25) with p = 2, a semideviation below a
fixed target, was considered by Porter [48], who demonstrated
that the corresponding mean risk model is consistent with SSD
dominance ordering, i.e. an outcome that is mean risk efficient
is also SSD efficient, except for outcomes with identical mean
and semivariance. Bawa [46] related the mean risk model with
p(X) = LPM;(X, a) to the third-order stochastic dominance for a
class of decreasing absolute risk-averse utility functions. Forp = 0,
LPM (25) can be considered as the “probability of loss”, i.e., the
probability of X not exceeding the level g, and is related to the
Value-at-Risk measure discussed below.

A requirement that risk, when measured by the lower partial
moment function LPM, (X, a), should not exceed some level b > 0,
can be expressed as a risk constraint of the form

E[X —a)’]<b.

In the special case of p = 1, the above constraint is known as the
Expected Regret constraint, and reduces to

E[(X —a)-]1=<b, (26)

which is also known as the Integrated Chance Constraint [49]; a
more detailed discussion of constraints (26) is presented below.
Further, observe that the SSD constraint in (11), corresponding to
the case when the reference outcome Y is discretely distributed,
can be regarded as a set of Expected Regret constraints (26).

Another popular measure of risk, frequently employed in
practice, is the Maximum Loss, or Worst Case Risk (WCR), which
is defined as the maximum loss that can occur over a given time
horizon:

WCR(X) = —ess infX. (27)

Obviously, the WCR measure represents the most conservative
risk-averse preferences. At the same time, WCR(X), as a measure
of risk, essentially disregards the distributional information of
the profit/loss profile X. Despite this, the Worst Case Risk
measure, with an appropriately defined function X(x, w), has
been successfully applied in many decision making problems
under uncertainties, including portfolio optimization [50,40],
location theory, machine scheduling, network problems (see a
comprehensive exposition in [51]).

The popularity of Worst Case Risk concept (also known as
“robust” optimization approach, see [51]) in practical applications

can be attributed to its to easy-to-interpret definition, as well
as to its amenability to efficient implementation in stochastic
programming scenario-based models; namely, for a finite 2 =
{w1, ..., wy}, minimization or bounding of risk using WCR
measure can be implemented via constraint of the form

WX (x, w)) =,

which, in turn, can be implemented by N inequalities y >
—X(X, wj),j =1, ..., N,which are convex provided that the profit
function X (X, w) is concave in the decision vector X.

3.2. Value-at-Risk and chance constraints

One of the most widely known risk measures in the area of
financial risk management is the Value-at-Risk (VaR) measure (see,
for instance, [52-54], and references therein). Methodologically, if
X represents the value of a financial position, then, for instance,
its Value-at-Risk at a 0.05 confidence level, denoted as VaRg g5 (X),
defines the risk of X as the amount that can be lost with probability
no more than 5%, over the given time horizon (e.g., 1 week).
Mathematically, Value-at-Risk with a confidence level @ € (0, 1)
is defined as the a-quantile of the probability distribution Fx of X:

VaR,(X) = —inf{z | P{X <z} > a} = —Fx_l(a). (28)
Often, a “lower” a-quantile is used (see, among others, [55-57])
VaR; (X) = —inf(z | PX <z} > a} = —F_1)(X. ), (29)

where F_) is defined as in (14). It is easy to see that VaR measure
is consistent with the first-order stochastic dominance:

X=nY = VaR, (X) > VaR,(Y).
In addition, VaR is comonotonic additive [58]:
VaR, (X +Y) = VaR, (X) + VaR, (Y),

forall X, Y that are comonotone (see, e.g., [24,20]), namely, for such
X and Y, defined on the same probability space, that satisfy

X(w1) = X(@2))(Y(w1) —Y(@2)) =0 as.
for every w1, w, € 2 (30)

(alternatively, X and Y are comonotonic if and only if there exists Z
and increasing real functions f and g suchthatX = f(2),Y = g(2),
see [59]).

Due to its intuitive definition and wide utilization by major
banking institutions [52], the VaR measure has been adopted as
the de facto standard for measuring risk exposure of financial
positions. However, VaR has turned out to be a technically
and methodologically challenging construct for control and
optimization of risk. One of the major deficiencies of VaR, from
the methodological point of view, is that it does not take into
account the extreme losses beyond the «-quantile level. Even more
importantly, VaR has been proven to be generally inconsistent with
the fundamental risk management principle of risk reduction via
diversification: it is possible that VaR of a financial portfolio may
exceed the sum of VaRs of its components. This is a manifestation
of the mathematical fact that, generally, VaR, (X) is a non-convex
function of X. VaR exhibits convexity in the special case when the
distribution of X is elliptic; in this case, moreover, minimization
of VaR can be considered equivalent to the Markowitz MV
model [60]. In addition, VaR, (X) is discontinuous with respect to
the confidence level o, meaning that small changes in the values
of o can lead to significant jumps in the risk estimates provided by
VaR.

Being simply a quantile of payoff distribution, the Value-at-Risk
concept has its counterparts in the form of probabilistic, or chance
constraints that were first introduced in [61] and since then have



54 P. Krokhmal et al. / Surveys in Operations Research and Management Science 16 (2011) 49-66

been widely used in such disciplines as operations research and
stochastic programming [1,5,7], systems reliability theory [62,63],
reliability-based design and optimization [64], and others. If the
payoff X = X (X, w) is a function of the decision vector x € R",
the chance constraint may stipulate that X should exceed a certain
predefined level ¢ with probability at least « € (0, 1):

PX(X,w) > c} > «a, (31)

whereas in the case of « = 1 constraint (31) effectively requires
that the inequality X(X, ) > c¢ holds almost surely (a.s.). For
a review of solution methods for chance-constrained stochastic
programming problems, see [65]. Using, without loss of generality,
definition (29), it is easy to see that probabilistic constraint (31)
can be expressed as a constraint on the Value-at-Risk of X (x, w):

VaR;_y (X(X, ®)) < —c. (32)

Chance constraints are well known for their non-convex structure,
particularly in the case when the set £ is discrete, 2 =
{w1, ..., wy}. Observe that in this case, even when the set
X (X, w;) > cisconvexinX for every w; € £2, the chance constraint
(31) can be non-convex for @ € (0, 1).

Because of the general non-convexity of constraints (31), a
number of convex relaxations of chance constraints have been
developed in the literature. One of such relaxations, the Integrated
Chance Constraints (ICC) [49], see also [66,29], can be derived by
considering a parametrized chance constraint

PX <&} <a(), &€&, (33)

where «/(£) is increasing in &, which means that smaller values
of X are less desirable. Then, assuming that & = (—o0, c], and
integrating (33), one arrives at the integrated chance constraint

c

E[(X—c),]:/ P{Xfé}déff wE)dE = . (34)

00 _
Observe that constraints of the form (34) are equivalent to the
expected regret, or expected shortfall constraints (26). Other
convex approximations to the chance constraints have been
obtained by replacing VaR in (32) with a convex risk functional,
such as the Conditional Value-at-Risk measure (see below); a
Bernstein approximation of chance constraints has been recently
proposed by Nemirovski and Shapiro [67].

4. Coherent measures of risk

Historically, development of risk models used in the Markowitz
risk-reward framework has been to a large degree application-
driven, or “ad hoc”, meaning that new risk models have been
designed in an attempt to represent particular risk preferences
or attitudes in decision making under uncertainty. As a result,
some risk models, while possessing certain attractive properties,
have been lacking some seemingly fundamental features, which
undermined their applicability in many problems. The most
notorious example of this is the Value-at-Risk measure, which has
been heavily criticized by both academicians and practitioners for
its lack of convexity and other shortcomings.

Thus, an axiomatic approach to the construction of risk models
has been proposed by Artzner et al. [68], who undertook the
task of determining the set of requirements, or axioms that a
“good” risk function must satisfy. From a number of such potential
requirements they identified four, and called the functionals that
satisfied these four requirements coherent measures of risk. Since
the pioneering work [68], the axiomatic approach has become
the dominant framework in risk analysis, and a number of new
classes of risk measures, tailored to specific preferences and
applications, have been developed in the literature. Examples of

such risk measures include convex risk measures [69,70], deviation
measures [71], and others.

Exposition in this section assumes that®> X = L£*(£2, ¥, P)
is a space of all bounded #-measurable functions X : 2 — R;
for a discussion of risk measures on general spaces see, for
example, [70]. Then, a coherent risk measure is defined as a mapping
R : X +— R that satisfies the following four axioms [68,72]:

(A1) monotonicity: X > 0 implies R(X) < OforallX € X

(A2) convexity: R(AX + (1 — L)Y) < ARX) + (1 — A)
R(Y)forallX,Y € X and A € [0, 1]

(A3) positive homogeneity: R(AX) = ARX) forallX € X and
A>0

(A4) translation invariance: R(X + a) = R(X) —aforallX € X
anda € R

It must be noted that if the coherent risk measure R is allowed to
take values in the extended real line (see, e.g., [70]), it is necessary
to impose additional requirements on R, such as lower semiconti-
nuity and properness. Moreover, certain continuity properties are
required for various representation results discussed below; one
of the most common such requirements that augment the set of
axioms (A1)-(A4) for coherent risk measures is the Fatou property
(see, for instance, [72,11,73]), e.g., that for any bounded sequence
{X,} that converges P-a.s. to some X, the coherent risk measure
must satisfy

R(X) < liminf R(Xy). (35)

In order to avoid excessively technical discussion, throughout this
section it will be implicitly assumed that the risk measure in
question satisfies the appropriate topological conditions, e.g., (35).

The monotonicity axiom (A1) maintains that lower values of X
bear more risk. In fact, by combining (A1) with (A2) and (A3) it can
be immediately seen that

R(X) < R(Y) wheneverX >Y,

and, in particular, that X > —a implies R(X) < aforalla € R.
The convexity axiom (A2) is a key property from both the
methodological and computational perspectives. In the mathe-
matical programming context, it means that R (X (X, w)) is a con-
vex function of the decision vector X, provided that the profit
X (X, w) is concave in X. This, in turn, entails that the minimiza-
tion of risk over a convex set of decisions x constitutes a convex
programming problem, amenable to efficient solution procedures.
Moreover, convexity of coherent risk measures has important im-
plications from the methodological risk management viewpoint:
given the positive homogeneity (A3), convexity entails subadditiv-
ity
(A2') subadditivity: R(X +Y) < R(X) + R(Y) forall X, Y € X,

which is a mathematical expression of the fundamental risk
management principle of risk reduction via diversification. Further,
convexity allows one to construct coherent measures of risk by
combining several coherent functionals using an operation that
preserves convexity; for instance,

k

R(X) =Y MR(X) and R(X) = max{R;(X). ..., Re(X)}
i=1

are coherent, provided that R;(X) satisfy (A1)-(A4) and A; > 0O,

M+ +Ara =1

3 Although this assumption does not apply to random variables X with
unbounded support, e.g., X that are normally distributed, it provides a common
ground for most of the results presented in what follows, and allows us to avoid
excessively technical exposition.
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The positive homogeneity axiom (A3) ensures that if all
realizations of X increase or decrease uniformly by a positive
factor, the corresponding risk R(X) scales accordingly. Such a
requirement is natural in the context of financial applications,
when X represents the monetary payoff of a financial position;
obviously, doubling the position value effectively doubles the
risk. In some applications, however, such a behavior of & may
not be desirable, and a number of authors have dropped the
positive homogeneity from the list of properties required for
“nicely behaved” risk measures (see, e.g., [69,70]).

The translation invariance (A4) is also supported by the
financial interpretation: if X is a payoff of a financial position, then
adding cash to this position reduces its risk by the same amount;
in particular, one has

RX + R(X)) = 0.

Combined with (A3), the translation invariance (A4) also states that
the risk of a deterministic payoff factor is given by its negative
value:

R(0) =0, and,ingeneral, R(a) =—a foralla € R.

It is also worth noting that, given the subadditivity of R, the
last condition can be used in place of (A4), see [71]. Finally, we
note that, in general, coherent risk measures are inconsistent
with utility theory and second-order stochastic dominance, in the
sense that if element X is preferred to Y by a risk-averse utility
maximizer, X > Y, it may happen that X carries a greater risk
than Y, RX) > &R(Y), when measured by a coherent risk
measure; see [74] for an explicit example. To address the issue
of consistency with utility theory, the following SSD isotonicity
property has been considered in addition to or in place of (A1) (see,
e.g., [74-76]):

(A1) SSD isotonicity: R(X) < R(X) for all X,Y € X such that
X i(z) Y

Obviously, (A1’) implies (A1).

According to the above definition (A1)-(A4), the VaR measure
(28) is not coherent: although it satisfies axiom (A1), (A3), and
(A4), in the general case it fails the all-important convexity
(subadditivity) property. On the other hand, the Maximum Loss,
or Worst Case Risk measure (27) is coherent; recall that the
WCR measure reflects the extremely conservative risk-averse
preferences. Interestingly, the class of coherent risk measures
also contains the opposite side of the risk preferences spectrum,
namely, it is easy to see that R(X) = E[—X] is coherent, despite
representing risk-neutral preferences.

It is worth noting that while the set of axioms (A1)-(A4)
has been construed so as to ensure that the risk measure R
satisfying these properties would behave “properly”, and produce
an “adequate” picture of risk exposure, there exist coherent
risk measures that do not represent risk-averse preferences. For
example, let space 2 be finite, 2 = {w1, ..., wy}, and, for a fixed
Jj, define the risk measure R as

RX) = —X(w)). (36)

It is elementary to check that defined in such a manner R does
indeed satisfy axioms (A1)-(A4), and thus is a coherent measure
of risk. On the other hand, definition (36) entails that the risk of
random outcome X is estimated by guessing the future, an approach
that rightfully receives much disdain in the field risk management
and, generally, decision making under uncertainty. Averse measures
of risk and their axiomatic foundation are discussed in Section 5.2.

The axiomatic foundation (A1)-(A4), along with a number
of other properties considered in subsequent works (see, for
instance, [77] for a discussion of interdependencies among
various sets of axioms) only postulates the key properties

for “well-behaved” measures of risk, but it does not provide
functional “recipes” for construction of coherent risk measures.
Thus, substantial attention has been paid in the literature to
the development of representations for functionals that satisfy
(A1)-(A4). One of the most fundamental such representations was
presented in the original work [68]. With respect to a coherent risk
measure R, the authors introduced the notion of acceptance set as
a convex cone

Az ={X € X | RX) <0} (37)

In the financial interpretation, the cone 45 contains positions
X that comply with capital requirements. The risk preferences
introduced by a coherent measure R are equivalently represented
by the acceptance set 4 %, and, moreover, R can be recovered from
A as

RX)=inf{c e R| X+ € A}. (38)

Artzner et al. [68] and Delbaen [72] have established that
mapping R : X — R is a coherent measure of risk if and only
if
R(X) = sup Eg[—X], (39)

Qe@
where @ is a closed convex subset of P-absolutely continuous
probability measures. For convex risk measures (i.e., functionals

satisfying (A1), (A2), and (A4)), Follmer and Schied [69] have
generalized the above result:

RX) = max(Eq[—X] — «(Q)), (40)
Qea@
where « is the penalty function defined for Q € @ as

a(Q) = sup Eq[—X] = sup(Eo[—X] — R(X)), (41)
XeAg XeX

and is therefore the conjugate function (see, e.g., [78,79]) of R on

X. A subdifferential representation of convex risk measures, which

satisfy an additional requirement of R (X) < E[—X], was proposed

in [75], see also [70]. Representations for coherent and convex risk

measures that satisfy an additional property of law invariance:

(A5) law invariance: R(X) < R(X) forall X, Y € X such that
PX <z} =P{Y <z},z€R,

or, roughly speaking, can be estimated from empirical data, were
considered in [80,81,77,82,11,83].
Acerbi [84] has suggested the following spectral representation:

1
R(X) :/ VaR, (X))o (A) dA, (42)
0

where ¢ € £1([0, 1]) is the “risk spectrum”. Then, the functional
R defined by (42) is a coherent risk measure if the risk spectrum
¢ integrates to 1, and is “positive” and “decreasing” (however not
pointwise, but in “.£! sense”, see [84] for details).

Differentiability properties of convex risk measures that are
defined on general probability spaces and satisfy axioms (A1), (A2),
and (A4) have been discussed by Ruszczyriski and Shapiro [70],
who also generalized some of the above representations for convex
and coherent measures of risk and presented optimality conditions
for optimization problems with risk measures.

Since the pioneering work of Artzner et al. [68], a number of
generalizations to the concept of coherent measures of risk have
been proposed in the literature, including vector and set-valued
coherent risk measures, see, e.g., [85,86]. Dynamic multi-period
extensions of coherent and convex measures of risk has been
considered in [87,88,73,89].
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4.1. Conditional Value-at-Risk and related risk measures

The Conditional Value-at-Risk (CVaR) measure has been
designed as a measure of risk that would remedy the shortcomings
of VaR (most importantly, its non-convexity) while preserving its
intuitive practical meaning. For a random payoff or profit function
X that has a continuous distribution, Rockafellar and Uryasev [90]
have defined CVaR with a confidence level « € (0, 1) as the
conditional expectation of losses that exceed the VaR, (X) level:

CVaR, (X) = CVaR; (X) = —E[X | X < —VaR,(X)]. (43)

In accordance with this definition, for example, the 5% Conditional
Value-at-Risk, CVaRg o5(X), represents the average of worst case
losses that may occur with 5% probability (over a given time
horizon). Observe that in such a way CVaR addresses the issue
of estimating the amount of losses possible at a given confidence
level, whereas the corresponding VaR only provides a lower bound
on such aloss. Expression (43) is also known in the literature under
the name of Tail Conditional Expectation (TCE) [68]. In addition,
Artzner et al. [68] introduced a related measure of risk, the Worst
Conditional Expectation (WCE):

WCE, (X) = sup{E[—X | A] | A € ¥, P{A} > a. (44)

It turns out that the quantity (43), which in the general case
is known as “lower” CVaR, maintains convexity in the case of
continuous X (or, more generally, when the distribution function
Fx is continuous at —VaR, (X)), whereas for general (arbitrary)
distributions Fy it does not possess convexity with respect to
X. Moreover, neither does the “upper” CVaR defined as the
conditional expectation of losses strictly exceeding the VaR, (X)
level:

CVaR} (X) = —E[X | X < —VaR,(X)]. (45)

In[55], a more intricate definition for Conditional Value-at-Risk for
general distributions was introduced, which presented CVaR, (X)
as a convex combination of VaR, (X) and CVaR;r X):

CVaR, (X) = Ay (X)VaR, (X)
+ (1= A X)E[-X | X < —VaR,(X)], (46)

where A, (X) = (1 — a) " 'Fx(—VaRy (X)). Rockafellar and Uryasev
[55] have demonstrated that CVaR, (X) as defined in (46) is convex
in X, and is a coherent measure of risk satisfying the axioms
(A1)-(A4). Thus, the following chain of inequalities hold:

VaR,(X) < CVaR} (X) < WCE,(X)
< CVaR,(X) < CVaR! (X), (47)

where only CVaR, (X) and WCE, (X) are coherent in the general
case; however, for continuously distributed X the last three
inequalities become identities (see, for instance, [55,11] for
details).

Besides convexity, CVaR, (X) is also continuous in «, which
from the risk management perspective means that small variations
in the confidence level « result in small changes of risk estimates
furnished by the CVaR. In contrast, VaR, as a distribution quantile, is
in general discontinuous in «, and therefore can experience jumps
due to small variations in «. Furthermore, for the limiting values of
o one has

lim CVaR, (X) = E[-X],

. ) (48)
llm0 CVaR, (X) = —infX = WCR(X),

which entails that depending on the choice of the confidence
level o, CVaR,(X) as a measure of risk can represent a broad
spectrum of risk preferences, from the most conservative risk-
averse preferences (¢ = 0) to risk-neutrality (o« = 1).

The functional (46) is also known in the literature under the
names of Expected Shortfall (ES) [91,56], Tail VaR (TVaR) [92], and
Average Value-at-Risk (AVaR) (see, e.g., [11,82,7], and others). The
latter nomenclature is justified by the following representation for
CVaR due to Acerbi [84] (compare to (42)):

CVaR, (X) = é / ) VaR; (X) d. (49)
0

Kusuoka [80] has shown that CVaR is the smallest law-invariant
coherent risk measure that dominates VaR; at the same time, if
the law invariance requirement (A5) is dropped, then the smallest
convex (coherent) VaR dominating risk measure does not exist [72,
11], e,

VaR, (X) = min{ R(X) | R(X) > VaR,(X)
and R (X) is convex (coherent)}.

The importance of CVaR measure in the context of coherent
and convex measures of risk can be seen from the following
representation for law-invariant coherent measures of risk on
atomless probability spaces, first obtained by Kusuoka [80]:

R(X) = sup R/L(X)’ (50)
pneM CM(0,1]

where M (0, 1] is the set of all probability measures on (0, 1], and

R (X) = / CVaRe (X)ju(dE). (51)
0,1]

Moreover, for any given p the risk measure R, is law invariant,
coherent, and comonotonic. Coherent risk measures of the form
(51), dubbed Weighted VaR (WVaR), were discussed by Cherny [92],
who showed that R, are strictly subadditive, i.e.,

RuX +Y) < Ru(X) + Ry (V),

unless X and Y are comonotone. Representation (50) and (51) has
its counterpart for convex measures of risk [11]:

R(X) = sup (/ CVaR: (X)) (d§) — ,B(,u)) ,  Where
nem 0,11 \J(0,1]
pu = sup [ cvaRe0Ou(@s). (52)
XeAg J(0,1]

In other words, the family of CVaR, risk measures can be
regarded as “building blocks” for law-invariant coherent or
convex measures of risk [11]. Furthermore, Inui and Kijima [57]
demonstrate that any coherent measure of risk can be represented
as a convex combination of CVaR functionals with appropriately
chosen confidence levels.

A connection between risk optimization problems with coher-
ent risk measures of form (51) and problems with inverse stochas-
tic dominance constraints (15) has been pointed out by Dentcheva
and Ruszczynski [33], who showed that risk-reward optimization
problems of the form

max{f(X) —ARX) | X e €}, A=>0,

where R(X) is a law-invariant risk measure of the form (51), can
be regarded as Lagrangian dual of a problem with inverse second-
order stochastic dominance constraint (15).

Despite the seemingly complicated definitions (46) and (49),
Rockafellar and Uryasev [90,55] have shown that CVaR can be
computed as the optimal value of the following optimization
problem:

CVaR,(X) = miﬂg d,(X,n), where
ne

P, X, ) =n+a EX+n)_, a€(,1). (53a)
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The importance of representation (53) stems from the fact that the
function @, (X, n) is jointly convex in X € X and n € R, and
thus (53) is a convex programming problem that can be solved
very efficiently. Moreover, the optimal value of n that delivers the
minimum in (53) is given by —VaR,, (X), or, more precisely,

VaR, (X) = min{—y | y € arg min &, (X, n)}.
ner

(53b)

In fact, the convex (stochastic) programming representation
(53) can itself be considered as a definition of CVaR; namely,
Pflug [58] demonstrated that coherence properties (A1)-(A4) can
be established from (53), and, in addition, that CVaR as the optimal
value in (53) satisfies the SSD isotonicity axiom (A1’).

In the case when the profit function X = X(x, w) is concave
in the decision vector x over some closed convex set § C R", the
result (53) due to Rockafellar and Uryasev [90,55] allows for risk
minimization using the Conditional Value-at-Risk measure via an
equivalent formulation involving the function &,:

min CVaR,(X(X, w)) & min &,XX, w), n), (54)
Xe4$ (x,n)e$ xR

(see [55] for details). Furthermore, similar arguments can be
employed to handle CVaR constraints in convex programming
problems, namely, the risk constraint

CVaR, (X(X, ®)) < ¢ (55)

can be equivalently replaced by (see the precise conditions in
[55,93])

D (XX, w), 1) <c. (56)

Convexity of the function @, (X, n) implies convexity of the opti-
mization problems in (54) and constraints (55) and (56). Within
the stochastic programming framework, when the uncertain ele-
ment w is modeled by a finite set of scenarios {w;, ..., wy} such
that P{w;} = p; € (0, 1), constraint (56) can be implemented using
N + 1 auxiliary variables and N 4+ 1 convex constraints (provided
that X (X, wj) are all concave in Xx):

N
n+a ijw;‘ =

= (57)
wj 4+ XX, ) +n > 0,
wj‘ZO, j=1,...,N.

j=1,...,N,

When X (X, ;) are linear in X, constraints (57) define a polyhedral
set, which allows for formulating many stochastic optimization
models involving CVaR objective or constraints as linear program-
ming (LP) problems that can be solved efficiently using many exist-
ing LP solver packages. For large-scale problems, further efficien-
cies in handling constructs of the form (57) have been proposed
in the literature, including cutting plane methods [94], smoothing
techniques [95], non-differentiable optimization methods [96].
Due to the mentioned fact that CVaR is the smallest coherent
law-invariant risk measure dominating VaR, the CVaR constraint
(55) can be employed as a convexification of the chance constraint

VaR, (X (x, w)) < c. (58)

Observe that by virtue of inequalities (47), CVaR constraint (55)
is more conservative than (58). Constraints of the form (58)
are encountered in many engineering applications, including
systems reliability theory [62,63] and reliability-based design and
optimization [64]. Specifically, expression (58) with ¢ = 0
and —X(x, w) defined as the so-called limit-state function is well
known in reliability theory, where it represents the probability
of the system being “safe”, i.e., in the state X(x,w) > 0.
Based on the discussed above properties of the VaR and CVaR
measures, Rockafellar and Royset [97] introduced the buffered

failure probability, which accounts for a degree of “failure” (the
magnitude of the negative value of X (X, w)), and bounds from
above the probability of failure using the CVaR constraint (55).
Similarly, application of constraints of the form (55) in place
of chance constraints for robust facility location design under
uncertainty was considered in [98].

4.2. Risk measures defined on translation invariant hulls

The convex programming representation (53) due to Rockafel-
lar and Uryasev [90,55] can viewed as a special case of more general
representations that give rise to classes of coherent (convex) risk
measures discussed below.

A constructive representation for coherent measures of risk that
can be efficiently applied in stochastic optimization context has
been proposed in [76]. Assuming that function ¢ : X +— R is
lower semicontinuous, such that ¢(n) > 0 for all real n # 0, and
satisfies three axioms (A1)-(A3), the optimal value of the following
(convex) stochastic programming problem is a coherent measure
of risk (similar constructs have been investigated by Ben-Tal and
Teboulle [99,100], see discussion below):

RX) = irnlf{n +oX +n)} (59)

If the function ¢ in (59) satisfies the SSD isotonicity property (A1’),
then the corresponding R(X) is also SSD isotonic. Further, the
function defined on the set of optimal solutions of problem (59)

n(X) = min{—y | y € arg IET;in n+oX+n} (60)
ne

exists and satisfies the positive homogeneity and translation
invariance axioms (A3), (A4). If, additionally, ¢(X) = 0 for every
X > 0, then n(X) satisfies the monotonicity axiom (A1), along
with the inequality 7(X) < R(X).Observe that representation (53)
of Conditional Value-at-Risk measure due to [90,55] constitutes a
special case of (59); the former statement on the properties of the
function n(X) (60) illustrates that the properties of VaR as a risk
measure (see (53)) are shared by a larger class of risk measures
obtained from representations of the form (59).

Similarly to the CVaR formula due to [90,55], representation
(59) can facilitate implementation of coherent risk measures in
stochastic programming problems. Namely, for R(X) that has a
representation (59), the following (convex) problems with risk
objective and constraints can be equivalently reformulated as

min RX(X, w)) & min {n+¢XEX, ®) +n)},
Xes X,n)eSXR

gleig{g(X) | RX (%, )) < c} (61)
& mi?X]R{g(X) [+ XX, w)+1n) <c},

(x,me
where the set § C R" is convex and closed, and functions g(x) and
—X(x, w) are convex on 4 (see [76] for details). Representation (59)
was used in [76] to introduce a family of higher moment coherent
risk measures (HMCR) that quantify risk in terms of tail moments
of loss distributions,

HMCR, o (X) = minn +a~" (X + 1),
n

p>1, ae(0,1). (62)

Risk measures similar to (62) on more general spaces have been
discussed independently by Cheridito and Li [101]. The HMCR
family contains, as a special case of p = 1, the Conditional Value-
at-Risk measure. Another family of coherent measures of risk that
employ higher moments of loss distributions has been considered
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by Fischer [102] and Rockafellar et al. [71], under the name of risk
measures of semi-LP type:

Rp,p(X) = E[=X]+ BIX — E[XD -,

In contrast to risk measures (63), the HMCR measures (62) are tail
risk measures. By this we mean that in (63) the “tail cutoff” point,
about which the partial moments are computed, is always fixed at
E[X], whereas in (62) the location of tail cutoff point is determined
by n(X) = np«(X) given by (60) with ¢(X) = ol IX_|lp, and is
adjustable by means of the parameter e, such that 5, ,(X) is non-
decreasing in @ and 77 o (X) — —infX asa — 0.

The importance of HMCR measures (62) and semi-.£P type
measures (63) is in measuring the “mass” in the left-hand tail
of the payoff distribution. It is widely acknowledged that the
“risk” is associated with higher moments of the loss distributions
(e.g., “fat tails” are attributable to high kurtosis, etc.). The HMCR
measures and semi-.L? measures are amenable to implementation
in stochastic programming models via (convex) p-order conic
constraints [103]:

p=1p8¢€l0,1]. (63)

t> wllp = (wil’ + - + Jwyl?) /P

using transformations analogous to (57).

A comprehensive treatment of expressions of the form (59) was
presented in Ben-Tal and Teboulle [99], who revisited the concept
of Optimized Certainty Equivalent (OCE) introduced earlier by the
same authors [100,104]. The concept of certainty equivalents
(CE) is well known in utility theory, where it is defined as the
deterministic payoff that is equivalent to the stochastic payoff X,
given an increasing utility function u(-):

CE,(X) = u™ " (E[uX)]). (64)

Then, the Optimized Certainty Equivalent (OCE) was defined
in [100] as the deterministic present value of a (future) income X
provided that some part » of it can be consumed right now:

Su(X) = sup{n + E[u(X —n)]}, (65)
n

or, in other words, as the value of optimal allocation of X between
future and present. In [99] it was demonstrated that the OCE S, (X)
has a direct connection to the convex risk measures satisfying (A1),
(A2), and (A4) by means of the relation

RX) = =Su(X), (66)

provided that the utility u is a non-decreasing proper closed
concave function, and satisfiesu(0) = 0and 1 € du(0), where du is
the subdifferential of u. The ranking of random variables induced
by the OCE, S,(X) > S,(Y), is consistent with the second-order
stochastic dominance. Although generally the OCE does not satisfy
the positive homogeneity property (A3), it is subhomogeneous, i.e.,

Su(AX) = ASu(X),
Su(AX) = ASu(X),

A €[0,1] and

A>1. (67)

In [99] it was shown that a positively homogeneous OCE, such that
—Su(X) is a coherent measure of risk, is obtained if and only if
the utility u is strictly risk averse, u(t) < t forallt € R, and is a
piecewise linear function of the form

u(t) =yity + pot_, for0<y; <1<y, (68)

In addition, Ben-Tal and Teboulle [99] have established an
important duality between the concepts of optimized certainty
equivalents (convex risk measures) and ¢-divergence [ 105], which
is a generalization of the relative entropy, or Kullback-Leibler
divergence [106] as a measure of distance between random
variables. Namely, for a proper closed convex function ¢ whose

minimum value of 0 is attained at a point t = 1 € domg, the ¢-
divergence of probability measure Q with respect to P, such that Q
is absolutely continuous with respect to Q, is defined as

_ [, (
I,(Q,P) = /Q ) (E) dpP. (69)

Defining the utility via the conjugate ¢* of the function ¢ as
u(t) = —¢*(—t), Ben-Tal and Teboulle [99] have shown that the
optimized certainty equivalent can be represented as

5,00 = inf (1,(Q. P) + EqlX1). (70)

whereby it follows that for the convex risk measure R(X) =
—Su(X), the penalty term «(Q) in the representation (40) due to
Follmer and Schied [107,11] is equal to the ¢-divergence between
the probability measures P and Q. Moreover, the following dual
representation of ¢-divergence via the OCE S, holds:

I,(P,Q) =)S(u§{5u(X) — Eq[X]}. (71)

A class of polyhedral risk measures that are expressed via two-stage
linear stochastic programming problems [1,5,7], and thus can be
viewed as generalizations of representations (59) and (65), has
been proposed by Eichhorn and Rémisch [108].

5. Deviation, risk, and error measures

In decision theory and finance, uncertainty in a random variable
X is often translated into notions such as risk, deviation, and error
revolving around the standard deviation o (X). By definition, o (X)
is a measure of how X deviates from its expected value E[X],
i.e, o(X) = |IX — E[X]|l. It is closely related to measurement
of uncertainty in outcomes, i.e., to deviation, to aggregated
measurement of probable undesirable outcomes (losses), i.e., to
risk, and to measurement of quality of estimation in statistics,
i.e., to error. For example, in the classical portfolio theory [4],
variance, or equivalently o (X), is used to quantify uncertainty in
returns of financial portfolios. Subtracting the expected value of
portfolio return from its standard deviation, we obtain a measure
which can be interpreted as risk. Therefore, with the standard
deviation, we may associate a triplet (D, R, &): deviation measure
DX) = o(X) = |IX — E[X]||, risk measure R(X) = o(X) —
E[X] = |IX — E[X]|l2 — E[X], and error measure &(X) = ||X]|2.

Another well-known example of such a triplet is the one
associated with the mean absolute deviation (MAD), which
sometimes is used instead of the standard deviation. In this case,
D, R, and € are defined by: D(X) = ||X — E[X]|l1, RX) =
IX — E[X]|l1 — E[X], and &(X) = ||X]|;. Obviously, the triplet
DX) = X — E[X]llp, RX) = X — E[X]ll, — E[X], and €(X) =
IX]l, with p > 1 generalizes the previous two. However, none of
these standard triplets are appropriate for applications involving
noticeably asymmetric distributions of outcomes.

In financial applications, percentile or VaR, defined by (28),
emerged as a major competitor to the standard deviation and
MAD. However, as a measure of risk, VaR,(X) lacks convexity
and provides no information of how significant losses in the
a-tail could be. These VaR’s deficiencies are resolved by CVaR
[90,55], which evaluates the mean of the «-tail and in general
case is defined by (46). Similar to the standard deviation and MAD,
CVaR induces the triplet: CVaR-deviation 9,(X) = CVaR,(X —
E[X]), CVaR measure R,(X) = CVaR,(X), and asymmetric mean
absolute error [109]

E,(X) =E[Xy + (@ '—DX_], ac(0,1), (72)

which relates closely to the one used in a quantile regression [110].
For example, for o = 1/2, &,(X) reduces to &(X) = ||X]l1.
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Practical needs motivated a search for other triplets which
could preserve consistency in risk preferences and could provide
adequate analysis of asymmetric distributions in related decision
problems. For example, if an agent uses lower semideviation in a
portfolio selection problem, it is expected that the agent would use
a corresponding error measure in an asset pricing factor model. In
response to these needs, Rockafellar et al. [111,71,109] developed
a coordinating theory of deviation measures, error measures, and
averse measures of risk, which, in general, are not symmetric
with respect to ups and downs of X. Deviation measures [71]
quantify “nonconstancy” in X and preserve four main properties
of the standard deviation (nonnegativity, positive homogeneity,
subadditivity, and insensitivity to constant shift), whereas error
measures quantify “nonzeroness” of X and generalize the mean
square error (MSE). The triplets (D, R, &) for the standard
deviation, MAD and CVaR are, in fact, particular examples of more
general relationships

R(X) = DX) — E[X], DX) = rcréiﬂglé“(x —c) or

DX) = X — E[X]).

In this theory, risk, deviation, and error measures are lower semi-
continuous positively homogeneous convex functionals satisfying
closely related systems of axioms. In view of this fact, the interplay
between these measures can be comprehensively analyzed in the
framework of convex analysis [78,112]. Rockafellaretal. [113-115,
109] developed the mean-deviation approach to portfolio selection
and derived optimality conditions for a linear regression with error
measures, while Grechuk et al. [116,117] extended the Chebyshev
inequality and the maximum entropy principle for law-invariant
deviation measures (i.e. those that depend only on the distribution
of X).

In what follows, (£2, M, P) is a probability space of elementary
events £2 with the sigma-algebra M over £2 and with a probability
measure P on (£2, M). Random variables are measurable functions
from £2(2) L2(82, M, P), and the relationships between
random variablesX andY,e.g. X < Yand X =Y, are understood to
hold in the almost sure sense,i.e. P[X < Y] =1landP[X =Y] = 1.
Also, ¢ stands for a real number or a constant random variable, and
infX and sup X mean ess inf X and ess sup X, respectively.

5.1. Deviation measures

Responding to the need for flexibility in treating the ups and
downs of a random outcome differently, Rockafellar et al. [71]
defined a deviation measure to be a functional D : £2(2) —
[0, co] satisfying the axioms

(D1) Nonnegativity: O (X) = 0 for constant X, but D(X) > 0
otherwise.
(D2) Positive homogeneity: D(AX) = LD (X) when A > 0.
(D3) Subadditivity: DX +Y) < DX) + D(Y) forall X and Y.
(D4) Lower semicontinuity: set {X € £2(£2)|D(X) < c} is closed
forall c < oo.
It follows from (D1) and (D3) that (see [71])

DX —c)=DX) forall constants c.

Axioms (D1)-(D4) generalize well-known properties of the
standard deviation, however, they do not require symmetry, so
that in general, D(—X) #* D(X). A deviation measure is called
lower range dominated if in addition to (D1)-(D4), it satisfies

(D5) Lower range dominance: D (X) < E[X] — infX for all X.

The importance of (D5) will be elucidated in the context of
the relationship between deviation measures and coherent risk
measures.

Well-known examples of deviation measures include

(a) deviation measures of «£P type D(X) = [IX — E[X]ll,,p €
[1, 0], e.g., the standard deviation o (X) = ||X — E[X]||> and
mean absolute deviation MAD(X) = ||X — E[X]||1,

(b) deviation measures of semi-£” type D_(X) = ||[[X —E[X]]-|l,
and D4 (X) = [I[X — E[X11+lp, p € [1, <], e.g., standard lower
and upper semideviations
o_(X) = IIX — EX1]-1l2,  o+(X) = IIX — E[IXI]+ 2.

and lower and upper worst case deviations:

DX) = IIX — EIX]]-lloc = E[X] — infX,

D'(X) = [IIX — E[X1] 4 lloo = supX — E[X]

for a bounded random variable X.
(c) CVaR-deviation CVaRﬁ (X) = CVaR, (X — E[X]) fora € [0, 1).2

In particular, D(X) = [|[[X — E[X]]-1l,, p € [1, o¢], and D(X) =
CVaR% (X) are lower range dominated.>

Proposition 4 in [71] shows that deviation measures can be
readily constructed out of given deviation measures D, ..., Dy,
by the following two operations

DX) =) MDe(X),
k=1

n
ZA,<=1, >0 k=1,...,n,
k=1

and
DX) = max{D1(X), ..., Dp(X)}.

In both cases, D (X) is lower range dominated if each Dy(X) is
lower range dominated. For example, taking Dy (X) = CVaRﬁk X)
with o € (0, 1), we obtain

n n
DX) =Y MCVaR, (X), Y Me=1,
k=1 k=1

AM>0k=1,...,n, (73)
and
D(X) = max{CVaRy (X), ..., CVaR] (X)}.

Rockafellar et al. [71] extended (73) for the case of continuously
distributed A:

(a) mixed CVaR-deviation

1
DX) = / CVaR5 (X)dA(a),
0

1 (74)
| e@=1. i@ =0
0
(b) worst case mixed CVaR deviation
1
D(X) = sup / CVaR2 (X)dA () (75)
reA Jo

for some collection A of weighting nonnegative measures A on
(0, 1) with [ di(e) = 1.

4 CVaRlA (X) = —E[X] + E[X] = 0 s not a deviation measure, since it vanishes

for all r.v.’s (not only for constants).
5 Indeed, ||[X — E[X]]-ll, < I[X — E[X]]-lloc = E[X] —infX forp € [1, oo], and
CVaR4 (X) = E[X] — CVaR, (X) < E[X] — infX.
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These deviation measures provide a powerful modeling tool
for customizing agent’s risk preferences, where the weights
A1, ..., Ap and the weighting measure A(«) can be considered as
discrete and continuous risk profiles, respectively.

Also, Proposition 5 in [71] proves that ifj; o ldAi(e) < oo, the
deviation measure (74) can be represented in the equivalent form

1
DX) 2/ VaR, (X — E[X])¢ () der,
0

1
@) = / o (@),
0

where ¢(«) is left-continuous and nonincreasing with ¢(07) <

00,¢(17) = 0,and fol ¢(a)da = 1 and plays a role similar to that
of a dual utility function in [20,118].

5.1.1. Risk envelopes and risk identifiers
Deviation measures have dual characterization in terms of risk
envelopes @ C £2(£2) defined by the properties

(Q1) @ is nonempty, closed and convex,

(Q2) for every nonconstant X there is some Q € @ such that
E[XQ] < E[X],

(Q3) E[Q] = 1forallQ € @.

Rockafellar et al. [71, Theorem 1] showed that there is a
one-to-one correspondence between deviation measures and risk
envelopes:

D(X) = E[X] — inf E[XQ],
Qe

Q@ ={Q € £2(2) | DX) > E[X] — E[XQ] for all X},

and a deviation measure 9 is lower range dominated if and only if
the corresponding risk envelope @ satisfies

(Q4) Q > 0forallQ € Q.

Remarkably, with (Q4), a risk envelope @ can be viewed as a
set of probability measures providing alternatives for the given
probability measure P. In this case, the corresponding deviation
measure D (X) = E[X] — infgeq E[XQ] = Ep[X] — infgeq Eq[X]
estimates the difference of what the agent can expect under P and
under the worst probability distribution.

The elements of @ at which E[XQ] attains infimum for a given
X are called the risk identifiers for X:
@Q(X) = arg min E[XQ].

Qeq

In view of the one-to-one correspondence between deviation
measures and risk envelopes, the risk identifiers can also be
defined for each £ through the corresponding risk envelope @:

Qo(X) ={Q € @ | D(X) = E[(E[X] — X)Q] = covar(—X, Q)},

and we say that @45 (X) is the risk identifier for X with respect
to a deviation measure D. In this case, the meaning of the risk
identifiers is especially elucidating: they are those elements of @
that “track the downside of X as closely as possible” (see [71,114]
for details).

For the standard deviation, standard lower semideviation,
and CVaR-deviation, the corresponding risk envelopes and risk
identifiers are given by

DX) =0 (X), Q@={QI|E[Q]=1,0(Q) =1}
Qp(X) = {1 _ X;E[X]}
o(X) '
DX) =o0_(X), @={Q|E[Q]=1,]Q —infQ|, < 1},
Qp(X) = {1 _ E[Y]_Y} ,
o_(X)

where Y = [X — E[X]]_, and
D(X) =CVaR;(X), @={Q|EQ]I=10<Q <1/a}
with @ 5 (X) being the set of elements such that E[Q] = 1 and

o ! on{w | X(w) < —VaR,(X)},
[0.a7'] on{w | X(w) = —VaR,(X)},
0 on {w | X(w) > —VaR,(X)}.

Q(w)

m

Observe that for o and o, @y is a singleton. For @ and @ o (X) of
other deviation measures and for operations with risk envelopes,
the reader may refer to [111,71,114].

From the optimization perspective, Qo (X) is closely related
to subgradients of O at X, which are elements Z € £2(£2) such
that D(Y) > DX) + E[(Y — X)Z] forall Y € £2(£2). In fact,
Proposition 1 in [114] states that for a deviation measure D, the
subgradient set 0D (X) at X is related to the risk identifier Q 5 (X)
by 0D (X) = 1 — Qo (X).In general, risk identifiers along with risk
envelopes play a central role in formulating optimality conditions
and devising optimization procedures in applications involving
deviation measures. For example, if X is discretely distributed with
P{X = x} = pw k = 1,...,n, then with the risk envelope
representation, the CVaR-deviation and mixed CVaR-deviation are
readily restated in the linear programming form

CVaR2 (X)

n n
=E[X] - rr;;(n {ZQkkak [0 <q < 1/a, quk = 1} ,
=

k=1

m
> " xiCVaRg (X)

i=1

m,n n
=E[X] — min{ Z AiqikPrXk | 0 < qik < 1/, ZQikPk = 1} .

Gk =T, k=1 k=1

5.1.2. Mean-deviation approach to portfolio selection

As an important financial application, Rockafellar et al.
[113-115] solved and analyzed a Markowitz-type portfolio
selection problem [4,119] with a deviation measure D:

minDX) s.t.EX]>r+ A,
XeX

where X is the portfolio rate of return, X is the set of feasible
portfolios, and A is the desirable gain over the risk-free rate
ro. For example, if a portfolio has an initial value 1 with the
capital portions xg, X1, . . ., X, allocated into a risk-free instrument
with the constant rate of return ro and into risky instruments
with uncertain rates of return ry,..., 1, then X = {X|X =
> ko XkTks Y po Xk = 1} and E[X] = Xoro + >_g_; XE[ri]. In this
case, the portfolio selection problem reduces to finding optimal
weights (x5, X7, ..., X;).

Theorem 3in[113] proves that for the nonthreshold (noncritical)
values of ry, there exists a master fund of either positive or negative
type having the expected rate of return ry + A* with A* > 0,
such that the optimal investment policy is to invest the amount
A/A* in the master fund and the amount 1— A/ A* in the risk-free
instrument when there exists a master fund of positive type and to
invest —A/A* in the master fund and 1 + A/A* in the risk-free
instrument when there exists a master fund of negative type. For
the threshold values of ry, there exists a master fund of threshold
type with zero price, so that in this case, the optimal investment
policy is to invest the whole capital in the risk-free instrument
and to open a position of magnitude A in the master fund through
long and short positions. This result generalizes the classical one
fund theorem [120,121] stated for the case of the standard deviation
when a master fund of positive type (market portfolio) exists.
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Theorem 5 in [114] shows that conditions on the existence of
the master funds introduced in [113] generalize the well-known
capital asset pricing model (CAPM) [121-123]:

Bi(EIX*] — 19),

Bi(EIX*] + 19),

when there exists a master
fund of positive type,
when there exists a master
fund of negative type,
when there exists a master
fund of threshold type,

E[r]—ro=
BiE[X*1,

where X* is the master fund’s rate of return, and
covar(—r;, Q%)
T DX

For example, 8; = covar(r;, X*)/o?(X*) for the standard deviation,
whereas

covar(—r;, [X* — E[X*]_]))
- o2 (X*)
for the standard lower semideviation, and
_ E[(E[ri] —m)Q™]
CVaR% (X*)

for the CVaR-deviation. When P{X* = —VaR,(X*)} = 0, the last
formula can be expressed in terms of conditional probabilities

_ E[E[r] —ri | X* < —VaR,(X")]
E[E[X*] — X* | X* < —VaR,(X")]

It should be mentioned that in general, 8’s may not be uniquely
defined because of either a master fund is not unique or @ , (X*) is
not a singleton. For B’s with other deviation measures, see [114].

Interpretation of these CAPM-like relations in the sense of the
classical CAPM relies on the existence of a market equilibrium
for investors using a deviation measure other than the standard
deviation. Rockafellar et al. [115] proved that indeed, when
investors’ utility functions depend only on the mean and deviation
of portfolio’s return and satisfy some additional conditions, the
market equilibrium exists even if different groups of investors use
different deviation measures. This result justifies viewing of the
generalized B’s in the classical sense and shows that the CAPM-
like relations can also serve as one factor predictive models for
expected rates of return of risky instruments.

, Q*eq@X",i=1,...,n

i

Bi , Q*e Ccha}zDA( X"

Bi

5.1.3. Chebyshev inequalities with deviation measures

In engineering applications dealing with safety and reliability
as well as in the actuarial science, risk if often interpreted as the
probability of a dread event or disaster. Minimizing the probability
of a highly undesirable event is known as the safety first principle,
which was originally introduced by Roy [124] in the context of
portfolio selection. When the probability distribution function of
a random variable X is unknown or very complex, the probability
that X falls below a certain threshold & can be estimated in terms of
the mean p = E[X] and variance 62(X) < oo of X by the one-sided
Chebyshev inequality®

1
PIX <&} < ;
1+ (n —€)?/02(X)
Estimates similar to this one are also used in non-convex
decision making problems involving chance constraints [125]. The

Chebyshev inequality can be improved if the standard deviation is
replaced by another deviation measure.

& <.

6 The two-sided Chebyshev inequality is stated as P{|X — EX| > a} < 02(X)/d?,
a> 0.

The problem of generalizing the one-sided Chebyshev inequal-
ity for law-invariant deviation measures, e.g. o, o_, MAD, CVaRy,
etc., is formulated as follows: for law-invariant O : £P(2) —
[0,00],1 < p < o0, find a function g4 (d) such that

PIX<u—a} <gp(DX)) forallX € LP(2)anda >0 (76)

under the conditions: (i) g is independent of the distribution of
X; and (ii) gp is the least upper bound in (76), i.e., for every d > 0,
there is a random variable X such that (76) becomes the equality
with D(X) = d. For the two-sided Chebyshev inequality, the
problem is formulated similarly, see [116].

Grechuk et al. [116] showed that (76) reduces to an auxiliary
optimization problem

inf DX)

Ugp(x) =
i)( ) XeLP($2)

st.XeU={X|EX]=0,PX< —a} > a}, (77)
and that the function g4, is determined by
gp(d) = sup{e | up(a) < d}.

Proposition 3 in [116] proves that (76) is equivalent to minimizing
D over a subset of U, whose elements are undominated random
variables with respect to convex ordering,” and that the later
problem reduces to finite parameter optimization.

For the mean absolute deviation, standard lower semideviation,
and CVaR-deviation, the one-sided Chebyshev inequality is given
by

P{X<S}<M ;;:<
SR TR NN
_(X)?
PX<El s s E<n
A
PIX < £} < @ CVaR, (X) £ < CVaR, (X).

aCVaRA(X) + (1 —a)(u — &)’

Examples of one-sided and two-sided Chebyshev inequalities
with other deviation measures as well as generalizations of the
Rao-Blackwell and Kolmogorov inequalities with law-invariant
deviation measures are discussed in [116].

5.1.4. Maximum entropy principle with deviation measures

Entropy maximization is a fundamental principle originated
from the information theory and statistical mechanics (see [126])
and finds its application in financial engineering and decision
making under risk [127-129]. The principle determines the
least-informative (or most unbiased) probability distribution
for a random variable X given some prior information about
X. For example, if only mean p and variance o? of X are
available, e.g. through estimation, the probability distribution with
continuous probability density fyx : R +— Ra“ that maximizes the
Shannon differential entropy

SX) = — / F(O) log i (H)dt

is the normal distribution with the mean p and variance o2.

Let X C .£'(£2) be the set of random variables with continuous
probability densities on R. Then the most unbiased probability
distribution of a random variable X € X with known mean and

7 X dominates Y with respect to convex ordering if E[f(X)] > E[f(Y)] for any
convex function f : R ~ R, which is equivalent to the conditions E[X] = E[Y]
and jfco Fx(t)dt < -jfco Fy(t)dt for all x € R, where Fy and Fy are cumulative
probability distribution functions of X and Y, respectively.
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law-invariant deviation O : £P(£2) — [0, 0], p € [1, 00], of X
can be found from the maximum entropy principle:

r;la;(S(X) SLEX]=u, DHX)=d. (78)

Boltzmann’s theorem [130, Theorem 12.1.1] shows that if for
given measurable functions hy, ..., h,, constants ay, ..., a,,and a
closed support set V C R, there exist A1, ..., Ay, and ¢ > 0 such
that the probability density function

J

fx(t) = cexp ( Ajhj(t)> , teVv (79)
=1

satisfies the constraints
/ f(®)de =1, / h(©) f(Ode = a
v \%

i=1,....n, (80)

then among all continuous probability density functions on V, (79)
maximizes S(X) subject to (80).

With this theorem, solutions to (78) for the standard deviation,
mean absolute deviation, standard lower semideviation, and lower
range deviation E[X] — inf X readily follows. For example,

(@) fx(®) = exp(—|t — ul/d)/(2d) for D(X) = MAD(X) and
V=R

(b) fx(©) = exp((u — t)/d — D/d, t = p — d, for D(X)
=E[X]—infXandV = [u — d, o0).

(©) fx(t) = cexp(Ait + Az[t — u]?) for D(X) = o_(X), where
¢, M, and X, are found from the conditions ffooofx (t)ydt =1,
Jo th(@®dt = poand [* (6 — w)’f(0) dt = d.

However, not all deviation measures can be represented in the
form of the constraints in (80). For this case, Grechuk et al. [117]
proved that a law-invariant deviation measure O : £LP(2) — R
can be represented in the form

1
20 = sup [ £Gd(axs). (1)
g(s)eGJo

where qx (o) = inf{t|Fx(t) > «} is the quantile of X, and G is a set
of positive concave functions g : (0, 1) — R™.If D is comonotone,
e, DX +Y) = DX) + D(Y) for any two comonotone X €
LP(2) and Y € LP(£2), then G in (81) is a singleton. For example,
CVaRj (X) is comonotone, and its set G has a single function defined
byg(s) = (1/a — 1)sfors € [0, «],and g(s) = 1 —sfors € («, 1].
With (81) and (78) reduces to a calculus of variations problem,
which in the case of comonotone D has a closed form solution,
see [117]. For example, a solution to (78) with D (X) = CVaRﬁ (0,9]
is given by fx ((x — n)/d)/d, where

1—« 200 — 1
(1—a)exp t — R R
o 11—« 1—«o
200 — 1 200 — 1
1—a)exp|—(t— s t > .
1—« 1—«o

Grechuk et al. [117] made the following conclusions:

20 — 1
<

fx@®) =

(i) A solution X € X to (78) has a log-concave distribution,
i.e,, Infx(t) is concave.

(ii) For any log-concave fx(t), there exists comonotone £ such
that a solution to (78) is fx (t).

Conclusion (ii) solves the inverse problem: if agent’s solution
to (78) is known (estimated) then agent’s risk preferences can be
recovered from the comonotone deviation measure corresponding
to this solution through (78), see [117] for details. Other examples
of distributions that maximize either Shannon or Renyi differential
entropy subject to constraints on the mean and deviation are
discussed in [117].

5.2. Averse measures of risk

Rockafellar et al. [111,71] introduced averse measures of risk as
functionals R : £2(£2) — (—o0; 0o] satisfying®

(R1) Risk aversion: R(c) = —c for constants ¢, but R(X) > E[—X]
for nonconstant X.

(R2) Positive homogeneity: R(AX) = AR(X) when A > 0.

(R3) Subadditivity: R(X +Y) < R(X) + R(Y) forallX and Y.

(R4) Lower semicontinuity: set {X € £2(£2)|R(X) < c} is closed
forall c < oo.

Axiom (R1) requires an additional explanation. It follows from
R(c) = —c and (R3) that R is constant translation invariant, i.e.,

RX +c¢) =RX) —c,

see [71].On the other hand, R(c) = —c implies R(E[X]) = —E[X],
and R(X) > E[—X] can be restated as R(X) > R(E[X]) forX # c,
which is the risk aversion property in terms of R (a risk-averse
agent always prefers E[X] over nonconstant X).

Averse measures of risk and coherent risk measures in the sense
of [68] (see Section 4) share three main properties: subadditivity,
positive homogeneity, and constant translation invariance. The
key difference between these two classes of risk measures is that
averse measures of risk are not required to be monotone (and
the monotonicity axiom (A1) in Section 4 does not follow from
(R1)-(R4)), while coherent risk measures are not, in general, risk
averse, i.e. do not satisfy (R1). Nevertheless, the axioms of risk
aversion and monotonicity are not incompatible, and the two
classes have nonempty intersection: coherent-averse measures of
risk; see [111,71] for details.

Theorem 2 in [71] establishes a one-to-one correspondence
between deviation measures and averse measures of risk through
the relationships:

RX) = DX) — E[X],

and shows that R is a coherent-averse measure of risk if and only if
D is lower range dominated, i.e. satisfies (D5). This result provides
a simple recipe for constructing averse measures of risk:

(a) Risk measures of [£P(£2) type
RX) = AlX — EIX]ll, — EIX],
e.g. R(X) = Ao (X) — E[X] and R(X) = A MAD(X) — E[X].

(b) Risk measures of semi-LP($2) type
RX) = AX — EIXT]-l, — EIX],
e.g. R(X) = ro_(X) — E[X].

(c) Risk measures of CVaR type: (i) R(X) = CVaR,(X); (ii) mixed
CVaR

DX) = R(X — E[X]), (82)

pe[l,00], >0,

pe[l, o], A >0,

1
R(X) :f CVaR, (X)dA (@),
0

where fol dA(e) = 1and A(a) > 0; and (iii) worst case mixed
CVaR

1
RX) = sup/ CVaR, (X)dA(x),
reA Jo

where A is a set of weighting nonnegative measures A on (0, 1)
with fol dA(a) = 1. These measures correspond to the CVaR-

deviation, mixed CVaR deviation (74), and worst case mixed
CVaR deviation (75), respectively.

8 In [111], these measures are originally called strict expectation bounded risk
measures, and then in the subsequent work [109], they are named averse measures
of risk to reflect the concept more accurately.



P. Krokhmal et al. / Surveys in Operations Research and Management Science 16 (2011) 49-66 63

Among these, only risk measures of CVaR type and risk measures
of semi-LP(£2) type with A € (0, 1] are coherent. Also, the
mixed CVaR can be equivalently represented in the form (42), see
[71, Proposition 5].

Another major implication of Theorem 2 in [71] is that all
optimization procedures available for deviation measures can be
readily applied to averse measures of risk. In particular, & and D
corresponding through (82) have the same risk envelope and risk
identifier and

R(X) = — inf E[XQ],
Qeq

Q@ ={Q € L£2(2) | RX) > —E[XQ] for all X},

where in addition R is coherent if and only if the corresponding
risk envelope @ satisfies (Q4).

As coherent risk measures, averse measures of risk can be also
characterized in terms of acceptance sets: a random variable X is
accepted or belongs to an acceptance set # if its risk is nonpositive,
i.e. R(X) < 0.In view of the property R(c) = —c for constants
¢, R(X) can be interpreted as the minimal cash reserve (possibly
negative) making X + R(X) acceptable. Theorem 2 in [111]
shows that there is a one-to-one correspondence between averse
measures of risk R and acceptance sets +4:

A={X]|RX) <0}, RX) =inf{c | X + ¢ € A}, (83)
where each + is a subset of .£2(£2) and satisfies

(A1) A is closed and contains positive constants c,
(A2) 0 € 4, and AX € A wheneverX € A and A > 0,
(A3) X+YeAforanyX € Aand Y € A,

(A4) E[X] > Ofor every X s 0in +.

In addition, R is coherent if and only if 4 contains all nonnegative
X. With this theorem, examples of acceptance sets for averse
measures of risk are straightforward:

(@) A = {X|A X =E[X]ll, < E[X]} for the risk measures of £ (£2)
type withp € [1, o0], A > 0.

(b) A = {X|A|I[X — E[X]]-|l, < E[X]} for the risk measures of
semi-LP(£2) type with p € [1, o0], A > 0.

(c) A = {X|CVaR,(X) < 0} for R(X) = CVaR,(X), « € [0, 1].

In view of (83), Rockafellar et al. [111] interpreted R as -
effective infimum of X: R(X) = A-infX = infy .4 c, and restated
D corresponding to R through (82) as H(X) = E[X] — A-infX.
This provides an interesting interpretation of D: for each X, D (X)
is the least upper bound of the difference between what is expected
and what is accepted under given . For detailed discussion of
these and other issues concerning averse measures of risk, the
reader may refer to [111,71].

5.3. Error measures

The third important concept characterizing uncertainty in a
random outcome is error measures introduced by Rockafellar et al.
[111,71,109] as functionals & : £2(£2) — [0, oo] satisfying

(E1) Nonnegativity: €(0) = 0, but &(X) > 0 for X # c; also,
&(c) < oo for constants c.

(E2) Positive homogeneity: & (AX) = A& (X) when A > 0.

(E3) Subadditivity: (X +Y) < EX) + &(Y) forall X and Y.

(E4) Lower semicontinuity: set {X € £2(£2)|€(X) < c}is closed for
allc < oo.

Error measures can be viewed as norms on £P(£2), e.g. §(X) =
IX12, however, as deviation measures and averse measures of risk,
they are not required to be symmetric §(—X) # &(X) to allow

treating gains and losses differently. An example of asymmetric
error measure is given by

EappX) = llaXy +bX_|,, a=0,b=0,1<p=o0, (84)

where a and b are not both zero. Observe that fora = 1and b = 1,
(84) reduces to «£P norms ||X||,, whereas fora =1, b=0anda =
0, b = 1, it simplifies to || X ||, and || X_||,, respectively. Another
example is the asymmetric mean absolute error (72) discussed
in [110] in the context of the quantile regression.

Functionals £, R, and & share the same three properties:
positive homogeneity, subadditivity, and lower semicontinuity.
The only difference comes from axioms (D1), (R1), and (E1) on
how the functionals treat constants. In fact, any two of (D1), (R1),
and (E1) are incompatible, i.e. there is no functional satisfying any
two of these axioms. Unlike the relationships (82), there is no
one-to-one correspondence between deviation measures and error
measures. Nevertheless, a simple relationship between these two
classes can be established through penalties relative to expectation

DX) = €X — E[X]). (85)

The relationship (85) is only a particular example of such a
correspondence. Another subclass of deviation measures can be
obtained from error measures by error projection, which in the case
of infinite dimensional «£2(£2) requires an additional assumption
oné.

An error measure & is nondegenerate if there exists § > 0
such that &(X) > § |E[X]| for all X. For example, the asymmetric
mean absolute error (72) is nondegenerate, whereas &, p ,(X) is
nondegenerate fora > 0,b > 0,1 < p < oo with § = min{a, b};
see [109]. Theorem 2.1 in [109] proves that for a nondegenerate
error measure &,

DX) = Cigﬂgg(x —0) (86)

is the deviation measure called the deviation of X projected from &,
and
$(X) =argmin&X — ¢) (87)
ceR

is the statistics of X associated with &.In general, $(X) is an interval
[87(X), 87 (X)] of constants such that 4~ (X) = min{c|c € §(X)}
and 87 (X) = max{c|c € 8(X)}.

Well-known examples of the relationships (86) and (87) include

EX) = IIXll2, DX) =X —-EX]ll2=0(X), $(X)=E[X],
EX) = IXlli,  DX)=[X—medX)[:, S(X)=med(X),

where med (X) is the median of X (possibly an interval), and
Ee(X) =EX; + (@' = DX_1,  DX) = CVaR2(X),
3(X) = [q, X), g (X)],

where g, (X) = inf{t|Fx(t) > o} and g} (X) = sup{t|Fx(t) < a}
with Fx (t) being the cumulative probability distribution function
of X. Observe that for &(X) = | X]|,, deviations (85) and (86)
coincide, whereas for &(X) = ||X||4, they are different.

Theorem 2.2 in [109] proves that if for k = 1,...,n, Dy is
a measure of deviation, and & is a nondegenerate measure of
error that projects to Dy, then, for any weights A, > 0 with

22:1 A =1,
EX) = inf
C1,enCn

A& X —C) + -+ 4:6,(X — o)}

21Cq+-+AnCn=0

defines a nondegenerate measure of error which projects to the
deviation measure

DX) = 11 D1(X) + -+ - + A Dy (X)
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with the associated statistic
$3X) =281 X))+ -+ ApSn(X).

An immediate consequence of this remarkable result is that
for any choice of probability thresholds «, € (0, 1) and weights
M > Owith Y ), A =1,

ToeensCi o
A Cp+-+AnCn=0

€(X) =EX]+ _inf {EE[max{O, C; — X}

A

+ -+ Z2E[max{0, G, — X}]}
n

is a nondegenerate error measure which projects to the mixed

CVaR deviation measure £ in (73) with the associated statistic

$(X) = 2Go (X) + - -+ + AnGo, (X),
0oy, X) = [d5, X), g, ]

Example 2.5 in [109] shows that for a given deviation measure
D, a nondegenerate error measure can be obtained by inverse
projection

€X) = D(X) + [E[X]],

which through (86) projects back to D with the associated
statistics $(X) = E[X]. Consequently, there could be more than
one error measure projecting to the same deviation measure, e.g.
&(X) = |IX|l> and &(X) = |IX — E[X]|l> + |E[X]| both project to
D(X) = o(X), and an arbitrary nondegenerate error measure &
can be modified as &'(X) = inf,cg EX — ¢) + |E[X]] = 6(X —
E[X]) + |E[X]]| to have E[X] as the associated statistics.

It is left to mention that for a given error measure & (X), the
representations (85) and (86) along with the relationships (82)
provide two ways for constructing (different) averse measures of
risk

R(X) = &(X — E[X]) — E[X], RX) = Cigﬂgé‘(x —c) — E[X].
Remarkably, for the asymmetric mean absolute error (72), the
second formula can be restated as R(X) = infreg E[@™'[X —
c]- — c), which coincides with the well-known optimization
formula (53) for CVaR. This finishes the discussion about the
relationships between three classes of measures D, R, and §&.
For other examples of such relationships, in particular for the
error measure corresponding to the mixed CVaR-deviation (73),
see [111,71,109].

One of the important applications of error measures in risk
analysis, statistics, and decision making under uncertainty is a
generalized linear regression: approximate a random variable Y €
£2(£2) by a linear combination ¢y + c1X; + -+ - + X, of given
random variables X; € £2(82), k = 1,...,n, ie, minimize the
error Z(co, €1, - .., Cn) = Y — (co+¢c1X1 + - - - + ¢ X;y) with respect
tocg,C1, ..., Cpt

min &(Z(co, 1, .-
C0sC15enes Cn

., Cn)). (88)

Observe that because of possible asymmetry of €, &(—Z) # &(2).
Theorem 3.2 in [109] proves that error minimization (88) can
be decomposed into

n n
min DY — Z Xk and cped|Y — Z aXy), (89)
k=1 k=1

where O is the deviation of X projected from &, and & is the
statistics of X associated with &. As an immediate consequence of
this important result, we obtain the following examples:

(a) Classical linear regression (least squares) ming,,c,
(co + Y_p_; CkXi)ll2 is equivalent to

Cn ”Y -

min o
C1s.-sCn

n n
Y — Z X and ¢g=E|Y — Z X
k=1 =1
(b) Median regression ming,.c,....c, |Y — (co + Y gy aXe) |, is
equivalent to

n
co=med [Y — chxk
k=1

(c) Quantile regression min, c,,....c, E[Z(co, €1, ..., Cn) 4 + (@ 1—

1Z(co, €1, ...,Ccn)—], @ € (0, 1), reduces to

n
min CVaR? [ Y — ) X and
C1s.-sCn o ; kX

n
Co=—VaR, [Y — Z cXi

k=1

Example (a) confirms the well-known fact that the least squares
regression is equivalent to minimizing variance of Y — ZZ:l Xk
with the constant term cy (intercept) set to the mean of Y —
ZZ:1 ¢k Xy, whereas Example (b) shows that the linear regression
with &(-) = || - ||; does not reduce to minimization of the mean
absolute deviation and that ¢g is not the mean of Y — Z;Z:] ciXg. The
theory of error measures elucidates that this is possible in Example
(a) because for €(-) = || - ||z, the deviation from the penalties
relative to expectation, i.e. (85), coincides with the deviation from
error projection, i.e. with (86). Examples of the linear regression
with other error measures, including the so-called mixed quantile
regression, risk-acceptable regression, and unbiased linear regression
with general deviation measures, as well as optimality conditions
for (89) are available in [109].
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