

Portfolio Optimisation Using
Value at Risk

Project Report

by

Vinay Kaura

A project report submitted as partial fulfilment of the requirements for the degree of

Computing (Computational Management) MEng

Imperial College London

Project Supervisor: Prof. Berç Rustem
Second Marker: Panayiotis Parpas

Project Website: http://www.doc.ic.ac.uk/~vk02/project

 - i -

Abstract

Optimal portfolios are normally computed using the portfolio risk measured in terms of its
variance. However, performance risk is a problem if the portfolio does not perform well.
This project involves using linear programming techniques to define and handle the “Value-
At-Risk” risk metric.

By evaluating historical prices to create future scenarios one can determine the “Value-At-
Risk” of a specified portfolio. Using linear programming software to develop a returns model
for the FTSE 100 one can, hence, calculate which stocks should be bought or sold in order
to minimise the “Value-At-Risk” of a portfolio with an underlying required returns
constraint. The developed tool will look at multi-period scenarios and seek to optimise the
portfolio accordingly.

This report documents the analysis of current ways of measuring single period “Value-At-
Risk” and the formulation of a unique method of calculating multi-period “Value-At-Risk”.
It goes on to describe an application which implements this model and highlights the results
of exhaustive testing of the application.

Ultimately, using back testing, this report demonstrates how the developed model would
have, hypothetically, been able to make profits of up to 40% over the course of the past year
while the FTSE 100 benchmark rose by only 27%.

Great stocks are extremely hard to find. If they weren't, then everyone would own them. - Philip A. Fisher

 - ii -

Acknowledgements

Throughout the duration of this project Professor Berç Rustem has been a brilliant project
supervisor and his vast array of knowledge has been a great help in times of need. I am also
very grateful for the advice given by Panayiotis Parpas during my project.

For the assistance given in setting up of batch jobs and discussing technical implementation
techniques I would like to thank Duncan White from CSG.

I would also like to thank Rezwan Ud-Din, from Goldman Sachs, who took time out of his
busy schedule to test my final application.

 - iii -

Table of Contents

1. Introduction

1.1. Introduction & Motivation ...1
1.2. Project Objectives ...3
1.3. Key Contributions ..3

2. Background Research

2.1. Value At Risk and Current Implementations ..4
2.2. Conditional Value At Risk ..8
2.3. Multi-period Scenario Generation & Portfolio Representation..................................11
2.4. Multi-period Optimisation ..13
2.5. Efficient Frontier ..14

3. Specification

3.1. Core Requirements
3.1.1. Core Requirements – Front-End Specification ..16
3.1.2. Core Requirements – Back-End Specification ...17

3.2. Non-Core Requirements ...17
3.3. Extensions ..18
3.4. Documentation Requirements ...18
3.5. Implementation Requirements ...19
3.6. Summary of Requirements ...19

4. System Design

4.1. System Overview ..20
4.2. Component Organisation ...22
4.3. Graphical User Interface ...23

5. System Implementation

5.1. Implementation Languages ...25
5.2. The Database

5.2.1. Database Implementation ..25
5.2.2. Database Structure ...27
5.2.3. Database API ..28

5.3. The Data Downloader
5.3.1. Data Source ...29
5.3.2. Data Acquisition ...29
5.3.3. Parameters Re-calculation ...30
5.3.4. Job Automation ..30

5.4. The Scenario Generator
5.4.1. Cluster ..30
5.4.2. Java Wrapper ...31

5.5. The Optimiser
5.5.1. Optimisation Library Selection ..33
5.5.2. Interlinking the Optimisation Library with the Application34
5.5.3. Optimiser Wrapper ..35

5.6. The Graphical User Interface
5.6.1. Interface Concepts ...37

 - iv -

5.6.2. Application Graphical User Interface ..37
5.6.3. Current Portfolio Composition & Parameters Panel ...39
5.6.4. Scenario Tree Panel ...41
5.6.5. Optimised Portfolio Panel ..42
5.6.6. Portfolio History Panel ...45
5.6.7. Historical Asset Prices Panel ..45
5.6.8. Back Testing Panel ...46
5.6.9. JFreeChart Graphs ...47

5.7. The Back Tester ..48

6. Project Management
6.1. Source Control ..49
6.2. Time Management ..49

7. Testing & Evaluation

7.1. Model Verification
7.1.1. Individual Optimisations ..51
7.1.2. Back Testing ..52
7.1.3. Efficient Frontier ..55

7.2. Validation of the Interface and System Features ..56
7.3. End User Testing: Demonstration to Goldman Sachs ...58
7.4. Summary ...59

8. Conclusion

8.1. Remarks ..60
8.2. Future Work ..60

9. References ...61

10. Appendix

10.1. Section A: Stored Procedures ..62
10.2. Section B: Example Auto-Generated Optimisation Output File63
10.3. Section C: Feedback Email From Rezwan Ud-Din ..64
10.4. Section D: User Guide..66

 - 1 -

Chapter 1

Introduction

1.1 Introduction & Motivation

Before looking at “Value at Risk” (VaR), we need to firstly define what risk is and, secondly,
why we require a method to measure it. With regards to this project, risk is a measure of how
volatile an asset’s returns are. Exposure to this volatility can lead to a loss in ones
investments. For this reason tools are used not only to passively measure and report risk, but
also to defensively control or actively manage it.

As stated in [6] and [7], there have been several large publicised losses in the 1990s, all of
which have highlighted the need for accurate risk measure and control. These have included:

 In February 1993, Japan’s Showa Shell Sekiyu oil company losing $1.58Billion from
speculating on exchange rates.

 In December 1993, MG Refining and Marketing reporting a loss of $1.3Billion from
failed hedging of long-dated oil supply commitments.

 In December 1994, California’s Orange County announcing losses from repos and
other transactions totalling $1.8Billion.

 In February 1995, Nick Leeson, a trader from Britain’s Barings PLC, losing
$1.33Billion from unauthorised Nikkei futures trading.

After such events regulators have sought to defensively control the risk institutions take.
They aim to find a balance between setting out a comprehensive set of regulations to identify
institutions who take on excessive risk, while not introducing too rigid a system.

VaR is a popular method which regulators use to assess risk. For example, the Basle
Committee1 has sanctioned institutions to use internal VaR models for capital requirements2.

VaR is also used by institutions themselves. It is commonly used for self-regulation in the
following manner:

 Benchmark Measure – To provide a company-wide yardstick to compare risks across
different markets.

 Potential Loss Measure – To give a broad idea of the worst loss an institution can
incur.

 Equity Capital – To set a capital cushion for the institution.

When managed properly, VaR can provide a controlled way of getting high returns on ones
investments. In March 2006, David Viniar, Chief Financial Officer from the investment bank
Goldman Sachs, stated that the firm’s VaR rose from $80million in the previous quarter to
$92million (+15%), which allowed the firm to increase its net income by 64%.

1 Committee set up by the Bank of International Settlements and based in Basle. It drew up international capital adequacy

standards for banks. As stated on http://www.finance-glossary.com.

2 Rules to identify how much risk the bank is exposed to and then make sure if it loses money then it has enough in reserves
to cover these losses. As stated in [18].

 - 2 -

However, rather than just using VaR to measure the risk of institutions as a whole, it is also
used by institutions in portfolio optimisation techniques to actively manage their risk. This is
the focus of my project.

Modern Portfolio Theory models the return of an asset as a random variable and a portfolio
as a weighted combination of these assets1. This implies that the return of a portfolio is thus
also a random variable and consequently has an expected value and a variance. Risk in this
model is normally identified with the variance of portfolio return. However, for the purposes
of my project, VaR will be used to define the risk of portfolios.

The main problem with variance is that it does not take into consideration the direction of an
investment's movement. An asset could be volatile because its price rises quickly, however
investors are not distressed by gains!

For investors, risk is about the odds of losing money, and VaR is based on that common-
sense fact. By assuming that investors care about the odds of big losses, VaR can be used to
answer the questions, "What is my worst-case scenario?" or "How much could I lose in a
really bad month?"

The VaR statistic has three components: a time period, a confidence level and a loss amount
(or loss percentage). It can thus be used to answer question such as:

 What is the most I can (with a 95% or 99% level of confidence) expect to lose in
pounds over the next month?

 What is the maximum percentage I can (with 95% or 99% confidence) expect to lose
over the next year?

Bearing this risk measure in mind, I aim to develop an application that will recommend
rational investment decisions. Rationality is modelled by supposing that an investor choosing
between several portfolios with identical expected returns, will prefer that portfolio which
minimizes risk.

By discretising the future into scenarios comprising of multiple time periods, investment
decisions will need to be made at the beginning of each period. Using Linear Programming
techniques, an objective function and set of constraints will be generated to represent the
investment problem. Making use of optimisation software, the optimal parameters for the
decisions will then be determined.

This is a risky project since there does not exist at present a similar multi-period portfolio
optimisation model which takes into consideration VaR. Combining the representation of a
multi-period portfolio with the calculation of VaR, this report defines a model which can
optimise a portfolio to hopefully provide lucrative returns.

It's not whether you're right or wrong that's important, but how much money you make when you're right
and how much you lose when you're wrong. - George Soros

1 As stated on http://www.investopedia.com/articles/04/092904.asp

 - 3 -

1.2 Project Objectives

The project has the following key objectives:

 Analyse the current methods of calculating single period VaR and formulate a new
multi-period optimisation model

 Implement the developed model as an easy to use application
 Implement an automated back-testing facility to verify the accuracy of the developed

model
 Demonstrate how the application could be incorporated into a professional Portfolio

Manager’s daily workflow

1.3 Key Contributions

This report is divided up into the following key chapters:

Background Research
The background research introduces various methods in which VaR is currently calculated
and how it can be applied to portfolio optimisations. It also explains that VaR has adverse
properties which makes it difficult to use in portfolio optimisations. “Conditional Value-At-
Risk” (CVaR) is introduced as an alternative method of calculating VaR. We then go onto
discuss the multi-period portfolio optimisation problem and finally combine the multi-period
portfolio representation with the calculation of CVaR to define a new multi-period portfolio
optimisation model using CVaR.

System Design
The formulated model will only be useful to a user if it is incorporated in a well designed
application. This chapter describes a proposed application which seeks to demonstrate how a
professional portfolio manager could use the model to make investment decisions and
contains features which would allow the use of the application to fit in the portfolio
manager’s normal day-to-day work patterns.

System Implementation
This chapter describes how the various modules of the application were implemented, and
highlights the problems encountered and how they were rectified.

Testing & Evaluation
The project’s testing is split into testing of the model, through back-testing, and testing of the
application, through exhaustive and user testing. This chapter describes the tests carried out,
and their results and analysis.

Conclusion
This chapter analyses the overall project and comments upon its strengths and weaknesses. It
also highlights suggestions for future work which could be carried out to further enhance the
developed application and model.

 - 4 -

Chapter 2

Background Research

Investing without research is like playing stud poker and never looking at the cards.
Peter Lynch

2.1 Value at Risk and Current Implementations

Formally put, “Value-at-Risk” (VaR) measures the worst expected loss over a given horizon
under normal market conditions at a given confidence level, as stated in [12].

To put this into context, one might say that the VaR of their portfolio is £0.5 million at the
95% confidence level with the target horizon set to one week. This means that there is a 5
out of 100 chance that the portfolio will lose over £0.5 million within the target horizon
under normal market conditions.

Figure 1, below, visually highlights this. It displays 520 observations of the return of a
portfolio with the target horizon set to one week. The VaR of the portfolio is the loss that
will not be exceeded in 95% of the cases, ie. the lower 5% of returns (26 largest losses),
which is equal to £0.5 million.

Figure 1

One method of estimating the VaR is to assume that the distribution of returns of the
portfolio follows a Normal Distribution. Hence, we can multiply the standard deviation of
the returns (3.19) by the 95 percentile of the standard normal distribution (1.645) and
subtract this from the mean of the returns (5.55). In this example, this method would
estimate the VaR of the portfolio to be £0.3 million.

VaR is a popular risk measure as it provides users with a summary measure of market risk
using the same units as the portfolio’s bottom line; eg. GBP, USD or EUR depending upon
the base currency of the portfolio. This means that VaR can also be communicated to a
relatively non-technical audience, such as managers or shareholders.

VaR is also favourable as it looks at downside risk. Hence, unlike the variance of a portfolio,
it is not impacted by high returns.

0
20
40
60
80

100
120

-5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
Weekly Return (£million)

N
um

be
r

o
f O

cc
ur

en
ce

s

5% loss probability

 - 5 -

-2 2 4 6 8

0.05

0.1

0.15

0.2

ξµ

2σ

p(ξ)

VaR

area = 1- α

In order to analyse VaR further, we can mathematically define it as:

 })(|inf{)(αζξζξζ α ≥≤== PVaR (1)
where α is the confidence level and ξ is a random variable

As mentioned earlier, we could assume the rate of returns of a portfolio could follow a
normal distribution, in which case the VaR of the portfolio would be1:

 σαµαξζ α)()()(1 kVaR +=Φ== − (2)
 ..ts
)12(2)(1 −= − αα erfk (3)

 ∫ −=
z

t dtezerf
0

22)(
π

 (4)

where ξ is a randomly distributed variable with mean µ and standard deviation σ

The problem with this assumption is that the normal distribution curve assumes each event is
completely random. However, in reality, when a share price falls, people sell. This extra surge
of selling will push the share price into the extremes a lot quicker than the curve suggests. A
similar thing will happen when a share price rises. To overcome this problem, rather than
using a parametric approach, implementations can use an empirical approach to calculate a
portfolio’s current risk.

As stated in [3], three common ways of calculating VaR are:

 Variance covariance
 Historical
 Stochastic or Monte Carlo simulation

The variance covariance method uses information on the volatility and correlation of stocks
to compute the VaR of a portfolio. The volatility of an asset is a measure of the degree to
which price fluctuations have occurred in the past and hence expected to occur in the future.
Correlation is a measure of the degree to which the price of one asset is related to the price
of another.

This method of calculating VaR has become popular after the risk management group at the
investment bank J.P. Morgan released an open source system called RiskMetrics in 1994.
RiskMetrics aimed to provide an industry wide standard of measuring financial risk. It began
by releasing details of the model used at J.P. Morgan, and publishing the volatility and

1 Taken from [11]

Figure 2

 - 6 -

correlation information for stocks listed on the major markets in the world. As demands for
enhancements and advice grew, RiskMetrics was spun off from J.P. Morgan in 1998. Since
then RiskMetrics has produced a concrete implementation of its model and expanded its data
set by providing information on foreign exchange, equity, fixed income, and commodities in
33 countries.1

Steps to calculate VaR using the variance covariance method as employed by RiskMetrics:

Step 1 – Specify the confidence level α and construct the volatility matrix V by multiplying a
diagonal matrix of the standard deviations of the returns of the assets in your portfolio
(available from RiskMetrics) by the confidence interval level η of a normal distribution.

)(1 αη −Φ= (5)

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

i

V

σ

σ
σ

η

000
000
000
000

2

1

O
 (6)

Step 2 – Using a column vector ω representing the weighting of each asset in your portfolio
and a matrix C representing the correlation of the return each asset (available from
RiskMetrics) we can calculate the VaR of the portfolio.

 ωω VCVVaR T= (7)

One of the reasons this method has become popular is because it is simple to calculate the
VaR figure, as well as being easy to implement. In practice, institutions can hook in their back
office systems to the RiskMetrics data source to obtain the volatility and correlation matrices.
It, however, does have a few limitations. Since the confidence interval level is obtained by
assuming the distribution of returns follows the normal distribution, as mentioned earlier,
this may not be realistic.

Due to the volume of data, RiskMetrics only provides volatility information for certain
periods (eg. 1 month, 6 months, 1 year) and if an institution wishes to calculate the VaR over
a different period then it must use a mapping function on the available data to estimate the
volatility. In addition, since all historical information about stocks is summarised as a single
volatility value and series of correlation values a vast amount of information is lost.

The historical method was described using Figure 1. To briefly recap, it works by keeping a
record of daily profit and loss of the portfolio. The VaR of the portfolio is the loss that will
not be exceeded in α % of the cases, ie. the lower)%1(α− of returns, where α is the
confidence level. The benefit of this method is that the historical information is realistic,
since, for example, if a major market event occurred in the past, this would be picked up
accurately.

1 As stated on the RiskMetrics website (www.riskmetrics.com)

 - 7 -

Taking into account each historical return allows this method to more accurately calculate the
VaR of the portfolio. A second advantage is that since the institution is keeping its own
historical data it can choose the time horizon to capture the data for, so unlike the variance
covariance method, mapping is not required.

The problem with this method is that it will not work if the portfolio composition changes
over time. However, a historical simulation approach using the historical asset returns data
can be used to overcome this problem. This simulation uses the current portfolio
composition to calculate the VaR over each time period covered by the historical data using
the historical observations of asset return values. The current VaR of the portfolio is hence
the highest VaR of the lowest)%1(α− of VaRs calculated from historical simulation
method. The problem with this is that the historical simulation method is computationally
intensive for large portfolios.

The stochastic method works in the same way as the historical simulation method, but
instead of using historical rates of returns uses a computer generated series of prices for each
asset. More complex manners of generating the prices will provide a more accurate VaR
figure, but will obviously take longer to compute. The method has the advantage of allowing
users to tailor ideas about future patterns that differ from historical patterns.

Rather than just calculating the VaR of a portfolio, we wish to use the VaR formulation as
the objective function and aim to minimise it with respect to a portfolio of stocks. If we take
a step back and look at the abstract mathematical definition of VaR we can specify a simple
version of the optimisation problem as:

)]},([{min ξα xfVaR

x
 (8)

 ..ts
 RxpT ≥ (9)
where),(ξxf is the loss function for the portfolio, p is a vector of the mean predicted future prices, x is a
vector of the weightings of the assets in the portfolio and R is the required return

As explained in greater detail by Definition 3.3 in [1], VaR has some adverse properties. A
disadvantageous property of VaR is that it is non-sub-additive and non-convex. This means
that it is possible to construct two portfolios, X and Y, in way such that

)()()(YVaRXVaRYXVaR +>+ . This is counter-intuitive since portfolio diversification
should reduce risk.

Furthermore, as a consequence of its non-convexity VaR has multiple local minima. This is
illustrated in an explicit plot of VaR as stated by Uryasev in [11], reproduced in Figure 3.
Multiple local minima make the optimisation problem hard to solve since we want to find the
global minimum.

 - 8 -

Figure 3

Another problem with VaR is that it does not give any measure of the losses which exceed
the VaR. For example, if the distribution of losses has a stretched tail, the VaR figure would
not provide any indication of this.

2.2 Conditional Value at Risk

Since VaR, as it has been defined so far, has some adverse properties we need to investigate
alternative ways of calculating it. The main problems of the VaR we have defined are:

 it has adverse properties which makes it difficult to optimise a portfolio with a VaR
objective function

 it does not give any indication of the losses which exceed the VaR

An alternative measure VaR is “Conditional Value at Risk” (CVaR). By definition, CVaR is
the expected loss given that the loss is greater than the VaR at that level. Using formula (1)
we can mathematically define CVaR as follows:

]|[)](|[VaREECVaR ≥=≥= ξξξζξξ α (10)
where ξ is a random variable

From this definition, it is clear that VaRCVaR ≥ . Since CVaR is more conservative than
VaR, it is guaranteed not to under-estimate it.

It has also been shown in [9] and [10] that, unlike VaR, CVaR is convex and coherent in the
sense it is sub-additive and monotonic. This means that a CVaR function will be easier to
optimise in an optimisation problem regarding wealth distribution in a portfolio.

Once again we can assume that the rate of returns follows a normal distribution and hence
the CVaR of a portfolio would be1:

 σαµ)(1kCVaR += (11)
 ..ts

)1(2

1)(21))12((1
απ

α
α −

=
−−erfe

k (12)

1 Taken from [11]

x

VaR

 - 9 -

 ∫ −=
z

t dtezerf
0

22)(
π

 (13)

However, rather than use this parametric approach, CVaR can also be calculated using an
empirical approach. As with VaR, using either historical or stochastic simulations, future
prices can be generated and the CVaR calculated.

From Figure 4 it can be visually seen, that CVaR will lie in the tail of the distribution beyond
the value of the VaR of the portfolio. Therefore, an α tail distribution can be used to
formulate the CVaR regardless of the distribution of returns.

Figure 5

Since VaR is the mean of the losses greater than VaR, in [10] Rockafellar and Uryasev have
used the tail distribution as the basis to formulate the following definition of CVaR:

 ∫
ℜ∈

+− −−+=
n

dpxfxCVaR
ξ

α ξξζξαζζ)(]),([)1(),(1 (14)

where α is the confidence level, ζ is the VaR of the portfolio, x is a vector of the weightings of the assets in
the portfolio, ξ is a random variable,)(ξp is the probability of ξ occurring,),(ξxf is the loss function for
the portfolio, and }0,max{zz =+

In addition, it has been shown in [10] that the calculation of CVaR can be reduced to an LP
problem in the following manner:

 The integral over the continuous distribution can be estimated using scenarios:-

o),(),(,1,)(,
1

s
S

s
ss

s xfxfppp ξξξξξ →=→→ ∑
=

o Making the definition of CVaR:

 ∑
=

+− −−+=
S

s
s

s pxfxCVaR
1

1]),([)1(),(ζξαζζα (15)

 This definition can now be reduced to LP by expanding out +−]),([ζξ sxf :-

1
α α

α

+ −
−

0 ξ

1

VaR

α -Tail Distribution, Ψα

Ψα(ξ)

-2 2 4 6 8

0.05

0.1

0.15

0.2

ξµ

p(ξ)

VaR

area = 1- α

CVaR
2σ

Figure 4

Mean=

 - 10 -

o Sszxfzxf s
s

s
s ,..,1;0;),(]),([=≥−≥→− + ζξζξ

It is clear that this linear formulation is guaranteed to implement the +z function when, for
all s, sz is minimised. The meaning of CVaR is also made clearer with this formulation. As
can be seen, sz will be zero, in all cases when the loss of the portfolio is less than the VaR of
the portfolio. If the loss is greater than the VaR of the portfolio, sz will take the value of the
difference between the loss and the VaR of the portfolio. Since the distribution of sz
represents the tail distribution of losses exceeding VaR, the mean can be found by taking the
weighted sum of sz and dividing it by)1(α− . The CVaR of the portfolio is thus this mean
value added to the VaR of the portfolio.

Since VaRCVaR ≥ , if the weightings of assets is optimised in a way such that for all s, sz
equals zero, VaRCVaR = will hold and the optimal ζ will equal the VaR of the portfolio.

This linear formulation is highly beneficial, as it means that large portfolios can be
constructed and optimised with a CVaR constraint in a faster time.

Using this definition of CVaR and the optimisation problem stated in [8] we can set up two
similar optimisation problems. Firstly we can seek to minimise loss with the CVaR of the
portfolio as a constraint:

 ∑
∑ =

=

−
n

i
iin

i
ii

x
xE

xq 1

1

0,
][1min ξ

ζ
 (16)

 ..ts

 ∑
=

≤
−

+
S

s
sz

S 1)1(
1 η
α

ζ (17)

 ∑
=

≥−+−≥
n

i
siii

s
is zxqxz

1

0 0;)(ζξ (18)

 ∑ ∑ ∑
= = =

++=
n

i

n

i

n

i
iiiiiiii xqqcxq

1 1 1

0)(δδ (19)

 iiii xx δδ +−= 0 (20)

 ∑
=

≤
n

k
kkiii xEvxE

1
][][ξξ (21)

 0≥ix (22)
where iq is the initial price of asset i, 0

ix is the initial number of shares held in asset i, ix is the number of
shares held in asset i at the end of the time period, s

iξ is the scenario dependent price of asset i at the end of the
time period, S is the total number of scenarios which exist, ic is the transaction cost of asset i, α is the
confidence level, ζ is the VaR of the portfolio, η is the upper limit for the CVaR of the portfolio, iv is the
maximum fraction of the portfolio, in terms of wealth, asset i can exist within the portfolio and x is a vector of
the weightings of the assets in the portfolio

 - 11 -

The objective function (16) seeks to minimise the loss incurred by the portfolio. Inequalities
(17) and (18) are the CVaR constraints of the portfolio. (17) assumes that the probability of
each scenario occurring is equal. Inequalities (19) and (20) ensure that transaction costs,
proportional to the value of the shares traded, are taken into consideration when optimising
the portfolio. This adds necessary friction to model to ensure that buying or selling assets is
not without a small penalty. Inequality (21) is a value constraint to ensure a diversified
portfolio. Constraint (22) ensures that short positions are not allowed.

Conversely, we can seek to minimise the CVaR of a portfolio given a returns constraint:

⎭
⎬
⎫

⎩
⎨
⎧

−
+ ∑

=

S

s
sx

z
S 1,)1(

1min
α

ζ
ζ

 (23)

 ..ts

 RxE
xq

n

i
iin

i
ii

≥−∑
∑ =

=

1

1

0
][1 ξ (24)

 and constraints (18), (19), (20), (21), (22)
where R is the required return

The two minimisation problems which have been stated seek to optimise a portfolio by
generating S scenarios for the next time period. By increasing the number of scenarios, one
would hope to obtain a more accurate value of VaR. Rather than simply increasing S and
generating a greater number of prices for the next time period for assets, we can look to
define a multi-period optimisation problem.

2.3 Multi-period Scenario Generation & Portfolio Representation

In order to specify a multi-period optimisation returns model, we need to define a method of
generating and future prices and representing a portfolio over multi-period scenarios. Multi-
period scenarios will be used to represent the future prices. These scenarios can be
represented in a tree structure whereby the next time period of the scenario is based upon all
information available at the current time period.

The root node of the scenario tree represents ‘today’. The prices it represents are observable.
The tree structure seeks to partition the future into discrete scenarios with an associated
probability. The nodes further down the tree represent conditional future time periods. The
arcs represent realisations of the variable prices of assets. The probability of a future node is
the product of the probabilities of the ancestors of the node.

Figure 6

t=1

t=0

t=T
s=0 s=1 s=S

 - 12 -

A scenario tree is effectively made up of nodes which contain a cluster of scenarios, one of
which is assigned to be the centroid. The final tree consists of the centroids of each node and
their branching probabilities.

As stated in [5], the following algorithm can be used to generate a scenario tree:
Step 1 – (Initialisation): Create a root node with N scenarios. Initialise all scenarios with the
initial prices of the assets. Form a job queue consisting of the root node.
Step 2 – (Simulation): Remove a node from the job queue. Simulate one time period of growth
in each scenario.
Step 3 – (Randomised Seeds): Randomly choose a number of distinct scenarios around which to
cluster the rest: one per desired branch in the scenario tree.
Step 4 – (Clustering): Group scenario with the seed point to which it is the closest. If the
resulting clustering is unacceptable, return to Step 3.
Step 5 – (Centroid Selection): For each cluster, find the scenario which is the closest to its centre,
and designate it as the centroid.
Step 6 – (Queuing): Create a child scenario tree for each cluster (with probability proportional
to the number of scenarios in the cluster), and install its scenarios and centroid. If the child
nodes are not leaves, append to the job queue. Terminate the algorithm if the job queue is
empty, otherwise go to Step 2.

Imperial College’s Department of Computing, has implemented this algorithm as a C++
application called Cluster. Given a covariance matrix of historical prices of assets, growth rate
of the assets and their current prices, it will output a scenario tree. The application uses sobol
sequences1 to cluster scenarios.

If Cluster is to be used to generate scenarios it needs to be provided with the following inputs:

 Exponential growth rate
 Covariance describing the deviation of the assets from the exponential growth curve

defined the growth rate above

In order for the exponential growth rate to be calculated from the historical asset prices, the
Least Squares method can be used. A general exponential curve can be defined by:

BxAey =

By taking logarithms of both sides a straight line can be plotted with the equation:

BxAy +=)log()log(

Linear regression can then be used to calculate the values of A and B by solving:

a

x

eA
xBya

yxB

=

−=

= 2

),cov(
σ

 (25)

1 A particular type of quasi-random number sequence, as stated on

http://www.montegodata.co.uk/Educate/OptionTerms.htm

 - 13 -

Given that we have multi-period scenarios, we also need a way of defining a portfolio’s
weights and transactions spanning several time periods. This has been done in [4] as follows:

 000)1()1(wccP =+−−+ δδ (26)

 P'11'1'1 00 −=− δδ (27)

 s
t

s
t

s
t

s
t

s wccwr
t

=+−−+− δδ)1()1(1 Tt ,..,2,1= (28)

 0'1'1 =− tt δδ Tt ,..,2,1= (29)
where sp is the probability of scenario s occurring, 0W is the initial wealth, s

tw is a vector of asset balances at

time t under scenario s, s
tr is a vector of returns of assets under scenario s at time t, s

tδ is a vector of assets

sold at time t under scenario s,
s
tδ is a vector of assets bought at time t under scenario s, c is a vector of

transaction costs for each asset, P is a vector representing the initial portfolio and 1 is the vector)'1,...,1,1,1(

Constraints (26) and (27) enforce the initial capital allocation. Given an initial portfolio of
constraints, the model allows money to be added to the portfolio in this initial time period. It
also enforces the initial budget of unity, ensuring that the sum of the weights of each asset
equals 1. Constraint (28) represents the decision of buying/selling assets at each time period
for each scenario. It also incorporates the return of assets in the time period, and the
transaction costs of buying and selling shares. Constraint (29) is a balance constraint, ensuring
that the value of shares sold equals the value of shares bought in the same period.

2.4 Multi-period Optimisation

Now that a method of generating and representing future prices of assets over several
periods has been defined, we can specify a multi-period returns model. Basing it on the
method of representing a portfolio over multi-periods as stated in [4], this model will
optimise a portfolio when a required returns constraint is submitted by the user. To make the
below model easier to read, vector notation has been used.

⎭
⎬
⎫

⎩
⎨
⎧

−
+ ∑

=

S

s
ssw

zp
1,)1(

1min
α

ζ
ζ

 (30)

 ..ts
 000)1()1(wccP =+−−+ δδ (31)

 P'11'1'1 00 −=− δδ (32)

 s
t

s
t

s
t

s
t

s wccwr
t

=+−−+− δδ)1()1(1 Tt ,..,2,1= (33)

 0'1'1 =− tt δδ Tt ,..,2,1= (34)

 Rwp s
T

S

s
s ≥∑

=1

 (35)

 v
w

w
s
t

s
t

≤∞

'1
 (36)

 0)'1(00 ≥−−≥ ζs
Ts wWWz Ss ,..,2,1= (37)

 - 14 -

s
t

s
t ∆≤≤ δ0 Ss ,..,2,1= & Tt ,..,1,0= (38)

 s
t

s
t ∆≤≤ δ0 Ss ,..,2,1= & Tt ,..,1,0= (39)

 U
t

s
t

L
t www ≤≤ Ss ,..,2,1= & Tt ,..,1,0= (40)

where sp is the probability of scenario s occurring, 0W is the initial wealth, s
tw is a vector of asset balances at

time t under scenario s, s
tr is a vector of returns of assets under scenario s at time t, s

tδ is a vector of assets

sold at time t under scenario s,
s
tδ is a vector of assets bought at time t under scenario s, c is a vector of

transaction costs for each asset, P is a vector representing the initial portfolio, v is a fraction representing the
maximum proportion of the portfolio, in terms of wealth, an asset can be held and 1 is the vector)'1,...,1,1,1(

Similar to the single period optimisation problems, constraints (30) and (37) seek to minimise
the CVaR of the portfolio. However, in the multi-period case, instead of a scenario
representing a single time period, a scenario represents several time periods. A limitation of
the model I have constructed is that the CVaR of the portfolio is formulated by only looking
at the returns of the portfolios in the final time period of each of the scenarios. I made this
decision so as to slightly simplify the multi-period model and decrease the number of
variables in the model, reducing the time it will take for the model to be optimised.

Constraint (35) ensures that the model produces a return greater than or equal to the
minimum required return of the portfolio. Constraint (36) ensures that an asset can not
constitute more than defined fraction of the portfolio. Constraints (39), (38) and (40) bound
the vectors which represent the portfolio weightings, and the buying and selling of assets.
Constraints (31), (32), (33) and (34) are as those stated in Section 2.3.

2.5 Efficient Frontier

Given the model I have developed in the previous section, every possible asset combination
can be plotted in a risk-return space. The line along the upper edge of the region which
defines the collection of the plotted points is known as the efficient frontier. Combinations
along this line represent portfolios for which there is lowest risk for a given level of return.
Conversely, for a given amount of risk, the portfolio lying on the efficient frontier represents
the combination offering the best possible return. Mathematically the Efficient Frontier is the
intersection of the Set of Portfolios with Minimum Risk and the Set of Portfolios with
Maximum Return1.

No portfolios can be constructed corresponding to points in the region above the efficient
frontier. Points below the frontier are suboptimal so a rational investor will hold a portfolio
only on the frontier. This means that my model should, given a returns constraint, only
return points on the frontier. Figure 7 displays an efficient frontier for VaR, as stated in [12]

1 As stated on http://en.wikipedia.org/wiki/Efficient_frontier

 - 15 -

Figure 7

 - 16 -

Chapter 3

Specification

To give a clear indication of the specification of the various aspects of the system, I will
breakdown the specification in the following modular manner:

 Core Requirements
o Front-End Specification
o Back-End Specification

 Non-Core Requirements
 Extensions
 Documentation Requirements
 Implementation Requirements

The front-end specification outlines areas of the system which will directly interface with the
user. The back-end specification outlines processes of the system which the user does not
see.

3.1 Core Requirements

Ultimately, the system’s main goal is to optimise a portfolio given a returns constraint and
seek to minimise the VaR of the portfolio. In essence, the system should use the inputs
given by the user, compute the optimal portfolio and display the results. In order to
demonstrate the capability of the software and to aid with benchmark testing, the system will
be set up so that it contains only FTSE 100 assets in its domain.

3.1.1 Core Requirements – Front-End Specification

In order for the optimisation to be carried out, the system will need to capture the following
inputs from the user, and perform validity checks to ensure the input is of a valid value:

 initial weightings of assets in the portfolio – should be entered as either number of shares
held of each asset or amount of asset held as a fraction of total initial wealth. If
entered as fractions of total wealth, the fractions should sum up to 1. Due to the
amount of data, the system should allow the weightings to be entered through the
use of textboxes, or the import of a comma separated values (.csv) file. All values
should be non-negative.

 required return – should be entered as a non-negative percentage figure.
 confidence level – should be entered as a non-negative percentage figure.
 transaction costs – should be entered as a non-negative percentage value for each asset.

The system should only make it compulsory for the user to enter this once, and store
the values for all future optimisations. It should, however, be possible for the user to
amend any transaction cost at will.

 number of days in which make up 1 time period – should be entered as a non-negative
integer. Once this has been set for a portfolio, the system should default to this time
period, unless the user requests otherwise.

 number of time periods to consider in optimisation problem – should be a non-negative integer
greater than 1.

 - 17 -

 number of scenarios which should be generated per scenario tree node – should be a non-negative
integer greater than 1

Once these parameters have been entered and verified, the system should seek to optimise
the portfolio. Once the optimisation has been completed, the system should inform the user
of the optimal distribution of the wealth between the assets it recommends.

Due to the large amount of data being returned, the system should display it in an as easy to
read manner as possible. The Graphical User interface should adhere to Nielson’s Ten
Usability Heuristics, stated in [16], to ensure that it is an effective interface.

The system should also provide the facility for this data to be exported to file in a Microsoft
Excel compatible format (for example .xls or .csv). The system should also output the VaR
of the portfolio, which should equal the CVaR of the portfolio due to the reasons highlighted
in section 2.3.

3.1.2 Core Requirements – Back-End Specification

The main purpose of the back-end of the system is to implement the optimisation problem
stated in section 2.5 of this document. Given the inputs stated in 3.1.1 the back-end should
return the following:

 optimal portfolio weightings
 optimal portfolio Value-At-Risk

In order to perform the calculation, the back-end needs to firstly generate the future
scenarios. As stated in Section 2.3, this is done by analysing the historical data and using
stochastic programming to create a scenario tree. The option exists to either incorporate the
implementation of a new scenario tree generator into the system, or to use Cluster1. Either
way, historical asset prices of the assets will be required. The system should automatically
acquire the up-to-date prices of assets in the system on a daily basis. Since this is a repetitive
daily process, there should be no user intervention required to perform the task.

Once all the parameters required to perform the optimisation have been obtained, the back-
end should, as efficiently as possible, carry out the optimisation and return the required
values.

3.2 Non-Core Requirements

The features described in this section are those which introduce greater functionality to the
system but still remain directly related to the optimisation of a portfolio.

Rather than simply provide the user with the optimal asset weightings, VaR and details of
which assets need to be bought/sold, the user should also be shown the scenario tree which
has been generated and used for the optimisation. This will allow the user to have confidence
that the system has generated acceptable future prices of the assets, and optimised the
portfolio accordingly.

1 Application developed by Department of Computing at Imperial College, as described in section 2.3

 - 18 -

The system should also provide the facility for an efficient frontier to be generated. This will
enable the user to visually see how different requirements of return will affect the amount of
risk that needs to be taken.

Steps should also be taken to increase the speed of the optimisation process as much as
possible. A possible way of achieving this is by having a separate automatic process to obtain
asset prices. This will ensure that the price data within the system is always up-to-date and the
system does not need to perform multiple ad-hoc acquisitions of prices. The system should
also seek to learn the typical number of days which make up a time period, as entered by the
user, and pre-generate the historical returns data for these time periods. This will help to
ensure that the data required to generate the scenario tree is not being created at runtime.

3.3 Extensions1

As will be explained in greater detail in Section 7.1.2, back-testing will be used to verify the
model. One possible extension to the system would be to incorporate back-testing as a
feature of the system. This will be highly beneficial as it will provide an in-built way for
someone to check the accuracy of the VaR model of the system.

To demonstrate how a tool of this kind can be used by real institutions, I have also specified
optional features which will help to show how the system can be made more appealing for a
professional portfolio manager seeking to optimise his/her portfolios with VaR
requirements. These features aim to facilitate the seamless incorporation of the system into a
professional’s standard workflow.

 The system should allow the user to view the historical data of assets in its domain.
 The system should allow for the persistent storage and tracking of a user’s portfolios.

This will allow a user to use the system as a full management tool for his/her
portfolios. The system can thus keep track of a portfolio over time, and can
effectively record all trades booked by the user at each optimisation instance. The
system should be able to provide a graphical method of showing the past
performance of the portfolio and facilitate the option of comparing the portfolio to a
user selected benchmark.

3.4 Documentation Requirements

In addition to the implemented system, thorough documentation should also be provided.
This document should cover the following:

 outline of the operation of the system, including a user manual highlighting how to
perform key tasks

 an evaluation of the implemented system, highlighting any weaknesses in the system
 ideas for further enhancements to the system

1 The requirements stated in this section should be deemed desirable but are not strictly required by the specification

 - 19 -

3.5 Implementation Requirements

When considering how to implement the software, care should be taken when choosing the
programming language(s) it will be written in. The key high level requirements from a
software usability perspective are:

 Easy to use Graphical User Interface
 Fast computation of numerically intensive calculations

3.6 Summary of Requirements

To provide a neat outline of the specification, I can use goal orientated Requirements
Engineering methods. The fore mentioned specification is thus summarised in the following
KAOS notation diagram:

Perform calculation within
acceptable amount of time

Compute
Optimised
Portfolio

Generate
Scenarios

Obtain
Historical
Prices of
Stocks

Display
Historical

Information
of Stocks

Display
Efficient

Frontier of
Portfolio

Verify
Inputs From

User

Generate
Optimisation

Problem

Import Data
From .csv

File

Export
Portfolio To

Excel
Compatible

File Display
Scenario

Tree

Perform
Back-

Testing

Persistent
Storage of
a Portfolio

Figure 8

=core requirement

=non-core requirement

=extension

 - 20 -

Chapter 4

System Design

If you are either a conservative or a very nervous investor, a mechanical system might be smart. It certainly
achieves two goals: (1) limiting potential losses and (2) helping you sleep at night. As for maximizing your
returns, I think that's another story. - Jonathan Steinberg

The intended software result of this project will be an application which ultimately
implements the multi-stage optimisation problem. However, as stated in the Specification I
also intend the application to be designed and have features which demonstrate how it could
be used by a professional portfolio manager in his or her day to day work. The final
application will thus hopefully demonstrate how a good theoretical model is the foundation
of a good application, but without a good application a good theoretical model is useless to
an end user.

4.1 System Overview

A good design is the basis of a good final application so before defining exactly how I will be
implementing it, I will describe an abstract overview of my application. The figure below
highlights the main components of my system and how they will interact.

Figure 9

 - 21 -

Module 1 – The Database – The database forms the core of the application. I will place a
wrapper around the actual database, with which other components must interact to gain
access to the database. This will ensure that only allowed commands are run on the database
and that there is common interface for the other components to use. The database will store
the following data:

 Names and symbols of assets in the FTSE 100
 Historical price data for each asset
 Covariance values of assets
 Exponential growth rate values of asset
 Transaction cost values

Module 2 – Batch Data Downloader – At the close of every business day the system will need to
obtain the close of day prices for each of the assets in the database. Since this is a menial task,
and as per the Specification, this will be automated in my application. The downloader will
stream in files containing the latest asset prices and insert the data into the database. Once
new price data has been inserted into the database the covariance and growth rate values will
need to be re-calculated. This process should be spawned automatically once all of the data
has been downloaded.

Module 3 – Scenario Generator – Scenario generation will be performed by the program Cluster,
as described in the Background Research. This takes input in the form of a file and outputs
the scenario information to a second file. In order for the system to optimise the portfolio
over large time periods, rather than increasing the depth of the tree, it will have the option to
represent either 1, 5 or 10 days at each level of the tree. In order to hook Cluster into my
application I will create a wrapper which will encapsulate Cluster. This will mean that any
other component wishing to perform scenario generation will not need to worry about
performing the actual file Input/Output; it will just call on the wrapper.

Module 4 – Optimiser – The optimiser will need to take in the objective function, which seeks
to minimise the CVaR of the portfolio, and a constraints matrix. The constraints matrix will
implicitly contain:

 Minimum required return
 Transaction costs
 Current portfolio holdings
 Scenarios generated

After performing the optimisation it will return the value of the CVaR calculated, the future
portfolio holdings and the future transactions.

Module 5 – Graphical User Interface – The Graphical User Interface is the only component with
which the end user will interact directly. This component will be used to capture the inputs
from the user and provide the means to start off the scenario generation and optimisation
procedure. It will then display the results of the scenario generation and portfolio
optimisation. The interface will also provide the means of importing and exporting
portfolios, allowing the facility for portfolio histories to be generated.

 - 22 -

4.2 Component Organisation

The component division shown in Figure 9 lends itself to the deployment of the application
as a multi-tiered system. In an ideal situation Modules 1, 2, 3 and 4 would exist as individual
services residing on a server(s), and Module 5 would exist as a thin-client application on the
end user’s machine. The thin-client could then use remote procedure calls to invoke the
services to perform their respective tasks. Since tasks such as scenario generation and
optimisation processes are highly processor intensive, placing them on a powerful server
would allow them to run faster. It would also mean that, since the Graphical User Interface
will just be displaying results, the end user’s machine would not have to be extremely
powerful. If a high speed communication medium also existed between the different services,
the thin-client would have a means of quickly transferring the parameters to-and-fro, further
increasing the speed of the overall application.

However, since I was unable to acquire a dedicated server to host the services, I was forced
to re-organise my components so that the optimiser, scenario generator and graphical user
interface are all part of the same package. This implies that the new package will have the
following structure:

This package will exist on the client’s machine and require a network connection to allow it
to communicate with the database. In order to perform a complete optimisation the
sequence diagram in Figure 11 highlights the steps that need to be taken:

Figure 10

Database Calls

Scenario GeneratorOptimiser

Intermediary
Processing

Portfolio
History Files

Graphical
User

Interface

 - 23 -

Graphical User Interface Intermediary Processing Scenario Generator Optimiser

User will either
enter parameters
through the interface
or they will be imported
from a file

2: Generate Scenarios
2.1: Generate Scenarios

2.2: Return Generated Scenarios
2.3: Display Scenarios

2.4: Optimise Portfolio

2.5: Return Optimised Portfolio
2.6: Display Optimised Portfolio

1: Obtain Portfolio Parameters

Figure 11

4.3 Graphical User Interface

As per the Specification, the Graphical User Interface needs to provide the user with a way
to easily input the portfolio parameters and also display the outputs of the scenario
generation and portfolio optimisation. Although there will be a large amount of data to
display on the screen, not all of it will need to be viewable at the same time. For this reason, I
will use a tabbed window structure to ensure that the user is not overwhelmed with
information, but at the same time all of it will be easily accessible.

Figure 12 describes the overall structure of the application interface and has the portfolio
parameters panel visible, highlighted in red. The annotations describe how the interface
meets particular usability heuristics stated in [16].

 - 24 -

status bar

menu bar

portfolio scenario tree optimised portfolio portfolio history historical asset prices back-testing

Asset A

Load Portfolio Optimise Portfolio

Asset B

Asset C

Asset D

Parameter A

Parameter B

Parameter C

Parameter D

(1) "Visibility of
System Status"

(8) "Aesthetic
Minimalist Design"

(2,4,6) "Match Between System
and Real World"; "Recognition
Rather than Recall"; "Consistency"
of terms

(5) Verification of inputs
for "Error Prevention"

(7) Multiple methods of entering
portfolio details allows for
"Flexibility and Efficiency of Use"

Figure 12

The details of the future scenarios and final portfolio optimisation will be displayed in a
similar way. By drawing out the scenario tree visually, the user will find it easier to assimilate
the displayed data. As can be seen from the figure below, I intend to design the interface
such that tree is displayed on the left of the window, and by clicking on the individual nodes
of it, the details of either asset prices or optimised portfolio weights can be viewed.

Figure 13

 - 25 -

Chapter 5

System Implementation

5.1 Implementation Languages

The implementation requirements stated in the Specification, lends itself to a two-tiered
system. A high-level language will be able to provide a good graphical user interface but will
be slow to perform the back-end portfolio optimisation calculations. Conversely, since a
lower-level language is closer related to assembly language, it will be able to compute the
portfolio optimisation faster, but lack the ability to provide the user with an easy to use
graphical interface.

Figure 14 from [2] can be used as an example to quantifiably compare the speeds of common
high and low level languages. It displays the normalised speeds for sparse matrix
multiplication with various matrices on a Pentium 1.5GHz PC running a Linux Operating
System.

Figure 14

I have made the assumption that this is the minimum specification of a typical user’s PC.
Making use of its wide range of libraries, I have implemented the User Interface and
intermediary processing in Java, a high level language. In order for the optimisation
procedure to complete as quickly as possible I have implemented the numerical computation
functions in FORTRAN, a low level language.

5.2 The Database

5.2.1 Database Implementation

In my system, the database is an integral component. It forms the core of the application,
holding all of the historical financial data and statistical parameters for the optimisation
procedure. The database will be a very active component of the system and will have a high
throughput of data. The database has thus been designed in a way such that it is able to
provide the facility to efficiently store the information as well as quickly retrieve it.

 - 26 -

I considered the following options when deciding how to implement the database:
 Native XML database
 OLAP cubes
 Relational database

Since the database will be storing financial information which I am downloading from an
external source, I considered storing the data in an XML format. This would be a good
option if the financial data I am downloading is also in an XML format since no conversion
of format would be required for the downloaded data. However, searching the database will
be problematic. Maintaining and using index documents would bear a large overhead. In
addition, when search results are to be passed back to the client machine, entire XML
documents may be sent back, even though only a few attributes from each are required. This
will lead to an excessive volume of data being transferred between the database server and
client machine and extra processing will be required in order to extract the required data
from the XML documents returned; which will increase the time it takes to perform a
database query.

OLAP functionality is characterised by its multi-dimensional data model. Since my database
will be storing a large quantity of data, searching it could potentially be very slow. OLAP
cubes overcome this by taking snapshots of a relational database and restructuring it into
multi-dimensional data. Queries can then be run against this at a fraction of the time of the
same query on a relational database, since their execution effectively returns the intersection
of the required attributes. The difficulty in implementing OLAP comes in formulating the
queries, choosing the base data and developing the schema.

Implementing the database in a relational format will give it a concise structure that can be
easily queried. As long as it is normalised there will be no redundant data in the database, and
hence keep the data consistent and the size of the database low. It is also beneficial that
queries can be constructed easily in SQL to interrogate the relational database. For these
reasons I decided to implement my database in a relational format.

 - 27 -

5.2.2 Database Structure

A relational database follows the relational model which states that data is represented as
mathematical n-ary relations. The following Entity Relationship diagram describes the
structure of the tables that exist within my database.

symbol_table

price_history

constraints

covariance

has_
covariance

N:1

1:N

prices_for

1:N

N:1

company_symbol: varchar

period: integer

value: decimal (10,10)

company_name: varchar

symbol: varchar
trade_date: date

price: decimal (10,2)

symbol: varchar

symboly: varchar
symbolx: varchar

trans_cost: decimal (10,10)

has_
constraints

1:1

1:1

growth
symbol: varchar

growth_rate: decimal (10,10)
period: integer

has_
growth_rate

N:1

1:N

Figure 15

As can be seen from the diagram, the database is in third normal form since every non-prime
attribute of each relation is:

 Fully functionally dependent on every key of the relation.
 Non-transitively dependent on every key of the relation.

Having the database normalised means that it is not possible to create data inconsistencies
when adding, deleting and modifying data. It also means that no repetitive data is being
stored, reducing the size of the overall database.

While implementing the database I wanted to maintain un-biased database structures as I feel
that both reading from and writing to the database are equally important. For example, when
calculating the covariance matrix for all of the assets within the system, it needs to parse
through all of the historical price data to perform the calculation and then store the results
back to the database. This task consists of high volumes of data being transferred both out of
and into the database.

 - 28 -

In order to achieve increased performance I have created SQL constraints on the tables. By
enforcing primary keys on the database tables, the database management system (DBMS)
implicitly creates an index structure on the key fields. This allows for the quick retrieval of
data from the table if the data is being queried on the key. However, if I was to query the data
using a non-key field, the DBMS retrieves data by performing a scan of the whole table. This
clearly increases the time it takes for data to be returned.

By adding further indexes onto the table, data can be returned for queries using other fields
by using these indexes, eliminating the need to scan through the whole table and thus
decreasing the time it takes for them to run. However, in contrast, when writing data to a
table with several indexes the DBMS must update each of the indexes, which obviously takes
longer to perform when more indexes exist. Therefore, a balance needs to be achieved when
deciding upon the number of indexes to attach to each table.

For my database, I have setup primary keys as stated in the above diagram. By analysing the
queries I am running on the database, further described in Section 5.2.3, I discovered that all
queries were using these fields and hence, these were the only indexes required for each table.
In order to ensure data consistency in my database, I also created foreign key constraints on
attributes of tables wherever required. This ensures that any manipulation of data is always
consistent and no anomalous data can ever be stored.

5.2.3 Database API

Since the database is accessed by several different components of the system, I decided that it
would be advantageous if it could be encapsulated by an API. This will ensure that other
components can not illegally access the database and so that standardised results can be
returned. I have implemented the API in two tiers:

 Stored Procedures
 Java API Class

A stored procedure is a program which is physically stored within a database. One benefit
this provides is pre-compilation. When a stored procedure is created the query plan is
calculated once, rather than every time the query is submitted. This removes the ad-hoc SQL
compilation overhead that is required in situations where actual SQL queries are piped to the
database. Having stored procedures will therefore mean that queries can be executed faster.

Stored procedures also allow the underlying tables to be encapsulated. From a security point
of view, this means that access to the database is only allowed through narrow, well-defined
procedures. Rather than having the other application components interact with the tables and
other database objects directly, they will only be allowed to run the stored procedures.

As mentioned in Section 5.2.2, I conducted analysis of whether I needed to create any extra
indexes on the tables in the database. To do this, I formulated a list of the representations of
the stored procedures which search for data using relational algebra. This allowed me to see
which fields are being used in my queries, and analyse whether any do not have an index on
them. Appendix Section A contains a list of the stored procedures in my database and their
relational algebra representation. As can be seen from the list, the stored procedures only
contain select clauses on primary key fields of the tables; which is why I did not add any
further indexes to them.

 - 29 -

On top of the stored procedures I have written a Java API class which manages the
connection of the application to the database server and also provides an interface to access
the database. Each stored procedure stated in the list is accessible through its respective
function in the API. Rather than simply return an abstract object result set, the API returns
an object of the same data type as the underlying data. This eliminates the need for other
components to parse the data being returned by the database and convert it into the required
data-type.

I have implemented the database API as a singleton class to ensure that the client application
only makes at the most one connection to the database server. This means that it will not be
swamped by several connections from the same machine all requesting high throughput.
Although I have not had to, having a singleton class also means that I could restrict the
number of concurrent database calls the application makes, which could be used to avoid
creating too much network traffic or to control the load on the database server.

5.3 The Data Downloader

5.3.1 Data Source

The historical prices of assets in the database form the underlying basis for the scenario
generation and hence the optimisation procedure. Since I intend Portfolio Managers using
my application to be interested in making long-term capital gains, I will only need to acquire
close of day prices and not intra-day prices. I have stated in my Specification that I will
include assets from FTSE 100 in my database. A free source of this data is “Yahoo! Finance
UK”. They make available a comma separated value (.csv) file which contains the latest prices
of all of the components of the FTSE 100 exchange. This file can be downloaded over the
internet via the URL:
http://uk.old.finance.yahoo.com/d/quotes.csv?s=@%5EFTSE&f=sl1d1t1c1ohgv&e=.csv

5.3.2 Data Acquisition

In order to download the data and insert it into the database, the following class structure
was written:

-downloadData()
-updateGrowthRate()
-updateCoVar()

Main

+covariance()
+growthRate()

Statistics

-connect(in url : string)
+download()
-parseLine(in line : string)
-readLine() : string

Downloader

+insertAssetPrice(in asset : string, in date : string, in price : double)
+setCovariance(in assetX : string, in assetY : string, in covariance : double, in period : int)
+getPrices(in asset : string, in period : int) : double[]
+setGrowth(in asset : string, in growthRate : double, in intercept : double, in period : int)
+getAllAssets() : string[][]

JDBC

11

1 1

Figure 16

 - 30 -

The Main class initiates the downloading of data, after which it instantiates the Statistics class
to perform the updating of the parameters. All three classes reference the singleton database
API in order to insert and update data.

5.3.3 Parameters Re-calculation

As is described in further detail in Section 5.4, in order to generate future scenarios, the
Scenario Generator requires values for the growth rate and covariance of assets from the
mean exponential growth curve. Once a new set of prices have been calculated, these values
need to be recalculated. For this reason, I have included this process as part of the Data
Downloader module. Once the new price data has been downloaded, the module performs
the recalculation of the parameters and stores them in the database.

5.3.4 Job Automation

The downloading of prices and re-calculation of parameters is a task which will need to be
done at the close of every day. Since this a menial task that does not require any human
interaction, it lends itself to be fully automated. Having the job automated also means that
when users wish to optimise a portfolio they can be sure that the latest price data and
parameters have already been calculated, speeding up the whole optimisation process.

With the help of Duncan White, from CSG, a CRON was set up to run at 19:00 every
weekday. The job runs a batch script in my user space which in-turn executes the compiled
Java Data Downloader package.

5.4 The Scenario Generator

5.4.1 Cluster

To generate the future scenarios I will be using Cluster, introduced in my Background
Research. I did not have access to the source of the program so the only method of
executing it was through the command line. This is not the ideal way, since it would be
quicker to be able to call the Cluster method and directly pass parameters to it via memory.
By having to output the inputs to a file and then parse the output file to place the outputs
back into memory, the overall execution time will increase since it is slower to perform file
I/O rather than memory I/O.

Cluster requires as input a file with the following structure:

Figure 17

 - 31 -

The output of Cluster is designed to be read in by Foliage, a multistage portfolio optimiser
developed by the Department of Computing at Imperial College London. Not all of the
output file will be required by my system. The useful section will begin with the
“SCENARIOS” tag and have the format stated below:

SCENARIOS

<scenario name> <scenario probability> <list of returns for each asset in scenario>set of

Figure 18

Cluster employs the following naming convention for scenarios:

ll

l

bn

nparentofnamen

nn

<≤

+><∀

∀

0

""__:

":"1

where ln is node n on level l , and lb is the branching rate of level l

Figure 19 below displays a grounded example of a scenario tree with 2 levels and a branching
rate of {2,2}.

Figure 19

By default, Cluster will perform 100 simulations for each level and then cluster them to
produce the final output nodes. To increase the accuracy of the outputs I will request the
program to perform 10,000 simulations.

5.4.2 Java Wrapper

In order to encapsulate Cluster from the other modules in my application, I have written a
Java wrapper around it. This wrapper can return:

 future prices in the form of a scenario tree
 a visualisation of the scenario tree generated

In order for future prices to be generated, the wrapper requires from the user:

 the number of future time periods to consider (number of levels in the tree)
 the number of days which constitute a single time period
 the branching rate (I have set up the wrapper such that the branching rate at each

level will be the same)
These parameters will be obtained via the Graphical User Interface.

 - 32 -

As described in Section 5.2, the current prices, growth rate and covariance will be readily
available in the database. Due to the re-organisation of components stated in Section 4.2, I
have implemented the wrapper in a way such that it will not directly make database calls to
obtain the asset data. This will also be passed in by the calling component.

Once initialised, the Scenario Generator produces a file, as per Figure 11, and executes the
command:
 “./cluster –f <input filename> -o <output filename> -n 10000”

Once the command has been run, the module parses the section of the output file stated in
Figure 18 and loads the values into memory.

The scenarios generated will be returned as a HashMap<String, Scenario>. I have used the
name of the scenarios, as produced by Cluster, as the key element for the HashMap. Since the
current prices are not required to be outputted by Cluster, but required by components which
make use of this HashMap, I have added them into the HashMap defining the root node
with the name “I”. I have created a Scenario class as the value element for the HashMap,
which is defined as follows:

Figure 20

Given the initial prices and the HashMap of scenarios, the full set of rates of return for each
asset at each of the nodes of the scenario tree can be generated and used in the optimisation
procedure.

In addition to being able to return the HashMap, the Scenario Generator can return a Java
Panel which visually displays the scenario tree and the prices of each of the assets at each of
the nodes. This is of great of importance since it shows the user, in a non-overwhelming
manner, the data which will be used to optimise the portfolio.

As the optimisation procedure is complex, this is one of the features I have implemented to
explain to the user how the application works. Features such as displaying the scenario tree
with the future prices will make the user more confident that the optimisation output is
correct. By increasing the confidence of the user in the application, they will use it more
readily.

 - 33 -

Figure 21

Figure 21 displays a snapshot of a Panel returned by the Scenario Generator. As can be seen,
the scenario tree is drawn on the left of the panel, with the asset prices of the selected node
displayed on the right. The user can select which node’s prices should be displayed by simply
clicking on the required node. In addition, as in the figure, by placing the mouse over an arc
of the tree, the probability associated with that arc is displayed.

5.5 The Optimiser

5.5.1 Optimisation Library Selection

In order to perform the optimisation, I need to make use of an optimisation library. The
optimisation, given an objective function and a constraints matrix, will return the optimal
values of the variable. As stated in Section 5.1, implementing the optimisation in Java would
lead to a slower optimisation than if using an optimisation procedure written in a lower level
language.

Since numerous optimisation libraries already exist in the public domain, I did not need to
write my own. My project supervisor suggested that I use an optimisation library produced by
the Numerical Algorithms Group (NAG).

Looking at my optimisation problem, I noticed that constraint (36) was the only non-linear
constraint. Therefore, for the purposes of this project, I have decided not to implement this
constraint. Keeping the optimisation as an LP problem enabled me to use a Linear
Programming library which is able to optimise my objective function in a quicker amount of
time. The only disadvantage of not having constraint (36) in my optimisation problem is that
I can not force portfolio diversity. I felt that this was a fair compromise. In the end I chose
the E04MFF library1. This is a Linear Programming library written in FORTRAN.

However, whilst working with NAG I encountered a few problems. Firstly, the project
coincided with the Mark 21 release of the library. This meant that it was only available for use
on a departmental server in the middle of January. Secondly, since my main application is
written in Java, as is further discussed later in Section 5.4, the standard method of running
the optimisation would be by using JNI to run a C procedure which, in turn, will directly run

1 Documentation of this library can be found at http://www.nag.co.uk/numeric/fl/manual/pdf/E04/e04mff.pdf

 - 34 -

the optimisation procedure. However, confusion existed on whether the Mark 20 header
files, required for JNI, would be forward compatible with the Mark 21 library, since Mark 21
header files were not available. This added un-necessary delay.

In addition, when I performed trial runs of the optimisation, an IFAIL flag (error
notification) was raised. On consultation of the documentation, I noticed that the IFAIL flag
being returned was used to signify that a "weak" solution had been found. A weak solution
implies that a local solution has been found, and not a global one. This can not be possible
since the optimisation problem is Linear, implying that a local solution
can not exist, due to it being, as shown below, inherently convex.

Figure 22

After communicating with NAG, it was discovered that the documentation for the E04MFF
library was poorly worded. For this library, the IFAIL flag signifies that a non-unique
solution exists in the optimisation problem. In terms of producing the optimal VaR value,
this does not pose a problem. Having incurred the problem outlined, there was a time delay
in finding the explanation. This caused an interruption in continuing my project.

Since, at the time, I was not sure whether all my problems could be rectified in time, I
decided to search for another optimisation library as a backup. Even though this would take
some time away from the rest of my project, finding a working optimisation library was of
paramount importance. I finally chose the GNU Linear Programming Kit1 (GLPK) as my
backup. This is a freeware optimiser written in C.

In the end, I have used the NAG library; however, as is discussed later in Section 5.5.2, the
delays encountered meant that I was not able to link it into my application using the optimal
method.

5.5.2 Interlinking the Optimisation Library with the Application

In order for the optimisation library to be useful to my application, I had to implement a
wrapper which would provide an interface for the other application modules to perform an
optimisation. As briefly mentioned in Section 5.5.1, the ideal way to interface a Java program
with a FORTRAN function is to use Java Native Interface (JNI).

1 Documentation of this library can be found at http://www.gnu.org/software/glpk/

 - 35 -

JNI is a programming framework that, using a header file which defines the interfacing
functions, allows Java code running in the Java Virtual Machine to call and be called by native
applications and libraries written in other languages, such as C, C++ and assembly1. By
coding a small C function which could initiate the optimisation procedure, Java would be
able to pass all parameters by converting the Java objects into native objects within memory,
and receive the results via memory too.

As mentioned in Section 5.5.1, the delays encountered with NAG meant that I did not want
to use my time to create the required JNI files for NAG in case I would end up using another
optimisation library, such as GLPK. I, therefore, took the decision to implement the wrapper
in a way such that, as with the Scenario Generation, it would create a parameters file which
could be piped into the optimisation procedure, and the results would also be written to a
file, which could be parsed by the wrapper in order for them to be put back into memory. I
took this decision as I knew that, regardless of which optimisation library I ended up using, I
could pass parameters to it via I/O files, but could not be a hundred percent sure that JNI
could be used.

This has meant that the initialisation and finalisation of the optimisation procedure is slower
than it could have been, but given the circumstances, I feel that not much could be done. If
extra time was available, this is one part of the implementation I would redo.

5.5.3 Optimiser Wrapper

Since I decided to pass in and return values via files, I wrote a small FORTRAN script which
could read in the input file, of the format stated in Figure 23, call the library optimisation
procedure and write an auto-generated output to a file. An example of an auto-generated
output file can be found in the Appendix Section B. Once compiled into an executable file,
this script can be run through Java via the command-line.

In order to perform the optimisation, the E04MFF library requires the following parameters
to be passed in:

 Objective function
 Constraints matrix
 Upper bounds on constraints and variables
 Lower bounds on constraints and variables
 Initial value of variables

1 As defined at http://en.wikipedia.org/wiki/Java_Native_Interface

 - 36 -

<# of variables> <# of constraints>
<objective function>

<constraints matrix>

<lower bounds of variables and constraints>
<upper bounds of variables and constraints>
<initial values of variables>

Figure 23

In order to pass the required data to the optimiser wrapper, I have created a parameters class,
as per the class diagram in Figure 24. This enables all variables to be bundled together and
easily passed around.

Figure 24

The optimiser wrapper will always be instantiated by the Graphical User Interface, so I have
delegated it the responsibility of obtaining the required parameters. The “scenarios” variable
refers to the HashMap passed back from the Scenario Generator. The “transCost” variable
refers to an array of the transaction costs associated with each of the assets in the database.
This can be obtained from the database. The remainder of the parameters are entered directly
by the user via the User Interface.

Analogously to the Scenario Generator, the Optimiser can return a class, OptimisedParams,
containing the results of the optimiser procedure, or a Java Panel, which visually displays the
results. The panel is described in greater detail in Section 5.5.5.

5.6 The Graphical User Interface

The main application window provides the means by which the end user can interact with
the application. However, it is also the controlling module for the optimiser and scenario
generator. Consistent with the Separation of Duties principal, these two tasks have been
separated, as can be seen in Figure 9, into two sub-packages; Graphical User Interface and

 - 37 -

Intermediary Processing. This allows there to be high cohesion within classes but low
coupling between classes.

5.6.1 Interface Concepts

Whilst implementing the user interface I bore in mind Nielson’s Ten Usability Heuristics,
stated in [16]. There are some quite complex concepts that my Graphical User Interface has
to display to the user in an as simple and usable manner as possible.

I have also striven to make the Graphical User Interface aesthetically pleasing. I have done
this in the following manner:

 Keeping continuity within the application, in terms of interface components used and
layouts

 Using an underlying blue colour scheme
 Designing a logo for my application which gives it a unique identity
 Using images that do not impose on the user’s workspace
 Using customised interface components and fonts

Since there will be periods of processor intensive activity when the interface will not have
anything further to display for a while, I have made sure that user is aware that the program
has not frozen with the use of indeterminate progress bars.

As I had planned in my System Design, I implemented my application with a tabbed pane
being the main structure. This means that the user is not overwhelmed with the information
currently on the screen. Having the interface split into separate tabbed panels, also means
that while the long processes, Scenario Generation and Optimiser, are occurring, the user is
able to roam around the interface with access to the panels currently being worked upon
restricted. Threading of the Scenario Generation and Optimiser modules has allowed the
user to concurrently access other features of the application.

5.6.2 Application Graphical User Interface

I noticed that when I performed a cold start of my application, it would take a couple of
seconds to load up my main application window. This is because the application must
initialise all of the components for the interface and also establish a connection with the
database server. To ensure that the user is not kept looking at a blank screen I introduced a
splash screen, seen in Figure 25. The splash screen houses a logo for my application and a
progress bar, which informs the user that the application is indeed loading. Threading the
main application window and the splash screen, allows both to run in parallel.

 - 38 -

Figure 25

Once my application has been loaded, the user is presented with the screen shown in Figure
26. This window provides easy access to all features of the application, but also ensures that
they are clearly defined and separated so as not to overwhelm the user. The tabbed pane
allows for a common interface to surround the changing panel in the centre of the screen.
This provides the basis of the look and feel of continuity in the application. As can be seen in
Figure 26, the tabbed pane controls which tabs the user is able to view and hence is vital in
making sure that the user’s workflow is not interrupted by blocking access to panels which
the user feels should not be blocked.

Figure 26

The status bar at the bottom of the application interface was initially designed to serve two
main purposes. Firstly, as can be seen on the left, it is used to pass messages to the user. The
messages can either inform the user on what task the application is currently performing or
display error messages to the user. The right side of the status bar hosts an indeterminate

 - 39 -

status bar. This ensures that, without making the user switch context, he or she can is able to
see that the application hasn’t frozen and is indeed busy.

A later addition to the status bar was the memory usage indicator, which can be seen in the
centre. In the initial development of my application, I was running quite small optimisation
problems, but as the application development progressed I was able to perform larger tasks.
These larger tasks sometimes caused there to be a memory overflow error. By default the
Java Virtual Machine allocates 64Mb of Heap Space to the application. However, by using
the memory usage indicator, I realised that the memory usage would peak at around 70Mb.
Given the resources in current desktop machines, I deem this to be acceptable. By going to
the “Tools” menu item, I have included the facility for the user to force a Garbage Collection
to keep memory usage as low as possible.

The menu bar also contains the “File” menu item, which provides the user with a way to exit
the application, and a “Help” menu item which provides the user with an “About” panel for
the application, as can be seen in Figure 27. The project website contains a user guide,
attached in this report’s Appendix, which users can use to aid them whilst working with the
application.

Figure 27

The following sections discuss each of the panels in my application’s interface.

5.6.3 Current Portfolio Composition & Parameters Panel

As can be seen in Figure 26, this is the first panel users view when they open the application.
This panel is used for entering the parameters to be used in the optimisation procedure. The
panel is essentially divided into two with the parameters for the optimisation on the left, and
the current portfolio holdings on the right. This allows for the easy assimilation of the panel
for the user.

In order to verify the validity of inputs, each of the input text boxes are of the type
JFormattedTextField. This allows me to attach to them an instance of the DecimalFormat
class with the format “00.00” being used for decimal numbers and “00” being used for
integer, as required by Front-End Specification in section 3.1.1. I have extended Java’s

 - 40 -

InputVerifer class and defined my own verify() method which causes an error beep and does
not allow focus of the text component to be yielded if an ill-formatted value has been
entered. The class structure of each JFormattedTextField is thus as follows.

Figure 28

As can be seen on the right hand side of the panel in Figure 26, I allow the user to have the
option of inputting the portfolio composition either by number of shares held or as a
fraction of the total portfolio wealth. If the “Number of Shares Held” option is selected, as
shown the input text box for the current value of the portfolio is greyed out, as the
application will be able to auto calculate it using the current prices. This both saves time for
the user, and also removes a source of possible discrepancy in the data being inputted.

In order not to clutter the screen, I have placed the updating of transaction costs into
another JFrame. I have also taken this decision for the reason that the chance of the user
wanting to change transaction costs is slim, so this concern can be separated into another
window. The application remembers the transaction costs last entered, so they are not
required each time the user wishes to run an optimisation procedure. Figure 29 shows the
Update Transaction Costs panel. It has a similar format to that of the portfolio composition
section of the main panel, continuing the concept of continuity in my application design.

Figure 29

Consistent with Nielson’s idea of providing shortcuts for experienced users, as stated in [16],
the application also gives the user the option of importing a portfolio from a file. I have also
included this feature to demonstrate, how this application, in a commercial surrounding,
could link to other up-stream systems which stream in portfolio data. I have taken the
arbitrary decision to accept comma-separated files (.csv) and my own defined (.var) files.

 - 41 -

The rows of the (.csv) files have the following structure:
 <company symbol>,<number of shares held in company>
This seeks to demonstrate how a simple file format, such as (.csv) or XML could be parsed in
order to automatically populate the portfolio composition portion of the panel.

I have created the (.var) file format to demonstrate how all of the parameters required for the
optimisation procedure could be piped into the application from an external source. The
structure of a (.var) file is described in Figure 30. As with the (.csv) files, the (.var) files
contain the portfolio composition. The (.var) files also contain a list of the parameters
required for the optimisation and basic portfolio history to demonstrate how this application
could be used to keep track of portfolios. This data could also be stored in the database or be
formatted in an XML message, both of which just require a different parsing method.

Figure 30

Once the parameters have all been entered, the user is able to begin the optimisation
procedure by clicking on the “Optimise Portfolio” button. Validation checks are performed
by the application to ensure that all required parameters have indeed been entered and are
consistent. Once verified, the optimisation procedure can begin as planned in Figure 11.

5.6.4 Scenario Tree Panel

The first step of the optimisation procedure is to generate the scenario tree. As described in
Section 5.4, the Scenario Generator module returns a HashMap containing the scenarios and
a panel which visually describes the future scenarios generated. The HashMap is passed,
along with the optimisation parameters which have been entered, as in instance of the
OptimiserParams class, described in Section 5.5.3.

As can be seen in Figure 31, once the scenario tree has been generated, the tabbed panel
allows user access to the “Scenario Tree” panel. Threading of the Scenario Generator and
Optimiser modules is advantageous in this situation since the user is able to view the
generated Scenario Tree whilst the application is still performing the optimisation.

 - 42 -

Figure 31

5.6.5 Optimised Portfolio Panel

The first step of the optimisation procedure is to generate the scenario tree. As described in
Section 5.5.3, the Optimiser module can return a panel which can be displayed for the user to
see the results of the optimisation. This is shown in Figure 32.

 - 43 -

Figure 32

Again for continuity, this panel is structured similarly to the Scenario Generation panel. The
scenario tree is used as a method by which the user can navigate through the transactions the
application is recommending at each time period in a simple manner. By clicking on the
nodes of scenario tree, the right panel detailing the holdings and transactions required at that
node are highlighted. Each row of the details panel has the following structure:
 <company symbol> = <value of holdings in company> (<value of shares which have been bought/sold at node>)

There also exists a summary panel at the bottom of the window. This panel displays the
summarising facts about the optimisation. This allows the user to easily gain a high level view
of the optimised portfolio. In addition, by clicking on the “Optimisation Properties” button
on the left, the view can see a couple of the technical details of the optimisation, as per
Figure 33. The workspace figures denote the amount of memory resources the optimisation
procedure used.

Figure 33

The application also allows for the computation of the efficient frontier. By clicking the
“Efficient Frontier” button, the window in Figure 34 is displayed. The user needs to enter a
range of required returns over which the curve should be plotted and the number of data
points which should be plotted.

 - 44 -

Figure 34

As with the portfolio composition panel, the input text boxes have automatic validation set
up. Once the user has entered the details, threads numbering the number of data points to be
plotted are created. The optimisations can all occur in parallel since they are independent of
each other.

Each thread performs the same optimisation but with a different required return value. For
this reason, the only difference in the parameters being fed into the optimiser is that the
lower bounds on the returns constraint in the constraint matrix. This means that it is
inefficient for each thread to produce its own output file from scratch. Realising this, I
modified the Optimiser module so that when producing the original input file for the
FORTRAN optimiser script, it also produces a duplicate temporary file. Thus, in order for
the threads to produce their input file, they can simply make a copy of the temporary file and
modify the lower bound for the returns constraint. Having each of the points calculated in
parallel decreases the total amount of time required to calculate each of the points on the
efficient frontier.

As each thread completes the optimisation, it returns the results an instance of the
OptimisedParams class. These are collected by the thread handler in a synchronized method.
Once all of the threads have returned their results, the thread handler plots the efficient
frontier, and generates the window as per Figure 35. The top of the window hosts a drop
down list which the user can use to select which return he or she is most comfortable with.
By clicking on the “OK” button, the selected optimisation’s details are displayed on the main
Optimal Portfolio panel.

Figure 35

The optimisation panel also gives the user the facility to export portfolios. Analogous to the
importing of portfolios, the exporting of portfolios seeks to demonstrate how my application
could be linked to downstream systems in a commercial scenario.

The user is presented with the option to export a (.jpg), (.csv) or a (.var) file. Selecting the
(.jpg) option allows the user to export an image of the scenario tree. This allows the user to
keep a record of the structure of the produced scenario tree. Selecting the (.csv) option allows

 - 45 -

the user to export the list of transactions at the Initial Node, as recommended by the
optimisation process. This is to demonstrate how my application could send onto a booking
system the transactions required for a portfolio. Each row of the (.csv) file has the following
structure:
 <company symbol>,<value of shares to buy/sell>

Selecting the (.var) option allows the user to export a file containing the historical
information about the portfolio and the optimisation parameters. The structure of the file is
as described by Figure 30.

5.6.6 Portfolio History Panel

I have included this panel as per Section 3.3 specifying possible extensions to my core
specification. It has been designed to demonstrate how my application could fit into the
normal workflow of a professional portfolio manager. Since the (.var) files, which are
imported into the application, contain portfolio history values and VaR values, these can be
plotted on a graph so that the user can visually see how profit and VaR have been affected
over time. This is an advantage over an application that just performs one off optimisations.

Figure 36

5.6.7 Historical Asset Prices Panel

This panel has also been included as per Section 3.3 specifying possible extensions to the
Specification. Since the database already contains historical asset prices for the calculation of
the parameters for the scenario generation, this data does not need to especially be
downloaded. As can be seen in Figure 37, I have structured the graph so that the user can

 - 46 -

check the company symbols on the right side of the panel in order for their prices to be
displayed on the graph. This means the user has full control over which assets are being
displayed.

In order to plot a line of the historical prices of an asset, the panel needs to obtain from the
database each of the historical prices for each of the assets. This is a lot of data to transmit
through the network. I have, therefore, decided to download and cache asset prices ad-hoc.
If a user checks an asset which has not been previously cached, the data is downloaded and,
cached and then displayed. This means that the first time a user selects an asset, there will be
a short lag, but the user will not be faced with a long wait during the application start up
whilst all of the data is downloaded in bulk. This is also beneficial, as the user would not
always want to look at historical prices for each of the assets in the exchange; so pre-
downloading all of the price data would mean that un-necessary data would inevitably be
downloaded.

Figure 37

5.6.8 Back Testing Panel

In order to verify the developed VaR model, I have implemented an automated back testing
facility. For reasons, which will be discussed in Section 5.7, the back tester has been
implemented as a separate Java program which outputs a results file, of the structure
described in Figure 38. Since the output of the back tester is a text file, it can be opened
within the application for the user to visually view the results.

 - 47 -

set of

<required return>
<confidence level>
<number of days in 1 time period>
<number of time periods to consider>
<branching rate>

<date>,<portfolio value>,<VaR>

Figure 38

As can be seen in Figure 39, the back testing panel holds a graph displaying the wealth and
VaR of the portfolio over the time period covered by the back testing. The other graph
compares the rates of returns of the portfolio over time with the rates of return of the
benchmark, the FTSE 100. The right side of the panel displays summarising facts about the
back testing.

Figure 39

5.6.9 JFreeChart Graphs

As has been evident in this section, I have used graphs to visually display numerical data
throughout my Graphical User Interface. To produce the graphs I have used the JFreeChart
Class Library. JFreeChart is a flexible open-source, charting library allowing you to integrate
charting capabilities into Java applications. JFreeChart can produce many charts including
pie, bar and line. It also can generate interactive features of a graph such as tool tips, chart
mouse events, and zooming in.

On researching into to chart classes available on the Internet I decided that the JFreeChart
module was most appropriate. It is a free Java module with a support website ideal for
assisting with the implementation. The package also has a great depth of features and

 - 48 -

customisations that I have made use of to make the graphs more suited to the application.
JFreeChart uses a factory design pattern to create different styles of graphs, so it has been
relatively simple to create the graphs. For this project I have used the JFreeChart Class
Library version 0.9.21.

5.7 The Back Tester

As mentioned in Section 5.6.8, I implemented my Back Tester as a standalone Java program.
My original intention was to incorporate the back testing facility fully into the Graphical User
Interface module. This seemed the obvious choice since the back tester needs to make use of
the Scenario Generator and Optimiser modules. However, as is discussed in greater detail in
Chapter 7, back testing needs to perform up to 250 optimisations in sequence with no scope
of parallelisation. This means that back testing could take a significant amount of time to
complete. For this reason, I approached CSG with the view of temporarily getting a project
machine from which I could run the back testing.

This request was eventually declined. Speaking to Duncan White from CSG, he advised that
it would be better if I implemented the back tester as a separate command-line program. He
explained that if I was to implement the back tester as part of the Graphical User Interface,
the project machine would need to maintain a logged in connection to the server auk
throughout the duration of the back testing process. If the connection was ever severed, for
example, due to the project machine accidentally being restarted, the process would be killed.
This single point of failure was too great to warrant this kind of implementation.

By implementing the application as a command-line program Duncan explained how I could
use the Unix command ‘nohup’ to execute the application. This command would allow for
the application to continue to be executed even if the user was to log off the machine. I
agreed that this option would be the best method of implementation.

Changing the method of implementation caused a short delay in my project as it meant that I
had to redo part of the implementation of the back tester. Rather than initiating the back
testing via the Graphical User Interface, I amended the module so that it now reads in a
parameters file of the structure stated in Figure 40, and outputs the results to another file, as
described earlier in Figure 38.

Figure 40

Writing the back tester made me realise the benefits of the separating my application into
distinct modules, as I was able to reuse the Scenario Generator and Optimiser modules in my
back tester. This reduced the amount of new code I had to write, and hence the time it took
me to write the Back Tester.

 - 49 -

Chapter 6

Project Management

In order to have a successful project, proper source code and time management has been
essential.

6.1 Source Control

I based my project on the Agile Development methodology, and in particular the Extreme
Programming standard. Once I had completed my rough Design of the system, I
implemented it in short iterations. This entailed that I had a stable release of my application
approximately once every 10 days. Each iteration implemented an additional feature
compared to the previous one.

Using this method allowed me not only to have a productive implementation process, but
also a sustainable one. Having short iterations meant that it was flexible to change. This was a
huge advantage as issues I had with the NAG library or back testing, for example, which
required change to my implementation could be dealt with relatively simply.

Having to compile a stable version of my application every 10 days also aided my testing. My
development was test-driven, so each feature, once implemented, was tested individually and
also with the rest of the implemented application. This allowed any errors to be caught early
on.

To aid my testing, I also wrote a singleton Logger class that each other class in my
application could obtain an instance of. I used the Logger class to output any details of the
application at runtime into a file. It was useful referring to this Log file when I was debugging
my application as it provided me a method of gaining runtime information from a
persistently stored file.

I also used a CVS data repository to store my source code. This was a huge benefit as it
provided a means of having a remote backup of my source code, and also gave me the ability
to rollback to a prior release if I ever broke one of my tests in a new release.

6.2 Time Management

Since I had to work on my project whilst attending lectures and completing coursework for
eight fourth year modules and having exams on them, good time management was vital to
my overall success. My overall schedule was to complete all of my background research in the
autumn term, allowing me to write my Outsourcing Report over the Christmas holidays and
start my application design and implementation in January. I managed to meet this target. I
had intended to complete my implementation by the end of the Spring term, however due to
the issues with NAG I did not manage to meet this target. This meant that my latter targets
were slightly delayed. Writing my final report in parallel with the last part of my
implementation aided me to finish everything on time. The Gantt chart in Figure 41 overleaf
displays my intended and actual schedule.

 - 50 -

Figure 41

 - 51 -

Chapter 7

Testing & Evaluation

Having a financial adviser enables the investor to carry a psychological call option. If the investment decision
turns out well, the investor takes the credit, and if it turns out badly, the regret can be lowered by blaming
the adviser. - Hersh Shefrin

A successful project will have accurately implemented the multi-stage optimisation problem,
as per the core requirements. When evaluating the final system, I have segregated the testing
into the following areas:

 Verification of the VaR model
 Validation of the interface and system features
 End user testing

7.1 Verification of the VaR Model

In order to verify my formulated VaR model, I can carry out the following:

 Perform individual optimisations
 Perform back testing
 Generate an efficient frontier

7.1.1 Individual Optimisations

Since I performed some testing whilst carrying out my implementation, I knew that
individual optimisations were being performed properly. The only concern I had was with
the time being taken for the optimisation library to perform each optimisation. Even though
the model I have defined is linear, the optimisations preformed are unusually slow.

This table states how long it takes the NAG optimisation library, on average, to perform
portfolio optimisations with the stated scenario tree sizes.

of time periods Branching Rate # of Variables # of Constraints Average Time Taken to

Optimise (min)

2 2 2,105 712 2.5
2 3 3,910 1,323 8
3 2 4,509 1,524 9
4 2 6,317 2,138 16
3 3 12,028 4,068 35

On communicating the time taken to optimise the constrained problems using the NAG
library, my project supervisor suggested that I should try performing a couple of optimisation
problems using another optimisation library. I decided to use the GLPK optimisation library.
The best way for me to perform this test would have been to generate an optimisation
problem from my application, feed it into the GLPK optimiser and compare the times taken
to solve the problem. However, the GLPK optimiser requires the data to be inputted in the
form of an MPS file. Since the NAG optimiser uses tab delimited files, I needed to convert
the format of the outputted file.

 - 52 -

Unfortunately, due to time constraints this was not possible. I did, however, manage to
convert an MPS file into a tab delimited file which I fed into the NAG library. The
optimisation problem contained 930 constraints and 3523 variables. The GLPK optimiser
managed to solve the problem in 0.5 seconds, compared to the NAG library taking 20
seconds.

From this result, it is evident that the NAG optimisation library is contributing to the length
of time it takes to optimise a portfolio. This could be because, as explained in Section 5.5,
there are an infinite number of solutions to the optimisation problem, so the optimisation
algorithm implemented by NAG could have a slow convergence. It could also be the case
that the NAG library is possibly not suited to solving large optimisation problems of this
nature; but further investigation needs to be carried out to confirm this.

7.1.2 Back Testing

Through back testing, I have tested my VaR model in the same way as is stated by the Basle
Standard1 for industrial VaR models. The Basle Standard requires back-testing – testing a
strategy on a large historical database to evaluate the model’s accuracy before risking any
real money. It involves using the created model to control the VaR of a portfolio, and using
the historical data to observe the actual VaR of the portfolio. The model will only be
accepted if the number of observations falling outside VaR are inline with the stated
confidence.

To formally carry out the testing the failure rate will be assessed. As stated in [7], the Basle
standard states that the verification procedure consists of recording daily exceptions (the
actual loss exceeds the stated VaR) for 1 year, which assumed to be 250 working days long,
with a confidence level of 99%. With a 99% confidence level, one would expect there to be
2.5 exceptions, however, the Basle Committee has decided on the following:

Zone Number of Exceptions
Green 0-4
Yellow 5-9

Red 10+

The model is deemed to be accurate if the results show that the model is in the green zone.
If the model lies in the yellow zone, the committee suggests adding a safety multiplier to
the model stated VaR of the portfolio to slightly increase it. Further monitoring of the
model for an extended period of time is then required. If the model lies within the red
zone, the model is deemed to be inaccurate and needs to be revised.

The following steps are required to perform the back testing:
Step 0 – Read in parameters over which back testing is required to be performed
Step 1 – Optimise portfolio with the current parameters
Step 2 – Move date one day forward and obtain actual prices of assets
Step 3 – Calculate and record difference between estimated VaR and actual profit/loss of
portfolio
Step 4 – Go to Step 1. Once 250 days have passed, stop the algorithm.

1 A standard drawn up stating international capital adequacy standards for banks. Set up by the Basle Committee; a

committee set up by the Bank for International Settlements and based in Basle.

 - 53 -

In this same manner, I have tested my implemented VaR model. The model was given the
following parameters:

 Initial wealth = £100,000
 Initial weightings = Equal weighting of 10 randomly selected assets

o AL.L, AAL.L, XTA.L, GSK.L, RIO.L, NXT.L, MKS.L, CBRY.L, BSY.L,
BP.L

 1 time period = 1 day
 Number of time periods to consider in model = 4
 Required return = 0.1623% per day (50% per year)
 Transaction cost = 1.0% for all assets
 Start date = 28/04/2005
 End date = 24/04/2006

The results I obtained are given in Figure 42.

Figure 42

As can be seen from Figure 42, the optimised portfolio only had two exceptions during the
course of the year when the actual loss of the portfolio was greater than the value of VaR
calculated by the model. This places the model in the green zone. In addition, the portfolio
outperformed the benchmark by approximately 13%. This is evidently a good set of results,
however to further test the validity of the model, I performed numerous back testing
simulations with different:

 Required return
 Confidence level
 Number of days in one time period
 Number of time periods / branching rate
 Start and end dates

 - 54 -

The following table details the back testing simulations I ran.

Required
Return (per
time period
– column 3)

Confidence
Level

of
Days in
1 Time
Period

of
Time

Periods

Branching
Rate

Start
Date

End
Date

Benchmark
(FTSE100)

Relative
Gain

of
Exceptions

Greatest
Loss

Greatest VaR

1.005 0.95 1 2 3 21/12/2005 15/02/2006 +0.17% 2 1,237.42 3,459.76
1.01 0.99 5 4 2 14/06/2005 20/01/2006 +9.78% 1 4,578.45 12,455.19
1.02 0.95 1 3 2 03/05/2005 30/01/2006 +2.65% 3 6,456.13 8,345.27
1.02 0.99 1 2 3 12/12/2005 10/04/2006 -3.65% 2 2,947.86 5,214.98
1.03 0.95 1 2 2 13/06/2005 20/01/2006 -12.87% 4 4,561.23 7,845.46
1.04 0.99 1 4 2 08/07/2005 12/04/2006 +4.54% 1 5,672.89 8,561.23
1.05 0.99 5 4 2 11/04/2006 09/06/2006 -17.12% 0 8,957.97 17,777.23

As can been seen from the table above, not all of the portfolios performed better than the
benchmark. It is evident that setting the required return to be high in most cases will cause
the portfolio to lose money. The optimal required return seems to be approximately in the
range of 0.15-0.25% per day (equivalent to approximately 50% return per year). This return
value has not been met by the optimised portfolio, however, it does consistently outperform
the FTSE 100 benchmark.

It can also be observed that simulations which had the smallest scenario trees had a greater
number of exceptions where the actual loss was greater than the predicted VaR. This
demonstrates that having a larger scenario tree will indeed make the model more accurate.

Figure 43 displays the results of a poor performing back test. I used this back test to
investigate what would happen if I had a high required return. In order to get a higher return,
the portfolio has to hold riskier assets, which is why the lower graph shows sporadic rates of
returns. Even though the portfolio ended up making a large loss, it can be seen that the
application was able to predict the VaR of the portfolio accurately, with there being zero
exceptions.

Figure 43

 - 55 -

I have also used back testing to analyse the effect of varying transaction costs. Using the
same optimisation parameters as stated at the top of page 53, apart from the start and end
dates, which were 11/07/2005 and 12/12/2005 respectively, I varied the transaction costs as
per the below table.

Transaction
Cost

Benchmark
(FTSE100)

Relative
Gain

of
Exceptions

0.5% +7.45% 1
1% +6.78% 2
2% +4.82% 5
5% -1.61% 3
15% -19.17% 9

As can be seen from the table, increasing transaction costs increases the amount of friction
within the model. This friction makes it sub-optimal to buy and sell assets regularly, and
hence in high transaction cost situations the returns of the portfolio depend heavily on the
initially held assets and their rates of return over time. Without being able to change portfolio
holdings, the returns of the portfolio diminish.

7.1.3 Efficient Frontier

Another method of verifying the VaR model is to use it to plot the points of an efficient
frontier. One problem I found was that, since I have not implemented a model to calculate
the minimum possible VaR and maximum possible VaR values, it is difficult to define the
range for the efficient frontier over which the points should be plotted. This means that, as
shown in Figure 44, normally the efficient frontier which is generated ends up looking like an
increasing line with a slight curve.

Figure 44

Through tweaking of the range of the efficient frontier for one of my portfolios, I was able
to get my application to produce the efficient frontier shown in Figure 46. It is of a similar
shape to the efficient frontier stated by Uryasev in [12] so I will deem my application to be
able to successfully generate efficient frontiers.

 - 56 -

Figure 45

7.2 Validation of the Interface and System Features

In addition to the model, I have evaluated the various features of the implemented system
surrounding the model. This is firstly done by ensuring that my interface meets Nielson’s ten
usability heuristics stated in [16]:

Visibility of system status
This has been accomplished through the status bar at the bottom of the application window.
The status bar has a message panel that textually informs the user of the current task the
application is performing. The indeterminate progress bar is also another component the user
can use to see what state the application is currently in; whether it is currently busy or not.

Match between system and the real world
I have ensured that the terminology used within the application matches that used in the real-
world. Following real-world conventions and laying out the application in a logical manner
means that there is not a steep learning curve associated with my application.

User control and freedom
The user has full control over the application with the ability to run an optimisation, view the
history of a portfolio, view the historical prices of assets or load a back testing output file at
will. The threading of the Scenario Generator and Optimiser allows the user to carry on using
other features of the application whilst these two processes are occurring in the background.

Consistency and standards
I have kept consistency throughout the interface of the application in terms of the layout of
the panels and the colour scheme used. I have also been consistent with the terminology used
throughout the application.

Error Prevention
All of the text boxes which require the user to input any value have input verification enabled
on them. The file parsers which read in external files also have been implemented to handle
ill-formatted files. This means that the user is informed of any invalidity before any process is
performed on corrupted data.

Recognition Rather Than Recall
Using real-world terminology in my interface design, the user is able to use recognition rather
than recall to perform a task or navigate around the application.

 - 57 -

Flexibility and efficiency of use
The application allows the user to input the portfolio composition and optimisation via the
text boxes on the interface. However, for regular users, the application also offers the facility
for these parameters to be imported from a file. The user also has the option of exporting the
results of the optimisation as (.csv) or a (.var) file. This means that the application is suited to
fit into the workflow of different types of users.

Aesthetic and minimalist design
The design of the interface has been kept simple and modular so that the user finds it easy to
use and navigate through.

Help users recognise, diagnose and recover from errors
The status bar message panel provides a quick means of passing simple messages to the user.
For more critical messages a dialog box appears informing the user of the event that has just
occurred. Dialog boxes have been implemented to provide high level details of the error and
remedial steps.

Help and documentation
A user guide as has been written and is available from my project website. The application
provides a link to this website in the “About” window. A copy of the user guide has been
included in Appendix Section C.

Consistent with the “V” Model, as stated in [14], each of the goals in Figure 8 have also been
tested. Working through the complete process of optimising a portfolio; from inputting the
initial portfolio composition to obtaining the optimised weightings. I feel that this task is
simple for a user to perform, and the user interface is intuitive to use with there being
minimal context switches. In doing this, the following aspects were tested:

-Check the methods of inputting parameters into the system through the front-end – As stated in the
specification, the front-end needs to capture the input of parameters for the model from the
user. I have confirmed that the input of parameters from the front-end as well as through the
import of a (.csv) and (.var) file works. Using valid, extreme and invalid values I exhaustively
checked the handling of inputs.

-Check the acquisition of asset price data – The system is required to automatically obtain daily
price data. I verified this is occurring daily and that the data is being stored in a table of
historical asset prices.

-Check generation of scenarios – The system is required to use Cluster to generate multi-period
scenarios. I verified that the historical data is being used to produce valid future scenarios
which are used for the portfolio optimisation.

-Check the displaying of the scenario tree – I have verified that once the scenario tree has been
generated, it is validly displayed on the screen for the user.

-Check the displaying of the optimised portfolio – Once the inputs have been obtained, and portfolio
optimised, the optimal portfolio weightings are displayed to the user. I have also verified that
the weightings are able to be exported to a (.csv) or a (.var) file.

 - 58 -

-Check the efficient frontier generation – If the efficient frontier is required, given an initial
portfolio, the application is able to generate the efficient frontier by varying the required
returns parameter. Generally, the outputted graph is of the correct shape, though there are a
few anomalous cases where there are spikes in the curve. This needs further investigation.

The extensions also need to be checked. The back-testing goal was checked by performing
the back-testing stated in Section 7.1. As can be seen, the system was able to successfully
carry out the back-testing and display the results.

To check that the system allows historical data to be viewed, I tried to view the historical
prices of randomly chosen assets. The system performed this in an easily understandable
manner.

I also checked the facility for the persistent storage of portfolios. To do this, I created a new
portfolio, optimised and saved it. I then repeatedly loaded, optimised and saved the portfolio
on successive days. The system successfully saved the portfolio after repeating the process
five times and displayed a graph of the history of the portfolio, so I deemed the system as
having successfully completed this goal.

7.3 End User Testing: Demonstration to Goldman Sachs

One of my key project objectives was to demonstrate how my application could fit into the
daily workflow of a professional Portfolio Manager. In order to gain the opinions about my
application from a real end user I approached Rezwan Ud-Din, an Executive Manager from
Goldman Sachs. Rezwan manages the Equities Asset Management Technology desk at the
London office.

Overall, Rezwan commented on how commendable this project is. A copy of the feedback
email sent to me can be found in the Appendix Section C.

I demonstrated my application to Rezwan with a view of explaining to him

 How a portfolio is optimised by the application.
 The methods in which portfolios can be imported into and exported out of the

application.
 Features which demonstrate how the application could fit into the daily workflow of

a Portfolio Manager.

Rezwan felt that the optimisation procedure implemented by the application would be easy
for a Portfolio Manager to perform. He also liked the fact that the application had the facility
for the user to investigate what future prices had been predicted at each node of the scenario
tree, and hence what the optimal transactions at each node would be. This would give the
user confidence in that the recommended transactions to perform at the current time period
would indeed be optimal.

Rezwan explained to me how Portfolio Managers at Goldman Sachs use several pieces of
analysis to make their investment decision, and how my application could fit alongside their
current tools. VaR is not currently being used by the Portfolio Managers, but this kind of tool
could be an option for them to use.

 - 59 -

Rezwan did comment on the fact that in the current implementation the optimisation
procedure takes a significant amount of time. For the application to be useful to Portfolio
Managers, it would need to perform optimisations within 15 seconds, as they would want to
repetitively tweak the optimisation parameters and re-run the optimisation procedure.

7.4 Summary

From my testing I have learnt the following facts:

 When performing extended simulations, more profitable investment decisions will be
made and more accurate values for VaR will be calculated if a larger scenario tree is
used and the required return is in the region 0.15-0.25% per day

 As the required return value increases, riskier assets are held by the portfolio,
increasing the chance of making a loss.

 If extreme parameters are used for the optimisation process, there is a greater chance
that the model will fall into the yellow or red zones, otherwise it will lie in the green
zone.

 Further investigation is required to speed up the optimisation process
 High transaction costs leads to a high amount of friction in the system, increasing the

chance of making a loss
 My application can be used by professional portfolio managers to aid them in making

their investment decisions

 - 60 -

Chapter 8

Conclusion

8.1 Remarks

During the course of my project I have developed a new optimisation model and an
application that implements it. Given that no model existed implementing multi-period
portfolio optimisation using VaR when I started my project, I feel that I have risen to the
challenge and produced a sound model.

The automated back testing facility which I have implemented was a huge aid in testing my
application. It has demonstrated that my portfolio optimiser is able to produce lucrative
returns. Within the boundary of normal optimisation parameters, the model is also able to
reliably predict the VaR of the portfolio.

Rezwan's positive response to my application shows how the core and non-core features I
have implemented successfully demonstrate my application to be simple for an end user to
use and could also fit into the work flow of a professional portfolio manager

As mentioned in my Implementation Section, I did encounter a few delays, which did affect
the implemented application. Given extra time, I would have liked to use JNI as the interface
between my application and the optimisation library. I would have also liked to perform a
greater number of back testing simulations to gain more evidence on the accuracy of my
model.

8.2 Future Work

There exists the scope for future work to be carried out on both my VaR model and my
application. As mentioned in my Background Research, my model estimates the value of
VaR for the portfolio by considering only the leaves of the scenario tree. Further
investigation is required to allow the model to incorporate the VaR at the intermediary nodes
in the final VaR value. This will not be as simple as averaging the VaR over all of the nodes
since the VaR of a node should be weighted depending on its level within the tree. A node
lower down the tree has the potential for a greater profit, and hence a greater loss, when
compared to the value of the portfolio at the initial node.

Further investigation also needs to be carried out on the choice of optimisation library used.
As stated in my Evaluation, the GLPK optimisation library was able to solve the constrained
problem significantly faster than the NAG library. Although, I did not have time to run
further tests, changing the optimisation library the application uses could produce sizeable
improvements in the time taken to optimise a portfolio.

As suggested by Rezwan, the application could be further developed by categorising assets
into sectors, and allowing users to investment money in aggregated sectors rather than
individual companies. I could also add the facility for users to state if they did not want to
invest of their money in certain sectors, for example, in those companies which produce
alcohol.

 - 61 -

References

[1] Artzner, P., Delbaen F., Eber, J.M., and D. Heath (1999): Coherent Measures of Risk,

Mathematical Finance, 9, 203-228

[2] J.V. Ashby: A comparison of C, Fortran and Java for Numerical Computation

[3] C. Butler: Mastering Value at Risk, FT Prentice Hall, 1st edition, 1999

[4] N. Gulpinar, B. Rustem, R. Settergren (2004): Multistage Mean-Variance Portfolio

Analysis with Transaction Costs

[5] N. Gulpinar, B. Rustem, R. Settergren (2004): Simulation and Optimisation Approaches

to Scenario Tree Generation, Journal of Economic Dynamics and Control 28, 1291-1315

[6] G.A. Holton: Value-at-Risk: Theory & Practice, Academic Press, 2003

[7] P. Jorion: Value at Risk: The New Benchmark for Managing Financial Risk, McGraw-Hill

Companies, 2nd edition, 2000

[8] J. Palmquist, S. Uryasev, P. Krokhmal (2002): Portfolio Optimization With Conditional

Value-At-Risk Objective And Constraints, The Journal of Risk, Vol. 4, No. 2

[9] R.T. Rockafellar, S. Uryasev (2002): Conditional Value-At-Risk For General Loss

Distributions, Journal of Baking & Finance 26, 1443-1471

[10] R.T. Rockafellar, S. Uryasev (2000): Optimization of Conditional Value-at-Risk, The

Journal of Risk, Vol. 2, No. 3, 21-41

[11] S. Uryasev: Lecture 7 from course ESI 6912: Optimization Using CVaR-Algorithms and

Applications

[12] S. Uryasev: Lecture Notes: Conditional Value-at-Risk (CVaR): Algorithms and

Applications

[13] Wiener, Z. (1997): Introduction to VaR (Value-At-Risk), Risk Management and

Regulation in Banking, Jerusalem, Israel

 [14] http://www.coleyconsulting.co.uk/testtype.htm

[15] http://www.golriamundi.org

 [16] Nielson, J.: Usability Heurtistics,

http://www.useit.com/papers/heuristic/heuristic_list.html

 - 62 -

Appendix

Section A: Stored Procedures

List of the stored procedures in my database which return data and their relational algebra
representations:

 sp_get_all_assets () returns setof varchar
o)_(_ tablesymbolsymbolcompanyπ
o Returns a set of all of the symbols of the assets within the database

 sp_get_all_assets_details() returns setof (varchar, varchar)
o)_()_,_(tablesymbolnamecompanysymbolcompanyπ
o Returns a set of all of the symbols of the assets within the database and their

names
 sp_get_asset_price_history(varchar) setof record

o))_((),_(historypricexsymbolpricedatetrade =σπ
o Returns a set of all of the historical prices for asset x

 sp_get_covar(varchar, varchar, integer) returns covariance
o)(cov,, ariancezperiodysymbolYxsymbolX ===σ
o Returns a record of the covariance table with the required symbolX, symbolY

and period
 sp_get_growth(varchar, integer) returns growth

o)(, growthyperiodxsymbol ==σ
o Returns a record of the growth table with the required symbol and period

 sp_check_trans() returns bigint
o)int(sconstraCOUNTℑ
o Returns the number of rows in the constraints table

 sp_get_all_trans() returns setof record
o))_int((_..)_,,cos_(tablesymbolsconstrasymbolcompanyssymbolcnamecompanysymbolttrans ×=σπ
o Returns the transaction cost associated with each asset in the database

 - 63 -

Section B: Example Auto-Generated Optimisation Output File

An example of an auto-generated file from my FORTRAN script which runs the
optimisation procedure.

E04MFF Program Results

 *** E04MFF

 Parameters

 Problem type........... LP

 Linear constraints..... 1224 Feasibility tolerance.. 1.05E-08
 Variables.............. 3609 Optimality tolerance... 1.05E-08

 Infinite bound size.... 1.00E+20 COLD start.............
 Infinite step size..... 1.00E+20 EPS (machine precision) 1.11E-16

 Check frequency........ 50 Expand frequency....... 5
 Minimum sum of infeas.. NO Crash tolerance........ 1.00E-02

 Print level............ 10 Iteration limit........ 24165
 Monitoring file........ -1

 Workspace provided is IWORK(10000), WORK(4000000).
 To solve problem we need IWORK(7221), WORK(3032633).

 Itn Step Ninf Sinf/Objective Norm Gz
 0 0.0E+00 23 1.950371E+01 0.0E+00
 1 1.8E-08 23 1.950371E+01 0.0E+00
 2 2.2E-08 23 1.950371E+01 0.0E+00
<A row exists for each iteration carried out in solving the optimisation problem>
 70 4.3E-01 0 -2.626854E-02 0.0E+00

 Varbl State Value Lower Bound Upper Bound Lagr Mult Slack

 V 1 FR -2.626854E-02 None None
 V 2 FR 0.200000 . None . 0.2000
 V 3 D FR -3.307347E-10 . None . -3.3073E-10
 <A row exists for each variable optimisation problem>
 V3609 LL 0.00000 . None 9.890 .

 L Con State Value Lower Bound Upper Bound Lagr Mult Slack

 L 1 EQ -0.200000 -0.200000 -0.200000 -0.5057 -1.2212E-15
 L 2 EQ -0.200000 -0.200000 -0.200000 -0.5159 8.3267E-17
 L 3 EQ -0.200000 -0.200000 -0.200000 -0.5057 6.1062E-16
<A row exists for each constraint in the optimisation problem>
 L1224 FR 1.14448 1.00000 None . 0.1445

 Exit E04MFF – Weak LP solution.

 Final LP objective value = -0.2626854E-01

 Exit from LP problem after 71 iterations.

 ** Weak LP solution.
 ** ABNORMAL EXIT from NAG Library routine E04MFF: IFAIL = 1
 ** NAG soft failure - control returned

 - 64 -

Section C: Feedback Email From Rezwan Ud-Din

The feedback email received from Rezwan regarding my portfolio optimisation
application can be found overleaf.

 - 65 -

 - 66 -

Section D: User Guide

This User Guide has the following structure:

 Prerequisites
 Starting the Application
 Application Window Layout
 Walk-through of the process of performing a portfolio optimisation

Prerequisites
For the application to run it requires access to the NAG library. This limits it to being run
only within the Department of Computing. In order to set up access to the NAG library, the
following commands need to be run on the Unix Shell:

ssh auk
setenv LM_LICENSE_FILE /opt/NAG/license.lic

Starting the Application
Only once you have run the above commands will the application be able to run without
errors. The following command will start the application:

java –jar VAR_Portfolio_Optimiser.jar

By default the Java Virtual Machine will allocate the application with 64Mb of memory. If the
memory of your machine allows, you can run the application with more memory using the
following command:

java –jar –Xms50m –Xmx256m VAR_Portfolio_Optimiser.jar

 - 67 -

Application Window Layout

The main application window has the following key components:

The menu bar at the top of the provides you with the means of exiting the application,
performing a Garbage Collection to destroy any unused objects in memory and to view the
About window, which also provides a link to the project website. The tabbed pane provides
you with the main source of navigability within the application. It controls which panels you
able to view during your use of the application.

Message Panel Memory Usage Indicator Indeterminate Progress Bar

The status bar at the bottom of the window is a very useful component giving an overview of
the current state of the application. The message panel on the left textually informs you of
the current task the application is performing. The memory usage indicator informs you how
much memory the application is currently using. The indeterminate progress bar is used to
ensure you that the application is busy and has not frozen whilst performing optimisations
which may be time consuming.

 - 68 -

A Guide Through the Process of Performing a Portfolio Optimisation

After loading up the application, you will be presented with the below screen. This initial
panel is used to enter the current portfolio composition and the parameters with which you
would like to optimise the portfolio. The left half of the panel requires you to enter the
parameters you would like to optimise the portfolio with. The right side requires you to enter
the quantity of the current assets you hold. You may do this by either entering the number of
shares you own for each stock, or as a fraction of the total wealth you have in your portfolio.
Please note, that if you specify the number of shares you own for each asset, you will not
need to enter a value for the current wealth of the portfolio, as this will be auto-calculated by
the application using the latest asset prices.

Current Portfolio Composition SectionOptimisation Parameters Section

Click to Load Portfolio From a File Click To Optimise Portfolio Once All Parameters Have Been Entered

Click to Update Transaction Costs

Instead of entering all of the details manually, you may also import them from a file. You can
import a (.csv) file which contains a set of the current assets you hold in you portfolio, of the
format: <company symbol>,<number of shares held in company>. You may also import the
application’s own (.var) which, in addition to the current portfolio composition details, will
contain a history of the portfolio and a record of the parameters you used in your previous
optimisation.

By clicking on the “Update Costs” button, you have the opportunity to update the
transaction costs which exist for each of the assets in the system.

Once you have entered all of the parameters, you may click on “Optimise Portfolio” to begin
the optimisation.

 - 69 -

The first step in portfolio optimisation is to create a scenario tree. Once this has been created
by the application, you will be able to view it, even while the actual optimisation procedure is
occurring. By selecting the “Scenario Tree” tab from the tabbed pane, you will be presented
with the below window.

By clicking on any node in the visualised Scenario Tree, you will be able to view the predicted
prices of assets at that node on the details panel on the right of the window. By holding your
mouse over any of the arcs of tree, you will be able to see the predicted probability associated
with that arc.

Visualisation of the Scenario Tree Prices of Assets At Selected Node

 - 70 -

Once the optimisation has been completed, you will be to click on the “Optimised Portfolio”
tab to be presented with the below window.

Portfolio Composition Details
& Transaction DetailsOptimisation Summary PanelScenario Tree

Once again, using the scenario tree as your navigation tool, you can look at the portfolio
details at each node of the tree. The details, shown on the right, signify the value of the
shares you hold of each asset at the selected node. The numbers in the brackets signify the
value of the shares the optimal portfolio has bought/sold at that node. Please note that the
transactions stated take into consideration transaction costs. The summary panel, at the
bottom of the window, gives you an overview of the optimised portfolio.

As shown above, by clicking on the “Optimisation Properties” button, you may view the
technical details of the optimisation library. By clicking on the “Save Results” button, you
may export the optimisation results as:

 A (.jpg) image of the scenario tree
 A (.csv) file stating which transactions are required at the initial time period for the

portfolio to conform to the calculated optimal wealth distribution.
 The application’s own (.var) file, which will store the portfolio history and parameters

used, which you may import again at a later date.

 - 71 -

Efficient Frontier

Given that you have optimised a portfolio, the application can also produce an efficient
frontier, detailing a curve of varying returns against the risk required to achieve those returns.
By clicking on the “Efficient Frontier” button on the “Optimised Portfolio” panel, you will
be presented with a window in which you can enter the range of the frontier and the number
of points you would like to plot. Once calculated, the application will display the calculated
efficient frontier, as per below. Please be patient whilst waiting for the efficient frontier to be
plotted, as the application will have to perform separate optimisations numbering the number
of data point you would like plotted.

Using the drop down list at the top of the window hosting the efficient frontier, you may
select to view any of the generated portfolios. The portfolio details will be shown on an
updated version of the “Optimised Portfolio” panel in the main application window. The
graph provides you with the facility of zooming in or out, printing or exporting the efficient
frontier.

Portfolio History

If you have imported a (.var) file into the application, you will be able to view the portfolio’s
history using the “Portfolio History” panel. Using the tabbed pane to view this panel, you
will be presented with a graph displaying the value and Value-At-Risk of the portfolio over
time, as per below.

 - 72 -

Historical Asset Prices

This application also provides the facility to view the historical prices of assets. By clicking on
the “Historical Asset Prices” tabbed pane, you can check the symbols of the assets you would
like to view the historical prices for. Un-checking an asset will remove its historical price line
from the graph. This graph also provides you with the facility of zooming in or out, printing
or exporting the historical prices.

Back Testing

To provide a method of automated model verification, this application implements back
testing. The back testing process is two fold. Firstly, you will need to run a command line
program to perform the actual testing. The program takes in a file with the following
structure:

In order to execute the program the command below will need to be run. Once again, you
will need to have the environment set up as described in the Prerequisites section of this User
Guide.

java -jar VAR_Portfolio_Optimiser_Back_Tester.jar <input filename>

 - 73 -

Depending on the number of days over which the back testing has to be performed, this may
take a long period of time. In order to allow the process to run to completion even if you log
off the machine, you may use the following command:

nohup java -jar VAR_Portfolio_Optimiser_Back_Tester.jar <input filename> &

Once the back testing program has finished a file BTesting.out will be produced. This can be
loaded into the main application for you to view the results by going to the “Back Testing”
panel in the main application and clicking on the “Load File” button. Once the file has been
loaded, the window will be populated as seen below.

The top graph displays the value and Value-At-Risk of the portfolio over the duration of the
back testing period. The lower graph compares the rates of returns of the portfolio and the
benchmark, the FTSE 100. The right of the panel displays summarising statistics of the back
testing. In particular, the number of exceptions where the amount of money lost in a day
exceeded the stated Value-At-Risk calculated. The colour code is consistent with the green,
yellow or red zones a model may fall into stated by the Basle Committee.

