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Abstract

The proposed approach to the insurance of regionally distributed property against high
risk catastrophes is based on finding statistically robust coverages of the insurance compa-
nies. Such coverages guarantee that all companies survive no matter what scenario of the
catastrophe from a given set of scenarios takes place. We describe a sequential algorithm
that computes the minimum of the companies’ premiums and finds optimal coverages.
A step of the algorithm is interpreted as searching a minimum-premium coverage that
eliminates a current aggregate risk. The latter aggregates the risks of all companies with
respect to all admissible catastrophe scenarios in a “fair” manner: the higher is the indi-
vidual risk, the greater is its contribution to the aggregate risk. To justify the convergence
of the algorithm we suggest a new global optimization procedure for a class of nonconvex
minimization problems.
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Guaranteed Optimization

in Insurance of Catastrophic Risks

Boris V. Digas* **

Yuri M. Ermoliev
Arkadii V. Kryazhimskii*

1 Introduction

In Ermolieva, et al. (1997) and Ermoliev, et al. (1998), a stochastic optimization method
was proposed for finding safe coverages of companies insuring property against catas-
trophes. The method allows to lower the expected risk of insolvency through repeated
modeling the events without knowing the exact probabilistic distribution of damages.

In this paper we suggest a complementary nonprobabilistic approach to planning ratio-
nal distributions of the coverages between the companies insuring regional property against
some kind of high risk catastrophes. The idea is to find a distribution that guarantees
that all companies survive under all admissible scenarios of the catastrophe from a given
set of scenarios. The admissible scenarios are generated beforehand as those having most
severe consequences or a given level of likelihood. We focus on finding the minimal pre-
mium associated with this type of distributions of coverages (the insurance optimization
problem) and describe an algorithm that step by step approaches the minimal premium
and finds an associated optimal distribution.

In section 2 we present the basic model and pose the insurance optimization problem.
Section 3 describes the solution algorithm. Section 4 gives numerical illustrations of the
solution processes. In section 5, we employ a modified constraint aggregation technique of
Ermoliev, et al. (1997) to justify the proposed solution algorithm for a class of nonconvex
optimization problems which extends the insurance optimization problem.

2 Insurance optimization problem

Let us imagine a geographic region, G, which is split into a number of cells, Gi, i =
1, . . . , N . Each cell Gi carries property whose total cost is Di. A group of insurance
companies (we refer to them as companies 1, . . . ,M) insures the property in region G

against some catastrophic events (earthquakes, floods, tornados, etc.) so that the whole
property inG is distributed between the companies. We denote by xij the share of property
(coverage) in cell Gi which is insured by company j. Obviously,

xij ≥ 0,
M∑
j=1

xij = 1. (2.1)

*These authors were partly supported by the Russian Foundation for Basic Research under project
#97-01-01060.

**This author was partly supported by the Ministry of Science and Technology of Russian Federation
under project #0201.01.017.
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We will deal with the distribution matrix

X =

 x11 . . . x1M

. . .

xN1 . . . xNM

 . (2.2)

Let Kj be the starting capital of company j and cij be the transaction cost which company
j pays for the right to insure a unit of property in cell Gi. We assume that the premium
for a unit of the insured property, p, is the same for all companies, and in each cell Gi
only the full damage (which costs Di) is insured.

A catastrophe may damage several cells Gi. The collection of the numbers, i, of all
damaged cells, Gi, represents a catastrophe scenario. In region G several catastrophe
scenarios are admissible. Let us denote by I the set of all admissible catastrophe scenar-
ios. We define the risk of company j under scenario I to be the difference between the
company’s expenditure and income:

rIj (p,X) =
∑
i∈I

Dixij +
N∑
i=1

cijxij −
(
Kj +

N∑
i=1

pxij

)
. (2.3)

Here we indicate the dependence on the premium, p, and the distribution matrix, X (2.2).
These parameters will be viewed as variable controls, whereas the costs Di, initial capitals
Kj and transaction costs cij will be fixed positive constants. The inequality

rIj (p,X)≤ 0 (2.4)

reflects the fact that company j survives under scenario I . A pair of control variables,
(p,X), guarantees survival of all companies under all admissible scenarios if (2.4) holds
for all j = 1, . . . ,M and all I ∈ I. We will study the following insurance optimization
problem: Find the minimum of the premium p for which there exists a distribution matrix
X such that (p,X) guarantees survival of all companies under all admissible scenarios. In
standard notations of optimization theory the problem reads:

minimize p, (2.5)

rIj (p,X) ≤ 0 (j = 1, . . . ,M, I ∈ I), (2.6)

p ≥ 0, X ∈ X ; (2.7)

here X is the set of all distribution matricies, i.e., matricies X (2.2) satisfying (2.1).
Let us note that the same type of problems arises when premiums depend on i and

have the structure pi = pγi, where γi, i = 1, . . . , N , are given numbers
We assume that there exists a pair (p,X) satisfying the constraints (2.6), (2.7). Then

the insurance optimization problem (2.5)–(2.7) has a solution. By p∗ we denote the optimal
premium, i.e., the minimum value in the problem (2.5)–(2.7). For every solution of (2.5)–
(2.7), (p∗, X∗), we call X∗ an optimal distribution matrix. For the set of all optimal
distribution matricies we use the notation X∗.

3 Solution algorithm

We propose the following sequential algorithm for solving the insurance optimization prob-
lem (2.5)–(2.7).
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At step 0 we set p1 = 0 and fix an arbitrary distribution matrix X1. At step k

(k = 1, . . .) we transform the pair (pk, Xk) into (pk+1, Xk+1). We define pk+1 as the first
component of

(pk+1, Uk+1), a solution of the problem (3.1)

minimize p, (3.2)

p ≥ pk, (3.3)

∑
I∈I

M∑
j=1

rIj (p
k, Xk)+r

I
j (p, U) ≤ 0, (3.4)

U ∈ X ; (3.5)

here
rIj (p

k, Xk)+ = max{0, rIj(pk, Xk)}.

Next, we compute Xk+1 from

Xk+1 = Xk + τk+1(Uk+1 −Xk) (3.6)

where

τk+1 = arg min
0≤τ≤1

∑
I∈I

M∑
j=1

rIj (p
k, Xk + τ(Uk+1 −Xk))2

+

 . (3.7)

Remark 3.1 Since rIj (U, p) are negative for large p (see (2.3)), the inequality (3.4) holds
for large p; therefore the feasible set of the problem (3.2)–(3.5) is nonempty and the
problem has a solution. The algorithm is defined correctly.

A general result presented in the next section in Theorem 5.1 implies the following:

Proposition 3.1 Let p1 = 0, X1 be an arbitrary distribution matrix and (pk, Xk) (k =
2, . . .) be defined by the algorithm (3.1)–(3.5), (3.6), (3.7). Then pk converges to the
optimal premium and Xk converges to the set of optimal distribution matricies:

lim
k→∞

pk = p∗, lim
k→∞

dist(Xk,X∗) = 0.

Here and in what follows

dist(Xk,X∗) = inf{|Xk −X∗| : X∗ ∈ X∗}

(X 7→ |X | is a fixed matrix norm).
The algorithm (3.1)–(3.5), (3.6), (3.7) represents a plain risk aggregation strategy which

is implemented sequentially, round by round. In round k, the companies update the
premium pk and distribution matrix Xk following the next “rules of the game”. They
assume that the updated premium pk+1 will not be smaller than pk. For all candidate
premiums p ≥ pk and distribution matricies U the companies analyze the aggregate risk

Rk(p, U) =
∑
I∈I

M∑
j=1

rIj (X
k, pk)+r

I
j (U, p).

The latter aggregates the hypothetical risk of company j under scenario I , rIj (U, p), with

the “fair” weight rIj (X
k, pk)+ (which equals the current positive risk rIj (X

k, pk) if company



– 4 –

j does not survive under scenario I at (pk, Xk), and zero otherwise). The companies choose
pk+1 as the minimum premium for which there is a distribution matrix Uk+1 such that the
aggregate risk Rk(pk+1, Uk+11) is nonpositive. This is a plain interpretation of (3.1)–(3.5).
The formulas (3.6), (3.7) are interpreted as follows: for constructing the new distribution
matrix, Xk+1, the companies shift the matrix Xk towards Uk+1 to a degree in which the
total cooperative risk is minimal.

Now we shall represent the algorithm in a more explicit form. Let us specify the basic
inequality (3.4). Denote for brevity

λI,kj = rIj (p
k, Xk)+. (3.8)

Setting

U =

 u11 . . . u1M

. . .

uN1 . . . uNM


and substituting (2.3) (with xij replaced by uij), into (3.4), we rewrite the latter in the
form ∑

I∈I

M∑
j=1

λI,kj

[∑
i∈I

Diuij +
N∑
i=1

cijuij −
(
Kj +

N∑
i=1

puij

)]
≤ 0,

equivalently,

∑
I∈I

M∑
j=1

λI,kj

[
N∑
i=1

(σi(I)Diuij + cij − p)uij
]
≤
∑
I∈I

M∑
j=1

λI,kj Kj

where

σi(I) =

{
1, i ∈ I
0, i 6∈ I .

Changing in the left hand side the order of the sums in I , j, and i we get the equivalent
inequality

N∑
i=1

M∑
j=1

∑
I∈I

λI,kj (σi(I)Diuij + cij − p)uij ≤
∑
I∈I

M∑
j=1

λI,kj Kj.

A brief form of this inequality is

N∑
i=1

M∑
j=1

(βkij − γkj p)uij ≤ αk (3.9)

where
βkij =

∑
I∈I

λI,kj (σi(I)Di + cij),

γkj =
∑
I∈I

λI,kj ,

αk =
∑
I∈I

M∑
j=1

λ
I,k
j Kj.

Thus, (3.9) is an equivalent form of (3.4). Observing (3.9), we easily find that the projec-
tions p of all feasible points (p, U) of the problem (3.2)–(3.5) cover the set

P k =

p ≥ pk : min
U∈X

N∑
i=1

M∑
j=1

(βkij − γkj p)uij ≤ αk
 .
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For a distribution matrix U we have

uij ≥ 0,
M∑
j=1

uij = 1.

Therefore

min
U∈X

N∑
i=1

M∑
j=1

(βkij − γkj p)uij =
N∑
i=1

min
j=1,...,M

(βkij − γkj p).

Note that the minimum over U ∈ X in the left hand side is reached at

Uk(p) =

 uk11(p) . . . uk1M(p)
. . .

ukN1(p) . . . ukNM(p)


where

ukij(p) =

{
1, j = jk(p)
0, j 6= jk(p)

(3.10)

and jk(p) is a minimizer of βkij − γkj p:

βkijk(p) − γ
k
jk(p)p = min

j=1,...,M
(βkij − γkj p). (3.11)

Hence,

P k =

{
p ≥ pk :

N∑
i=1

min
j=1,...,M

(βkij − γkj p) ≤ αk
}
. (3.12)

For every p ∈ P k the pair (p, Uk(p)) is feasible in the problem (3.2)–(3.5). Hence,
(pk+1, Uk+1) determined by

pk+1 = minP k, (3.13)

Uk+1 = Uk(pk+1) (3.14)

is a solution of the problem (3.2)–(3.5). If γkj = 0 for all j = 1, . . . ,M , then P k = [pk,∞),

pk+1 = pk, Uk+1 = Uk, and (see (3.6)) Xk+1 = Xk; consequently, (pl, X l) = (pk, Xk)
for all l ≥ k and by Proposition 3.1 (pk, Xk) is a solution of the insurance optimization
problem (2.5)–(2.7). If γkj > 0 for some j, then P k = [pk+1,∞) and pk+1 > pk.

Proposition 3.1 takes the next more specific form.

Proposition 3.2 Let p1 = 0, X1 be an arbitrary distribution matrix and (pk, Xk) (k =
2, . . .) be defined by the algorithm (3.13), (3.14), (3.6), (3.7). Then pk converges to the
optimal premium and Xk converges to the set of optimal distribution matricies:

lim
k→∞

pk = p∗, lim
k→∞

dist(Xk,X∗) = 0.

Moreover, if for some k

γkj =
∑
I∈I

rIj (p
k, Xk)+ = 0 (j = 1, . . . ,M),

then pk is the optimal premium and Xk an optimal distribution: pk = p∗, Xk ∈ X∗.
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9 8 22 21 26 20

10 10 25 24 22 20

10 25 31 19 15 18

14 15 17 14 15 16

8 15 16 7 8 9

7 16 14 10 10 9

Figure 1: Property values.

The formulas (3.13), (3.14), (3.6), (3.7) specify the risk aggregation strategy. In par-
ticular, (3.14) shows that when the premium pk+1 is found, a distribution matrix Uk+1

minimizing the aggregate risk Rk(U, pk+1) is decomposable over the cells Gi; namely Uk+1

prescribes that all property in cell Gi is insured by a single company jk(p) (see (3.10))
which has the minimum relative over-scenario risk, βkij − γkj p, in cell Gi.

The algorithm (3.13), (3.14), (3.6), (3.7) is of relatively low numerical complexity. The
operations (3.6) and (3.14) are explicit. An implicit operation is finding pk+1, (3.13).
A simplest way to find pk+1 is to fix some step size δ > 0 and verify sequentially if
pks = pk + δs (s = 0, 1, . . .) lie in the set P k (3.12). If pk0 = pk ∈ P k, then (pk, Xk) is
a solution of the insurance optimization problem and we stop the algorithm. Otherwise
pk+1 lies between pks∗−1 and pks∗ where pks∗ is the first point belonging to P k. Then one
can either set approximately pk+1 = pks , or specify pk+1 by trying the central point, pks∗1,
of the interval [pks∗−1, p

k
s∗ ], and then continuing with pks∗2, pks∗3,. . . until reaching a desired

accuracy.

4 Numerical illustrations

Consider a regional model with 6 × 6 cells (N = 36). Property values in the cells, Di,
are shown in Fig. 1. The region is insured by a network of four companies (M = 4). The
initial capitals of the companies are K1 = K2 = 100, K3 = 120, K4 = 130. There are
8 admissible scenarios (I = {I1, . . . , I8}) shown in Fig. 2. The initial insurance contract
diversification is uniform, i. e., x1

ij = 1/M = 0.25 (i = 1, . . . , 36, j = 1, . . . , 4). Transaction
costs for all companies and all cells are identical: cij = 10 (i = 1, . . . , 36, j = 1, . . . , 4).

The algorithm (3.1)–(3.5), (3.6), (3.7) was executed on a computer. At the 21-th
step, the iterational procedure stopped as the total risks for all companies, γ21

j , reached

zero. The history of evolution of the premium pk and total risks γk1 , . . .γ
k
4 (k = 1, . . . , 21)

is shown in Table 1. As the results of the algorithm execution, the optimal premium,
p∗ = 6.36, was computed and an optimal distribution of (insurance) contracts was found.
The optimal proportions of property insured by all companies in all cells are shown in
Fig. 3. In each cell, we put four numbers representing an optimal share of property in this
cell which is insured by companies 1, 2, 3, 4. Note that normally there are infinitely many
optimal distributions for the same optimal premium. Indeed an optimal distribution is
approached by solving problem (3.7) at every step of the algorithm. This problem has
non-unique solution if the minimized function has constant (zero valued) pieces, which is
actually takes place by the definition of rIj (·, ·)+. The rate of convergence of the algorithm
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Figure 2: Admissible scenarios.



– 8 –

Step Premium Companies’ total risks
1 2 3 4

1 0.00 389.250 389.250 229.250 150.000
2 0.06 338.250 338.250 178.250 283.649
3 0.13 300.826 300.826 278.019 240.129
4 2.70 115.619 115.619 81.579 102.138
5 2.76 104.009 104.009 98.618 91.407
6 4.29 33.234 33.234 27.484 30.849
7 4.39 28.760 28.760 28.058 27.211
8 5.52 8.481 7.543 6.276 6.484
9 5.59 7.093 6.211 6.237 5.594
10 5.65 6.103 5.473 5.359 5.628
11 5.72 5.489 4.862 5.046 4.841
12 5.78 4.874 4.250 4.316 4.472
13 5.84 4.312 3.878 3.649 3.749
14 5.91 3.713 3.280 3.293 2.977
15 5.97 3.063 2.632 2.519 2.724
16 6.04 2.471 2.041 2.140 1.960
17 6.10 1.867 1.439 1.418 1.564
18 6.17 1.294 0.867 0.979 0.823
19 6.23 0.697 0.272 0.265 0.403
20 6.30 0.066 0.000 0.019 0.000
21 6.36 0.000 0.000 0.000 0.000

Table 1: Algorithm execution: dynamics of premium and total risks.

depends on the precision in the calculation of pk and τk at every step and on the threshold
in total risks γkj which is treated as the null risk value.

A detailed description of scenario-based insurance optimization technique for the case
of seismic events is given in Digas (1998). Illustrations on generating admissible earthquake
scenarios are also available there.

5 Justification via nonconvex constraint aggregation

The insurance optimization problem (2.5)–(2.7) is a special case of the next optimization
problem:

minimize p, (5.1)

hs(p, x) ≤ 0 (s = 1, . . . , m), (5.2)

p ≥ 0, x ∈ Z. (5.3)

Here Z is a convex compactum in Rn, and functions hs : (p, x) 7→ hs(p, x) : [0,∞)×Z 7→ R1

(s = 1, . . . , m) are continuous, convex in x and satisfy the condition

lim sup
p→∞

sup
x∈Z

hs(p, x) < 0. (5.4)

This condition implies the existence of a solution of the problem (5.1)–(5.3). We shall
denote W∗ the set of all solutions of the problem (5.1)–(5.3) and use the notation

dist(p, x,W∗) = inf{|p− p∗|+ |x− x∗| : (p∗, x∗) ∈W∗} (p ≥ 0, x ∈ Z).
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Figure 3: Optimal proportions of insured property for all cells.

The algorithm (3.1)–(3.5), (3.6), (3.7) for the special problem (2.5)–(2.7) is an appli-
cation of the next algorithm for the general problem (5.1)–(5.3). In what follows, 〈·, ·〉 is
the scalar product in Rm,

h(p, x)+ = (h1(p, x)+, . . . , (hm(p, x)+),

hs(p, x)+ = max{0, hs(p, x)},

h(p, u) = (h1(p, u), . . . , (hm(p, u)).

At step 0 of the algorithm we set p1 = 0 and fix arbitrary x1 ∈ Z. At step k (k = 1, . . .)
we find

(pk+1, uk+1), a solution of the problem (5.5)

minimize p, (5.6)

p ≥ pk, (5.7)

〈h(pk, xk)+, h(p, u)〉 ≤ 0, (5.8)

u ∈ Z, (5.9)

and set
xk+1 = xk + τk+1(uk+1 − xk) (5.10)

where

τk+1 = arg min
0≤τ≤1

(
m∑
s=1

rIj (p
k, xk + τ(uk+1 − xk))2

+

)
. (5.11)
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The algorithm (5.5)–(5.9), (5.10), (5.11) is a modification of a constraint aggregation
algorithm proposed in Ermoliev, et al. (1997) for problems of convex programming. The
problem (5.1)–(5.3) lies beyond the frames of convex programming and therefore the results
of Ermoliev, et al. (1997) are not applicable. We shall prove the convergence of the
nonconvex constraint aggregation algorithm (5.5)–(5.9), (5.10), (5.11) using a modified
argument.

Theorem 5.1 Let p1 = 0, x1 ∈ Z and (pk, xk) (k = 2, . . .) be defined by the algorithm
(5.5)–(5.9), (5.10), (5.11). Then (pk, xk) converges to the solution set of the problem
(5.1)–(5.3):

lim
k→∞

dist(pk, xk,W∗) = 0.

Proof. Let p∗ be the minimum value in the problem (5.1)–(5.3). It is sufficient to
show that for all k

pk ≤ p∗ (5.12)

and
lim
k→∞

hs(p
k, xk)+ = 0 (s = 1, . . . , m). (5.13)

We prove (5.12) by induction. For k = 1 we have 0 = p1 ≤ p∗, i.e. (5.12) holds true.
Suppose that (5.12) holds for some k. Let (p∗, x∗) be a solution of the problem (5.1)–
(5.3). Since hs(p∗, x∗) ≤ 0 (s = 1, . . . , m), the point (p∗, x∗) is feasible in the problem
(5.6)–(5.9). Hence, for (pk+1, xk+1), a minimizer in the problem (5.6)–(5.9), we have
pk+1 ≤ p∗. Therefore (5.12) holds for all k. Let us prove (5.13). Due to the convexity of
hs(p, x) in x, for τ ∈ [0, 1]

hs(p
k+1, xk + τ(uk+1 − xk+1) ≤ (1− τ)hs(p

k+1, xk) + τhs(p
k+1, uk+1)

≤ (1− τ)hs(p
k+1, xk)+ + τhs(p

k+1, uk+1).

If the left hand side is positive, the right hand side is no smaller in absolute value. Hence,

hs(p
k+1, xk + τ(uk+1 − xk+1)+ ≤ |(1− τ)hs(p

k+1, xk)+ + τhs(p
k+1, uk+1)|.

Therefore
|h(pk+1, xk + τ(uk+1 − xk+1)+|2 ≤

|(1− τ)h(pk+1, xk)+ + τhs(p
k+1, uk+1)|2 ≤

(1− τ)2|h(pk+1, xk)+|2+

2(1− τ)τ〈h(pk+1, xk)+, hs(p
k+1, uk+1)〉+

τ2|h(pk+1, uk+1)|2 ≤

(1− τ)2|h(pk, xk)+|2 + 2(1− τ)τ〈h(pk, xk)+, hs(p
k+1, uk+1)〉+ βk +Kτ2 ≤

(1− 2τ)|h(pk, xk)+|2 + 2(1− τ)τ〈h(pk, xk)+, hs(p
k+1, uk+1)〉+ βk + 2K2τ2

where

βk = ||h(pk+1, xk)+|2 − |h(pk, xk)+|2|+
2(1− τ)τ |〈h(pk+1, xk)+ − h(pk, xk)+, hs(p

k+1, uk+1)〉 (5.14)

and
K ≥ sup{|h(p, u)| : p ∈ [0, p∗], u ∈ Z}.
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By (5.10) and (5.11) the minimum of the left hand side over τ ∈ [0, 1] equals |h(pk+1, xk+1)+|2.
Hence, the latter does not exceed the minimum of the right hand side which is reached at

τ =
|h(pk, xk)+|2

2K2
.

We get

|h(pk+1, xk+1)+|2 ≤
(

1− 2
|h(pk, xk)+|2

2K2

)
|h(pk, xk)+|2 +

2K2

(
|h(pk, xk)+|2

2K2

)2

+ βk

=

(
1− |h(pk, xk)+|2

2K2

)
|h(pk, xk)+|2 + βk.

Introducing the notation
εk = |h(pk+1, xk+1)+|2

we rewrite the obtained inequality as

εk+1 ≤ (1− αεk)εk + βk (5.15)

where

α =
1

K2
.

We shall complete the proof by showing that

lim
k→∞

εk = 0. (5.16)

which is equivalent to (5.13). By (5.5)–(5.9) and (5.12) the sequence (pk) is growing and
bounded. Hence, limk→∞ |pk+1 − pk| = 0. Therefore, in view of the continuity of h and
(5.14), we have

lim
k→∞

βk = 0. (5.17)

Now we shall state that the sequence εk has a limit. Suppose the contrary:

ε− = lim inf
k→

εk < lim sup
k→

εk = ε+.

Take a small σ > 0 and choose k0 so that

βk < σ (k ≥ k0). (5.18)

Fix k1 > k0 such that

εk1 < ε− +
ε+ − ε−

4
.

Let

k2 = min

{
k > k1 : εk > ε− +

ε+ − ε−
2

}
. (5.19)

By (5.15)
εk2 ≤ εk2−1 + βk2−1

implying

εk2−1 ≥ εk2 − βk2−1 > ε− +
ε+ − ε−

2
− σ
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(see (5.18)). Then using (5.15) and (5.18), we get

εk2 ≤ (1− αεk2−1)εk2−1 + βk2−1

≤
[
1− α

(
ε− +

ε+ − ε−
2

− σ
)](

ε− +
ε+ − ε−

2

)
+ σ

=

(
ε− +

ε+ − ε−
2

)
− α

(
ε− +

ε+ − ε−
2

− σ
)(

ε− +
ε+ − ε−

2

)
+ σ.

Choosing σ small enough in advance, we get that the right hand side does not exceed its
first term, and therefore

εk2 ≤ ε− +
ε+ − ε−

2

which contradicts (5.19). The contradiction proves that there is the limit

ε̄ = lim
k→∞

εk.

Suppose ε̄ > 0. Take a small σ > 0 and k such that

|εk − ε̄| < σ, |εk+1 − ε̄| < σ. (5.20)

The first inequality in (5.20) together with (5.15) and (5.18) implies

εk+1 ≤ [1− α(ε̄− σ)(ε̄+ σ) + σ

≤ ε̄− α(ε̄− σ)2 + 2σ.

Choosing σ sufficiently small, we estimate the right hand side from above by

ε̄− α

2
ε̄2 ≤ ε̄− σ.

Hence,
εk+1 < ε̄− σ,

which contradicts the second inequality in (5.20). Thus (5.16) holds true. The proof is
completed.
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