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Preface 

Coming from an Engineering background as a Chartered Engineer, I led global 

Banking & Finance modeling and development projects for largest US and worldwide 

banks. I also led modeling and implementation projects for the Big-3 IT firm on which 

hundreds of global Banking & Finance firms relied as a key global financial systems 

provider. Then, I earned a quantitative double doctorate from a Top-10 PhD Program 

and subsequently taught as Associate Professor and Assistant Professor of Quantitative 

Methods at Syracuse University with research focus on quantitative risk modeling. Just 

before the Global Financial Crisis, my research was surfacing critical questions about 

the model risk inherent in Financial Engineering models. For instance, I made reference 

to it in an interview by a UK based global management research publisher in 2005.  

Those questions were about the compatibility of deterministic and stochastic 

models of natural sciences with the increasingly non-deterministic, i.e., uncertain, 

sociotechnical post-WWW digitally social networked world. Those questions were also 

about the capacity of deterministic and stochastic Financial Engineering risk models to 

cope with increasing uncertainty characterizing a rapidly and dynamically changing 

digital world. Those questions led me to post-doctoral research in Quantitative Finance 

leading to working for top Wall Street investment banks such as JP Morgan Private 

Bank in midtown Manhattan. My technical and applied hands-on leadership guiding JP 

Morgan top executives and MDs focused on advancing their advanced Quantitative 

Finance risk modeling and analytics. I focused on guiding their financial risk modeling 

beyond quantitative models that had become targets of criticism given association with 

large-scale financial failures over the span of the Global Financial Crisis.  

After concluding those Quantitative Finance projects, I continued to further 

advance related post-doc research in Computational Finance and Cybersecurity. While 

conducting research on rapidly increasing Cyber risk in Banking and Finance domains 

with emergency warnings coming from the White House, US Treasury, Department of 

Homeland Security, and, Office of Comptroller of Currency, this thesis was born. It was 

born out of the observation about the specific risk models blamed for the Global 

Financial Crisis which nearly drove US investment banks to extinction. The same models 

were now becoming the predominant models of choice by commercial providers for cyber risk and 

cyber insurance related modeling for estimation of potential cyber risk related financial loss…. 
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Abstract  

Quantitative modeling of cyber risk for cyber insurance modeling is at a nascent 

stage characterized by sparse empirical research and reliable data. Our current 

investigation reveals that VaR, short for Value-at-Risk (Jorion, 2006), is the current 

predominant model of choice for cyber insurance modeling. Model risk related to VaR 

was a key factor in the Global Financial Crisis given its known limitations in modeling 

tail risks and systemic risks (Haldane & Nelson, 2012; Malhotra, 2012, 20141). As a 

result, US Federal Reserve and OCC issued model risk compliance guidance for US 

financial institutions (US Fed & OCC, 2011). Basel Committee of worldwide central 

bank supervisors stopped relying on VaR for risk modeling (BCBS, 2013). Given history 

of model risks associated with VaR, we investigate if current reliance of cyber insurance 

modeling on VaR entails model risk. We develop qualitative frameworks to benchmark 

relative levels of tail risks and systemic risks associated with cyber risk vis-à-vis 

financial risks typically modeled with VaR. Our analysis reveals that cyber risk entails 

exponentially higher tail risks and systemic risks thus making VaR unfit for reliance as 

the primary risk model for cyber insurance modeling. We develop specific frameworks 

of model risk management (Derman, 1996; Morini, 2011) for cyber insurance modeling 

and demonstrate their empirical application in model risk management. We distinguish 

between model risks arising from the choice of specific quantitative models from those 

arising from the choice of quantitative methodologies. We demonstrate how to manage 

model risks associated with VaR using it with multiple simple and advanced models to 

cross-check its reliability. We also offer alternative coherent risk measures as better 

alternatives to VaR and empirically demonstrate their application. To enable further 

minimization of model risk in cyber insurance modeling we do three more things. First, 

we analyze the Bayesian quantitative statistical inference methodology as a possible 

alternative to frequentist classical inference methodology that VaR and advanced 

models typically rely upon. Second, we analyze the Markov Chain Monte Carlo models 

and related Gibbs Sampling and Metropolis-Hastings statistical computing algorithms 

to enable the use of Bayesian methodology. Finally, given increasing uncertainty in 

cyber risk modeling and management, we develop a framework for enabling Knightian 

uncertainty management (Knight, 1921) relating it to model risk management. 

                                                           
1 http://ssrn.com/abstract=2538401 
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Contributions  

To avert the impending national Cyber risk and Cyber-insurance disaster based 

upon large-scale commercial reliance upon quantitative models with inherent model 

risks, tail risks, and systemic risks in current form, this dissertation makes the following 

key contributions.  

 

 First, we develop the first known Cyber-Finance-Trust framework for Cyber 

insurance modeling to analyze how finance risk entangled with Cyber risk further 

exacerbates the systemic, interdependent, and correlated character of Cyber risks.  
 

 Second, we develop the first known model risk management framework for Cyber 

insurance modeling as model risk management has received sparse attention in 

Cyber risk assessment and Cyber insurance modeling.   
 

 Third, our review of quantitative models in Cyber risk and Cyber insurance 

modeling develops the first known analysis establishing significant and extreme 

model risks, tail risks, and, systemic risks related to predominant models in use.  
 

 Fourth, we develop an empirical study of VaR and Bayesian statistical inference 

methodologies with specific guidance for containing model risks by applying 

multiple simple and advanced models for cross-checking the reliability of VaR. 
 

 Fifth, we develop an analysis of the Markov Chain Monte Carlo Models, Gibbs 

Sampling and Metropolis-Hastings statistical computing algorithms for enabling 

Bayesian statistical inference methodologies to minimize model risk in Cyber risk 

and Cyber insurance risk modeling for the specific context of cybersecurity.  
 

 Sixth, we develop the first known portfolio theory based framework for Cyber 

insurance modeling with guidance to minimize model risks, tail risks, and systemic 

risks inherent in models in commercial Cyber insurance modeling.  
 

 Finally, given increasing role of uncertainty in cyber (and financial) risk modeling 

and management, we develop a framework for enabling Knightian uncertainty 

management relating it to model risk management. 

Understanding of the developed frameworks and technical models listed above should 

minimize model risk in the recommended applications based on above contributions.  
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Chapter 1.  

1.1 Introduction 

“The new business model of the Information Age, however, is marked by fundamental, not 

incremental, change. Businesses can't plan long-term; instead, they must shift to a more 

flexible ‘anticipation-of-surprise’ model.”  

-- Yogesh Malhotra in CIO Magazine interview, September 15, 1999.  

 

“Cyber threats pose one of the gravest national security dangers to the United States.  America’s 

economic prosperity, national security, and our individual liberties depend on our commitment to 

securing cyberspace and maintaining an open, interoperable, secure, and reliable Internet.”  

-- Statement by the US President on the Cybersecurity Framework, February 12, 2014. 

"Cyber hacking is a potentially existential threat to our financial markets and can wreak serious havoc 

on the financial lives of consumers. It is imperative that we move quickly to work together to shore up 

our lines of defense against these serious risks." 

-- Benjamin M. Lawsky, Superintendent of Financial Services, New York State Department of Financial 

Services, December 10, 2014, New Cyber Security Examination Process. 

"In our existing environment and at our company, cybersecurity attacks are becoming increasingly 

complex and more dangerous. The threats are coming in not just from computer hackers trying to take 

over our systems and steal our data but also from highly coordinated external attacks both directly and 

via third-party systems (e.g., suppliers, vendors, partners, exchanges, etc.)."  

-- Jamie Dimon, Chairman & CEO, JP Morgan Chase & Co., Annual Letter to Shareholders, April 9, 

2014. 

In the wake of the most recent Sony Pictures Entertainment (SPE) hack of December 

2014, the Federal Bureau of Investigation (FBI), reiterating the US President, noted that “cyber 

threats pose one of the gravest national security dangers”3 to the US. Barely three months ago, the 

data breach at the US financial institution JP Morgan, impacted 76 million of 117 million US 

                                                           
3 http://www.fbi.gov/news/pressrel/press-releases/update-on-sony-investigation 

http://www.whitehouse.gov/the-press-office/2014/02/12/statement-president-cybersecurity-framework
http://www.dfs.ny.gov/about/press2014/pr1412101.htm
http://www.dfs.ny.gov/about/press2014/pr1412101.htm
http://online.wsj.com/public/resources/documents/040913dimon.pdf
http://online.wsj.com/public/resources/documents/040913dimon.pdf
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households, and, 7 million small businesses4. Given exponentially rising criticality of cyber-

attacks, the natural question is how to assess exposure to cyber risks5.  

We define cyber risk as inherent in all cyber activities including cyber-finance and cyber-

economics. Just like the use of any model entails associated model risk, similarly use of cyber 

involves associated cyber risk. In the first known cyber-finance-trust framework relating cyber, 

finance, and trust domains to elicit the key attributes of cyber risk, we further interpret cyber 

risk as “risk having consequences affecting the confidentiality, availability, integrity, 

authentication, non-repudiation, or accessibility of information.” Thus, we distinguish cyber 

risks from (traditional notions of) financial risks (such as market risks, credit risks, liquidity 

risks, etc.) modeled by VaR in this dissertation.  

The above basis of our distinctions and characterization of cyber risk is based upon our 

analysis discussed further. The key points of such distinctions and characterizations are 

captured in our following summary statement resulting from our analysis. Unlike other risks, 

cyber risk poses a uniquely different set of exposures as it is intertwined with the medium and the 

message in the increasingly global interconnected, distributed, and, networked world of digital 

communications powered by universal use and reuse of enabling global monocultures of 

information and communication technologies and standard computing network protocols.  

To avert the impending national cyber risk and cyber-insurance disaster based upon large-

scale commercial reliance upon quantitative models with inherent model risks, tail risks, and 

systemic risks, this dissertation makes the following key contributions. (Systemic risk is the risk 

of ‘spillover’ of loss from a specific entity beyond it to other entities resulting in system wide 

risk. Tail risk results from theoretical statistical probabilistic distribution assumptions of 

normality about relative infrequency of extremely rare but high impact losses in the left tail of 

the distribution that may not hold in practice because of fat tails resulting from high kurtosis.) 

 First, we develop the first known cyber-finance-trust framework for cyber insurance 

modeling to analyze how financial risk entangled with cyber risk further exacerbates the 

systemic, interdependent, and correlated character of cyber risks.  

 Second, we develop the first known model risk management framework for cyber 

insurance modeling as model risk management has received sparse attention in cyber risk 

assessment and cyber insurance modeling.   
                                                           
4 http://www.bloomberg.com/news/2014-10-02/jpmorgan-says-data-breach-affected-76-million-households.html 
5 http://www.yogeshmalhotra.com/cyberrisk.html 
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 Third, our review of quantitative models in cyber risk and cyber insurance modeling 

develops the first known analysis establishing significant and extreme model risks, tail risks, 

and, systemic risks related to predominant models in use.  

 Fourth, we develop an empirical study of VaR and Bayesian statistical inference 

methodologies with specific guidance for containing model risks by applying multiple 

simple and advanced models for cross-checking the reliability of VaR. 

 Fifth, we develop an analysis of the Markov Chain Monte Carlo Models, Gibbs Sampling 

and Metropolis-Hastings statistical computing algorithms for enabling Bayesian statistical 

inference methodologies to minimize model risk in cyber risk and cyber insurance risk 

modeling for the specific context of cybersecurity.  

 Sixth, we develop the first known portfolio theory based framework for Cyber insurance 

modeling with guidance to minimize model risks, tail risks, and systemic risks inherent in 

models in commercial Cyber insurance modeling.  

 Finally, given increasing role of uncertainty in cyber (and financial) risk modeling and 

management, we develop a framework for enabling Knightian uncertainty management 

relating it to model risk management. 

1.2 Overview of Cyber Risk and Cyber Insurance  

Given emergence of cyber risk as a most critical risk, cyber insurance is still a nascent 

business as studies explore the viability of cyber insurance models. One such recent study 

(Biener et al., 2015) recognizes the distinct characteristics of cyber risks compared to other 

operational risks given significant problems resulting from highly interrelated losses, lack of 

data, and severe information asymmetries. Many definitions of cyber risk at different levels of 

analyses are reviewed in that study. Given our primary focus on information assurance and 

cybersecurity, we define cyber risk as “risk having consequences affecting the confidentiality, 

availability, integrity, authentication, non-repudiation, or accessibility of information.” Some 

descriptions (such as Bodin et al. (2005)) classify the last three aspects, namely, authentication, 

non-repudiation, and accessibility, as subcomponents of availability. In our view informed by 

secure encryption protocols, however, the three aspects can exist independently of actual 

availability; that is why we think there is need to be technically more specific.  

Furthermore, in contrast to studies such as Biener et al. (2015), we do not view cyber 

risk as “operational risk” say as distinct from ‘market risk’ or ‘credit risk.’ In our information 

based view, all networked information based risks including market risks, credit risks, 

currency risks, interest rate risks, etc., form a subset of cyber risk. In as much as all these risks 
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are represented in terms of digital information which can be subject to information based 

manipulation or hacking, they are in fact cyber risks. That being said, our definition is broad as 

well as consistent with how regulators of insurance and financial markets categorize cyber 

risk. The only difference is apparently that we are not trying to draw artificial lines with 

fingers in dry sand. In other words, if the risk is associated with “cyber” activities, it is cyber risk 

where “cyber” is short for cyberspace.   

Thus, we define cyber risk as inherent in all cyber activities including cyber-finance and 

cyber-economics. Just like use of any model entails associated model risk, similarly use of 

cyber involves associated cyber risk. The current discussion focuses on the first known cyber-

finance-trust framework relating cyber, finance, and trust domains to elicit the key attributes 

of cyber risk. Based upon our analysis, we interpret cyber risk as “risk having consequences 

affecting the confidentiality, availability, integrity, authentication, non-repudiation, or 

accessibility of information.” Hence, we distinguish cyber risks from (traditional notions of) 

financial risks (such as market risks, credit risks, liquidity risks, etc.) in this dissertation. 

Our view is both forward-looking as well as a more conservative in its delineation of 

cyber risks, as our later analysis elucidates how cyber risks in fact subsumes many other risks6. Our 

point is all the more relevant given that in the currently nascent cyber insurance industry, 

some of the early players such as Lloyd's syndicate Aegis London (in global partnership with 

PwC) already provide coverage for state-sponsored attacks besides other cyber risks. Many of 

the large corporations, including the largest US financial firms are also cognizant of risks from 

large-scale sophisticated cyberattacks. Significant cyber insurance coverage for such risks may 

yet be within purview of only deep pockets and deep expertise typically associated with nation 

state sponsorships.  

In our view, the specific (direct or indirect) source of attack is of lesser interest in 

characterizing the specific attack as compared with the scope, scale, and, impact of the specific 

attack, which characterize the real risk of expected loss. On the other hand, the source of attack 

could be important in determining insurance coverage of loss as specific insurance policies do 

exclude risk and losses attributable to specific sources of cyber risk.  That being said, it is 

critical to note that in the cyber risk realm of the cyber domain, in contrast to (traditional) 

financial risk realm of the finance domain, it is most challenging to even ascertain the source of 

cyberattack with certainty. Even in case of the most publicized national cyberattack with 

                                                           
6 http://www.yogeshmalhotra.com/GriffissCyberspace.html 
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apparently the most significant economic losses, the security expert and cryptographer Bruce 

Schneier notes the following about the actual source of the recent SPE attack (Schneier, 2014 7, 

Zetter, 20148): “However you read it, this sort of evidence is circumstantial at best. It's easy to 

fake, and it's even easier to interpret it wrong.” Categories of sources of cyber risk and as 

depicted by Biener et al. (2015)9 are shown in the following Table 1-1. 

Table 1-1. Categories of Cyber Risk Consistent with CERT, Basel II, and Solvency II 
 

 
                                                           
7 http://www.theatlantic.com/international/archive/2014/12/did-north-korea-really-attack-
sony/383973/?single_page=true 
8 http://www.wired.com/2014/12/evidence-of-north-korea-hack-is-thin/ 
9 http://www.ivw.unisg.ch/~/media/internet/content/dateien/instituteundcenters/ivw/wps/wp151.pdf 

http://www.wired.com/2014/12/evidence-of-north-korea-hack-is-thin/
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The above categories of sources of cyber risk are originally from the CERT taxonomy of 

operational cyber risks by Cebula & Young (2010) 10 and Cebula et al. (2014)11. They are 

compatible with the financial capitalization standards for global banks such as Basel II and 

Solvency II. A forward-looking view of cyber insurance is available in more recent new cyber 

insurance products that offer property damage, bodily injury, environmental pollution and 

cyber terrorism wrapped around existing policies. One example of such cyber insurance 

coverage provider is Aegis London12 whose offering in partnership with PwC is inspired by 

the view that cyberattacks will be the 'new normal’ in 2015 with an increase in destructive 

attacks linked to on-going global conflicts.  

Table 1-2. Categories of Cyber Risk Consistent with CERT, Basel II, and Solvency II 
 

 

                                                           
10 http://resources.sei.cmu.edu/asset_files/TechnicalNote/2010_004_001_15200.pdf 
11 http://resources.sei.cmu.edu/asset_files/TechnicalNote/2014_004_001_91026.pdf 
12 http://www.cirmagazine.com/cir/Aegis-London-launches-Cyber-Resilience-plus.php 
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A rearview perspective of cyber insurance policies in existence is available in review of 

the cyber insurance practices by Biener et al. (2015)13 and illustrated in Table 1-2. On the 

demand side, the recent academic presentation titled ‘Cybersecurity Investment Optimization 

with Risk: Insights for Resource Allocation’ by a researcher at the University of Massachusetts 

Amherst pegs cybersecurity investments reaching $120Bn by 2017 growing 11% annually14. 

The cyber risk investment framework composed of Attacks, Assets, and Countermeasures 

proposed by that research is shown in Table 1-3. 

Table 1-3. Cyber Risk Investment Framework of Attacks, Assets, and Countermeasures 
 

 

Data for cyber risk losses is sparse given its negligible mention in SEC public filings as 

cyber risk compliance requirements leave such reporting to individual firms’ judgment about 

materiality. Most such loss data as discussed further in our analyses is often underreported 

and hence may lead to underassessment of cyber risk by a wide margin. Based on estimated 

S&P 500’s intellectual property between $600Bn and $1.2Tn and considering large-scale 

                                                           
13 http://www.ivw.unisg.ch/~/media/internet/content/dateien/instituteundcenters/ivw/wps/wp151.pdf 
14 http://www.acscenter.org/news-events/solak_20140919_presentation.pdf 
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government projects such as the $323 billion development cost of US F-35, the consulting firm 

McKinsey & Company concludes that $9Tn to $21Tn of economic-value creation is subject to 

cyber risk exposure in next 5 to 7 years15,16. Such reports acknowledge that it may be difficult to 

put a precise number on such losses. It is so given that most large firms tend to not report 

them in public financial disclosures as they are deemed ‘not material’. The schism becomes all 

the more apparent when the investigations by law enforcement agencies determine specific 

large-value cyber-attack losses in case of the same firms not reporting any ‘material’ losses. 

Given the nascent and dynamic nature of cyber risk and cyber insurance modeling and 

underwriting industry, standardization of products, coverage, and terminology is sparse. As a 

result, cyber insurance underwriting is often highly customized and client specific. 

Our analysis establishes that if left unchecked and uncontrolled, large-scale commercial 

reliance upon quantitative models with inherent model risks, tail risks, and systemic shall lead 

to an impending national cyber risk and cyber-insurance disasters.  Those disasters may be 

similar to those encountered during the financial crisis wherein the US Federal Government 

had to save AIG as the insurer of financial risks undertaken by big banks17. 

The current thesis in our knowledge is the first attempt to recognize the impending cyber 

insurance crisis as well as provide a solution by helping steer cyber risk assessment and cyber 

insurance modeling practice away from that crisis by judicious applications of model risk management 

related to the relevant quantitative models. Our analysis that established VaR as the current 

predominant model of choice in applied practice. Such commercial users of cyber risk 

assessment and cyber insurance modeling can substantially benefit from the answers to the 

following questions that we provide to help them better recognize and manage model risk. 

(a) How is VaR exactly applied in its native empirical real world context of measuring 

portfolio loss by real world financial trading desks using VaR models as explained 

further in Chapter 5?  

(b) What are the most critical limitations of VaR that are known in the finance domain 

related to model risks, tail risks, and systemic risks related to VaR as explained 

further in Chapters 3, 4, 5, and 7?  

                                                           
15 http://www.mckinsey.com/client_service/public_sector/latest_thinking/mckinsey_on_government/can_you_hack_it 
16 http://www.mckinsey.com/insights/business_technology/the_rising_strategic_risks_of_cyberattacks 
17 http://www.wsj.com/articles/SB122156561931242905 
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(c) How are the critical model risks, tail risks, and, systemic risks related to VaR even all 

the more relevant to the cyber domain and cyber risk assessment and cyber insurance 

modeling VaR as explained further in Chapters 3, 4, and 7? 

(d) How cyber domain’s exponentially greater interconnectedness, interdependence, 

and correlations in case of cyber risks contribute to the above risks related to VaR as 

explained further in Chapters 2 and 4? 

(e) How can cyber risk assessment and cyber insurance modeling applications and 

practices minimize the above model risks, tail risks, and systemic risks of VaR as 

explained further in Chapters 3, 4, 5, and 7? 

(f) What alternative models can cyber risk assessment and cyber insurance modeling 

applications use to further minimize the above model risks, tail risks, and systemic 

risks as explained further in Chapters 5, 6, and 7? 

The outline of the subsequent chapters is as follows. Chapter 2 develops the first known 

cyber-finance-trust framework to analyze how global financial risk intertwined with global 

cyber risk further exacerbates the systemic, interdependent, and correlated character of cyber 

risks. Chapter 3 develops the first known systematic basis for analysis of model risk 

management for cyber risk and cyber insurance as model risk management has received 

sparse attention in cyber risk and cyber insurance related contexts. Chapter 4 develops the first 

known analysis establishing significant and extreme model risk and tail risk based on a review 

of the quantitative models in predominant commercial application and use for cyber risk and 

cyber insurance modeling.  Chapter 5 develops a baseline empirical study of similar 

quantitative models with specific guidance for containing model risks related to above 

quantitative models and model risks associated with related statistical inference 

methodologies. Chapter 6 develops an analysis of the statistical computing algorithms that can 

be used for enabling statistical inference methodologies for containing model risk in cyber risk 

and cyber insurance modeling for the specific context of cybersecurity. Chapter 7 develops 

alternative quantitative models for cyber risk and cyber insurance modeling to minimize 

model risks, tail risks, and systemic risks inherent in currently predominant models in 

commercial cyber risk and cyber insurance modeling. Chapter 8 develops a framework for 

enabling Knightian uncertainty management relating it to model risk management given 

increasing uncertainty related to risk modeling of cyber risk. 
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Chapter 2.  

The Trust Troika: Cyber-Finance-Trust 

“Security exists to facilitate trust. Trust is the goal, and security is how we enable it.”  

-- Bruce Schneier on Trust in The Browser interview, February 23, 2012.  

 

2.1 The Cyber-Finance-Trust Framework for Cyber Insurance 

In the current chapter, we develop the first known cyber-finance-trust framework for 

cyber insurance modeling to analyze how financial risk entangled with cyber risk further 

exacerbates the systemic, interdependent, and correlated character of cyber risks. 

Having reviewed the big picture of the cyber insurance industry, we next review the 

macroeconomic context of most recent cyber risk trends and developments. Given recent 

developments in the cyber domain, the following discussion outlines three key interrelated 

contexts that define cyber risk.  The first context is that of cyber war ‘games’ and economic 

value creation, exchange, destruction, and transfer. The cyber context frames cyber risk and 

cyberattacks as economic games that influence economic value of the specific entity at the given 

unit of analysis such as nation, firm, or individual. The second context is that of trust 

relationships that underlie and facilitate interactions and exchanges in both finance and cyber 

domains. The trust context frames the contrast between the finance and cyber domains as well 

as the inter-relationships between the two domains. Within the cyber domain of trust 

relationships, every entity is a plausible target, accessory, or a source of attack. This context is 

also applicable at the various units of analyses, such as nation, firm, and individual.  

The third context is that of finance (and economics) in which the economic costs of cyber 

risks, cyberattacks, ‘wins’, and ‘losses’ are accounted for. In the finance context, financial 

markets at different levels of analyses serve as scoreboards of economic value. In the context of 

economic games that influence economic value as discussed above, we define score as a relative 

indicator of economic value. We use the term ‘relative’ to signify the critical importance of 

score as a proxy for economic value (such as of profits, assets, liquidity, solvency). Trust is the 

common linchpin around which the cyber and finance domains revolve as all their underlying 

interactions, exchanges, and relationships are based on trust. Trust about some economic 
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utility or value (such as inherent in a digital message and/or a digital medium) translates into 

trust in the context of cyber risk such as apparent in most social engineering attacks.  

Examples include perception of some economic utility that underlies the motivation to 

click that poisoned link, or open that poisoned attachment, etc.  In the intertwined troika, 

cyber-finance-trust, the three (cyber, finance, and rust) together define cyber risk and its 

economic assessment in terms of models such as Value-at-Risk (VaR). It is in the application of 

the specific economic risk assessment models such as VaR that model risk and model risk 

management need to be applied.  

2.2 Cyber Games and Economic Value Creation and Destruction 

Lloyd's of London insurer AEGIS London in partnership with PwC recently launched a 

new cyber insurance product bundling property damage, bodily injury, environmental 

pollution and cyber terrorism with existing policies. In aftermath of the recent Sony 

cyberattack, they consider cyberattacks as the 'new normal with most such attacks by groups 

linked to geopolitical tension. Examples they note include former USSR or contested regions, 

such as the South China Sea. They expect that organizations will be caught-up in the fallout of 

“hybrid warfare – facing both physical and cyberattacks” 18. Even though they note Sony as a 

recent example, such cyberattacks because of their very nature will most severely impact most 

information intensive firms and industries.  

Banking and Finance industry is one such example given that most of its products and 

services, processes, as well as channels of distribution and consumption are all digital 

(Malhotra, 2014)19. Given common and shared platforms, hardware, software, exchanges, and 

networks across many of the players in the industry, there is a greater probability of correlated 

cyber risk. Related examples include FIX (Financial Information eXchange) and FAST (FIX 

Adapted for STreaming) protocols that form the backbone of buy- and sell-side trading or 

SWIFT (Society for Worldwide Interbank Financial Telecommunication) protocol that forms 

the backbone of worldwide banking transactions and messaging.  

 The US President on signing the ‘Executive Order 13636—Improving Critical 

Infrastructure Cybersecurity’20 observed that: “Now our enemies are also seeking the ability to 

                                                           
18 http://www.cirmagazine.com/cir/Aegis-London-launches-Cyber-Resilience-plus.php 
19 http://www.brint.org/WhyKMSFail.pdf 
20 http://www.gpo.gov/fdsys/pkg/FR-2013-02-19/pdf/2013-03915.pdf 
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sabotage our power grid, our financial institutions, and our air traffic control systems.” These 

critical national information infrastructures21 form the backbone of the national economy and 

economic value creation, exchange, and transfer. Hence, cyberattacks and related cyber risks 

have clear and present implications for the economic value creation, exchange, and transfer as 

well as economic destruction at all units of analysis. Shareholders and investors in publicly 

held firms, for instance, have to contend with market fraud such as insider trading and 

problems with financial reporting that threaten the integrity of financial markets in normal 

course22. Given increasing criticality of cyberattacks, now they also have to contend with cyber 

risk that threatens economic value creation, exchange, and transfer23,24.  While releasing the 

recent Executive Order sanctioning North Korean government officials for the cyber-attack on 

SPE, the US President noted25 “We take seriously North Korea’s attack that aimed to create 

destructive financial effects on a U.S. company and to threaten artists and other individuals 

with the goal of restricting their right to free expression.”  

A Bloomberg report also highlights the critical significance of data as an economic asset 

whose destruction is considered a distinguishing characteristic of the most recent cyberattack 

on Sony Pictures Entertainment (SPE)26: “The hacking of Sony’s computer system was different 

because it wasn’t simply an attempt to disrupt traffic, spy or steal information, but to destroy 

data on a foreign network, according to the official, who asked for anonymity to discuss internal 

administration debates.” Prior statement of the Department of Justice also focused on the 

economic destruction aspects of the SPE cyberattack27: “We are deeply concerned about the 

destructive nature of this attack on a private sector entity and the ordinary citizens who 

worked there. Though the FBI has seen a wide variety and increasing number of cyber 

intrusions, the destructive nature of this attack, coupled with its coercive nature, sets it apart. 

North Korea’s actions were intended to inflict significant harm on a U.S. business and 

suppress the right of American citizens to express themselves. The FBI takes seriously any 

attempt—whether through cyberenabled means, threats of violence, or otherwise—to 

undermine the economic and social prosperity of our citizens.” 

                                                           
21 http://www.brint.org/nii/ 
22 http://www.cnbc.com/id/102306053. 
23 http://www.wired.com/2015/01/bitstamp-offline/ 
24 http://www.wired.com/2014/03/bitcoin-exchange/ 
25 http://www.bloomberg.com/news/2015-01-03/u-s-sanctions-seen-as-warning-to-nations-backing-cyber-attacks.html 
26 http://www.bloomberg.com/news/2015-01-03/u-s-sanctions-seen-as-warning-to-nations-backing-cyber-attacks.html 
27 http://www.nytimes.com/aponline/2014/12/19/arts/ap-us-sony-hack.html 
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The narrative of the MarketWatch report of December 31, 2014, describes the extent of 

damage from the cyber-attack28: “The day after Sony Pictures employees discovered that 

company email was unusable following a cyberattack, senior executives came up with an old-

style communication network: a phone tree, in which updates on the hack were relayed from 

person to person. With computers down during Thanksgiving week, the Sony Corp. studio’s 

6,000 employees were forced to improvise, with cellphones, Gmail accounts and notepads. The 

payroll department dug up an old machine to cut paychecks manually. Before long, the studio 

unearthed a cache of BlackBerrys, which still worked because they send and receive email via 

their own servers. Sony Entertainment Chief Executive Michael Lynton told a meeting of 

senior executives that hackers hadn’t simply stolen data. They had erased it, rendering the 

entire computer system unusable.” That combination of damages in terms of stolen 

credentials, erased hard drives, and leaked documents is described by the cybersecurity 

company FireEye Inc. as unprecedented in the history of corporate cyberhacks. 

The SPE cyberattack is a watershed event in that it will lead to fundamental rethinking 

about what represents an ‘act of war’ justifying military response from a national security 

point of view especially in case of a cyberattack resulting in damage or destruction of data. 

What is described as the most devastating attack on a US company, by some technically didn’t 

meet the criteria defining such an act of cyberwar. The NATO’s Tallinn Manual29 defines act of 

cyberwar justifying military response as "a cyber-operation, whether offensive or defensive, 

that is reasonably expected to cause injury or death to persons or damage or destruction to 

objects." Hence, damage to and destruction of data in this specific instance was used to define the 

cyberattack as an act of the adversary state aggression setting a precedent for the future.  

The case for bridging the existing schism between treatment of physical and the 

virtual/digital assets is made by a former NSA research scientist and CEO of the cybersecurity 

firm Immunity in a Marketwatch report30. The report shares his observation that while the 

attack "doesn’t meet the threshold for a response by our military," it should still be viewed as 

an act of war. He notes that (emphasis added): "We need to change the way we think about 

cyberattacks. In many cases, these aren’t 'crimes' — they’re acts of war. A nonkinetic attack (i.e., 

destructive malware, destructive computer network attack) that causes just as much damage 

                                                           
28 http://www.marketwatch.com/story/sony-hack-behind-the-scenes-as-the-crisis-unfolded-2014-12-31 
29 http://www.knowledgecommons.in/wp-content/uploads/2014/03/Tallinn-Manual-on-the-International-Law-Applicable-
to-Cyber-Warfare-Draft-.pdf 
30 http://www.marketwatch.com/story/sony-hack-behind-the-scenes-as-the-crisis-unfolded-2014-12-31 
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as a kinetic attack (i.e., a missile or bomb) should be viewed at the same level of urgency and 

need for US government/military response.” His next point seems to span the prior difference 

in treatment of physical assets such as buildings versus virtual/digital assets such as data: "there 

should at least be firm diplomatic repercussions for these types of attacks. After all, what 

would we have done if they’d blown up the buildings at Sony Pictures but not caused any 

casualties? That is the context these attacks need to be put in." 

The recent cyberattack on Sony has brought national and global visibility of the 

financial economic dimensions of global cyberwarfare at probably an unprecedented level. 

However, it should not be really a surprise as ‘cyberwarfare is underway all of the time.’ That 

is exactly what the Atlantic Council Board Director Wesley Clark said at an event hosted by 

Washington, D.C. think tank. A FierceGovernmentIT report of October 13, 2014, notes quoting 

the former four-star Army general who served as NATO supreme allied commander in 

Europe that31: “Cyberwarfare is not something theoretical or reserved for conflict in the distant 

future, but happening continuously right now… We're doing it all of the time. So is everybody 

else; because, I hate to say this, you can't wait 'til the next war to discover what the enemy's 

cyber vulnerabilities are and what his nodes are.”  

The above report further notes that US DoD has made cyber reconnaissance a standard 

tool recently, however it has had cyber offensive techniques for quite some time. In July 2011, 

the US DoD acknowledged its willingness to use cyber offensive capabilities while unveiling 

its strategy for operating in cyberspace. However, it has had cyber offensive capabilities 

including the ability of incapacitating an adversary country’s power grids as early as 1994, as 

he observed at that event.  Clark also shared that other countries such as China had the 

capability to disable another nation’s complete national critical information infrastructure 

including banking, railroads, airlines, sewage, water and electric power since 1999 as 

published in a report by their military leadership.  

2.3 In Trust Relationships, Every Entity a Plausible Target 

The second context is that of trust relationships that underlie and facilitate interactions 

and exchanges between different parties in both finance and cyber domains. The trust context 

frames the contrast between the finance and cyber domains as well as the inter-relationships 

                                                           
31 http://www.fiercegovernmentit.com/story/cyberwarfare-underway-all-time-says-former-nato-supreme-allied-
commander/2014-10-13 
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between the two domains. As observed in our introduction to this chapter, within the cyber 

domain of trust relationships, every entity is a plausible target, accessory, or a source of attack. 

This context is also applicable at the various units of analyses, such as nation, firm, and 

individual. Unlike finance, in cyber domain, trust relationship not only underlie the 

interactions and exchanges (messages) between the transacting parties, but they also underlie 

the infrastructure (medium) enabling those interactions.  

Hence, it was noted earlier, that unlike other risks, cyber risk poses a uniquely different set of 

exposures as it is intertwined with the medium and the message in the increasingly digital world of 

networked communications. While in case of cyber risk exposure through spear phishing and 

whaling, the exposure is through the specific users (decisions to click on a link, for example) 

reading the message. However, the more significant and latent cyber risk is in the inherent and 

potential vulnerabilities in the enabling medium such as the underlying operating system or 

networking software. For instance, the vulnerabilities inherent in the medium can be exploited 

resulting in cyber risk regardless of the user’s actions or inactions. That was the case with the cyber 

risk exposure and the impact of the cyberattack on the employees in the recent Sony hack as 

observed by Schneier who observed that32: “These are people who did nothing wrong. They 

didn't click on phishing links, or use dumb passwords (or even if they did, they didn't cause 

this).” This will be the most fundamental distinction representing the most critical challenge of 

assessing, controlling, and managing cyber risk in contrast to all other kinds of risks. Cyber risk 

is most critical compared to all other information based risks in cyberspace because it is inherent not 

only in the messages but also in the enabling medium.  

From trust computing perspective, every component of software, hardware, firmware, or 

networks that interacts with any other upstream or downstream second-party or third-party 

provider, vendor, or contractor is vulnerable and exposed. An example of what is feasible was 

evident in a Wireshark protocol analyzer online forum where it was observed that creating 

cyber risk exposure for the worldwide base of the most popular operating system for instance 

required poisoning of one critical upgrade that everyone trusts. Given known infiltration and 

compromises through spear phishing and whaling at the most senior echelons of world 

governments and global firms, no one is safe including heads of governments and heads of 

corporate firms.  

                                                           
32 https://www.schneier.com/blog/archives/2014/12/comments_on_the.html 
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Once compromised, any such trusted user regardless of the status on the respective 

hierarchy can become the channel of contagion that can compromise the complete network of 

trust as well as all other trusted users on those networks.  Taking the process a step further 

beyond inter-enterprise focus to intra-enterprise focus, any compromised trusted network can 

become the channel for infiltration of the trusting network. Hence, across diverse networks, 

any entity or device trusting any other network which can be compromised can become 

potentially vulnerable and after being compromised becomes a carrier that can result in other 

devices being compromised. Once compromised, the exposed network, device, and/or entity 

serves as a channel for transfer of economic value or destruction of economic value in the 

online cyber war game.  

As in the case of Sony, although the headline on the national state sponsored cyber-

attack on a global firm of another nation state apparently received most attention, other 

alternative threats and scenarios cannot be ruled out. A key challenge is determining the real 

identity of the device or the network as the source of attack by tracking it precisely across the 

various intermediaries, willing or unwilling, knowing or unknowing, involved in the attack. A 

more complex and convoluted challenge is knowing even if the authorized users or owners of 

those specific devices or networks actively participated in the attack or even knew about the 

attack before or when it was launched. In case of the recent cyberattack on Sony, the hackers 

routed their attack through computers all over the world one of which, in Bolivia, had been 

used by the same group to hack targets in South Korea. “But that computer, as well as others 

in Poland, Italy, Thailand, Singapore, Cyprus and the United States, were all freely available to 

anyone to use, which opens the list of suspects to anyone with an Internet connection and 

basic hacking skills.”33  

Regardless, from the above analysis, it follows that everyone is a potential target, potential 

accessory, or even a potential source of attack, even when they are unwilling or unknowing participants 

in any given attack or a ‘network of attacks’.  Merely detaching oneself with an air gap from all 

networks and devices does not necessarily preclude an actor as a potential target, accessory, 

or, source of attack, not considering RF signals. As long as the agent or device can 

communicate with, i.e. pass on a digital message to, other agents or devices who are not 

detached or who can communicate with other agents or devices, it could be plausibly a 

                                                           
33 http://bits.blogs.nytimes.com/2014/12/24/new-study-adds-to-skepticism-among-security-experts-that-north-korea-was-
behind-sony-hack/?_r=0 
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potential target, accessory, and even a source of attack. This was the exact case of the Stuxnet 

virus/worm, perhaps the most known example of infection of an air-gapped system34.    

Our above analysis of exponentially increasing Distrust in the context of the cyberspace 

enabling protocols originally designed on the fundamental premise of trust underlies the most 

unique nature of cyber risk as compared with all other risks. The implicit message 

communicated by the Trojan horse shown in Fig. 2-1 on the cover of the above Information 

Security survey course book is about the arrival of the ‘Zero Trust’ digital era35 (Forrester, 

2013). Hence, our above posited model of ‘every entity being a potential Trojan horse’ is 

consistent with the new ‘zero trust’ model of cybersecurity.  

 

Fig. 2-1. Every Entity, Device, Network, Actor, or, Agent:   

A Potential ‘Trojan Horse’? Hence, No ‘Default Trust’ 

The whitepaper by Palo Alto Networks notes that: “Zero Trust is an alternative security 

model that addresses the shortcomings of failing perimeter-centric strategies by removing the 

assumption of trust36. With Zero Trust there is no default trust for any entity—including users, 

devices, applications, and packets—regardless of what it is and its location on or relative to the 

corporate network.” Given the above observations, the ‘cybersecurity world is at a cross roads 

in its evolution’ contemplating the switch to ‘Zero Trust’ (Evans 2014)37. Defense-in-Depth 

based traditional ‘perimeter based’ security has been rendered less effective by increasing 

                                                           
34 http://www.wired.com/2014/12/hacker-lexicon-air-gap/ 
35 http://public.dhe.ibm.com/common/ssi/ecm/en/wgl03038usen/WGL03038USEN.PDF 
36 http://www.cio.co.uk/cmsdata/whitepapers/3531107/Palo_Alto_-_Getting_started_with_a_zero_trust_approach.pdf 
37 http://www.computerworld.com/article/2476276/security0/the-importance-of-zero-trust-and-an-adaptive-perimeter-in-
cyber-fortifications.html 



 

18 
 

sophistication, scale, and frequency of cyber-crime and adoption of new, disruptive 

technologies such as social, mobile, and cloud.  

For example, the Internet-of-Things opens up a whole new set of vectors of cyber risks 

and potential cyberattacks. Zero trust approach, relying upon trusting no-one consistent with 

the above analysis, assumes that the traditional perimeter based security will be breached, 

including all defense-in-depth security layers, and hence valuable data and assets need to be 

protected from inside-out. Zero-trust approach would therefore include advanced data 

protection such as encryption, data cloaking, data masking for all critical data assets, both at-

rest and in-transmission. It can be deployed in addition to ‘adaptive perimeter’ approach to 

minimize the attack surface vulnerable to more sophisticated cyber-attacks. Examples of 

adaptive perimeter include using application wrapping to encrypt data-in-motion from mobile 

app across the cyberspace and connecting authenticated mobile users into secure communities 

of interest, and, wrapping applications on the mobile devices.  

The key point of the above discussion is that cyber risk is characterized by ‘zero trust’ 

and ‘every entity can be a potential Trojan horse’ traits. Given its key features of ‘zero trust,’ in 

addition to related features of extremely high interconnectedness, interdependence, and 

correlated-ness, cyber risk is quite unlike most financial risks. Not only is it different from 

financial risks modeled using VaR, in fact, it is much more riskier in terms of the specific risk 

characteristics that VaR is already known to be deficient in modeling. 

2.4 Financial Markets as Scoreboards of Economic Value 

The above analysis elucidated the cyber context of economic games that influence economic 

value and the trust context that frames the contrast between the finance and cyber domains as 

well as the inter-relationships between the two. The third inter-related context if that of finance 

(and economics) in which the economic costs of cyber risks, cyberattacks, ‘wins’, and ‘losses’ 

are counted and accounted for. In those counting and accounting contexts, financial markets at 

different levels of analyses serve as scoreboards of economic value. For cyber finance (information 

based finance), or, virtual finance (whenever the interface is digital and not physical) – which is 

pretty much most of post-WWW contemporary finance of this century – all products (and 

services), processes, and channels (of production, distribution, and consumption) are 

increasingly more or less information-based, digital, cyber, and virtual.  
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Hence, for most purposes of actual production, processing, and distribution, finance is 

more or less same as cyber given that almost all of its risks are cyber risks. Financial market risks, 

credit risks, and operational risks typical focus at the level of specific business processes and 

functions. However, in case of finance particularly, all such processes as well as related 

products, services, and distribution and consumption channels are cyber-based. Hence, each of 

them is vulnerable to manipulation or hacking of data at rest and in motion. Therefore, it isn’t 

surprising that leading Banking firms such as Goldman Sachs consider themselves more to be  

a Technology firm rather than an old school Banking firm38. The key difference between the 

cyber and finance domains may be considered in terms of the score-keeping function which still 

seems to be the domain of finance and associated accountants, analysts, bankers, investors, 

hedge fund managers, and, financiers – human, virtual, or, (increasingly) cyber. There are 

automated score-keeping aspects such as credit-card and loan authorizations, however under 

the purview of human or artificial agents, those notions still seem to be the purview of finance.  

Our prior analysis defined all activities of economic creation, destruction, transfer, or 

exchange at all levels of analysis – including nations, firms, groups, or individuals – as 

economic games of finance. When these economic activities are enabled by cyber, we call them 

cyber games of finance in the cyber-finance-trust contexts. We also defined the score-keeping 

function of finance and noted that scores are relative indicators of economic value. We use the 

term ‘relative’ to signify the critical importance of score as a proxy for economic value (such as 

of profits, assets, liquidity, solvency). Such scores of the cyber game of finance are evident in 

global and national economic indicators, stock prices of public firms, assets under 

management (AUM) for hedge funds, and, net worth of ultra-wealthy individuals including 

Fortune 500 and Forbes 400.  

As fates and fortunes of many other entities, groups, and individuals depend upon the 

above deep-pocketed entities such as through livelihoods, pension funds, retirement 

portfolios, university endowments, etc., they may also be receptacles of the trickle-down scores. 

It is important to understand the notion of score-keeping particularly as it may relate to 

individual firms and ultra-wealthy individuals. Many of their individual economic scores are 

greater than the GDP of many of the world’s countries. In fact, many of the world’s largest 

firms and governments rely upon their investments for their scores such as enterprise stock and 

bond asset valuations and sovereign credit rankings. Hence, we need to recognize that even 

                                                           
38 http://dealbook.nytimes.com/2014/11/13/goldman-sachs-recasts-its-reputation-to-woo-tech-talent/ 
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though some of the Top-3 billionaires get major headlines for influencing scores of firms and 

financial markets, many of the largest firms and nations rely for their scores upon many who 

may not be in the Forbes 100.  

In the cyber context, the trust relationships are through the interactions of the message 

and the medium as discussed earlier. In contrast, in the finance context, the trust relationships 

are through the interactions of economic scores and economic well-being. It follows that the 

fortunes, stock prices, and sovereign risk rankings of respective firms and nations are 

intertwined and entangled with the fortunes of the specific investors, creditors, and 

stockholders generally. It can also be deduced that the fortunes of hundreds of millions of 

others who are reliant upon the respective firms, institutions, and governments for their 

livelihoods and sustenance are also entangled with those entities. In the digital information-

based view of the troika of cyber-finance-trust, the complex interweaving web of entangled 

economic ‘trust relationships’ often inter-relates and corresponds to the cyber ‘trust relationships.’  

This interacting web of cyber and economic trust relationships is relevant to examining and 

understanding the diverse vectors of potential cyber threats and cyber-attacks, as well as 

potential targets, accessories and sources of cyberattacks. It is within the above context of 

financial score-keeping, that Value-at-Risk (VaR) is of interest as a statistical model and 

methodology of assessment of economic risk of expected loss. It is also within the above 

context of troika of cyber-finance-trust, we analyze the adoption of the VaR model used in 

finance domain in the cyber domain for assessment of economic risk of expected loss. To 

distinguish the application of VaR in the two domains, we shall call the former financial risk, 

and the latter cyber Risk. Such assessment of risk is relevant to both cyber risk assessment as 

well as cyber insurance modeling. Prudent risk assessment, measurement, and modeling 

requires prudent public data about suck risks which is simply not available. The specific 

reasons attributable to ‘non material’ cyber risk public filings for sparseness of relevant 

cyberattack and cyber loss public data is discussed in the next section. 

2.5 Finance-Cyber Interact with No Cyber Risk Score in Filings 

The U.S. Securities and Exchange Commission (SEC) Division of Corporation Finance 

(Corp Fin) issued its ‘guidance’ on October 13, 2011, for publicly-traded corporations about 

disclosure obligations relating to cybersecurity risks and cyber incidents observing that 
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(emphasis added)39: “Although no existing disclosure requirement explicitly refers to cybersecurity 

risks and cyber incidents, a number of disclosure requirements may impose an obligation on 

registrants to disclose such risks and incidents. In addition, material information regarding 

cybersecurity risks and cyber incidents is required to be disclosed when necessary in order to make 

other required disclosures, in light of the circumstances under which they are made, not 

misleading.” 

 The guidance did not modify or create any new SEC rules or regulations, rather it 

discussed how publicly-traded US corporations, both domestic and foreign, might consider 

cybersecurity matters when preparing financial disclosures in periodic SEC reports and 

registration statements. In an Oct. 15, 2013, speech to the National Association of Corporate 

Directors Leadership, the SEC head reiterated the materiality standard that governs 

disclosures about costs of such attacks (emphasis added)40: “even in the absence of a line item 

requirement… Depending on the severity and impact of the cybersecurity attacks, disclosure is 

either required or not.”  

A San Francisco law firm’s interpretation of the SEC guidance is notable in this respect 

(emphasis added)41: “The disclosure guidance implicitly assumes that all or most companies face 

cybersecurity risks and possibly even that all or most companies have been attacked, as the guidance 

advises that companies “should not present risks that could apply to any issuer (of public stock),” 

refers to disclosing “successful” or “material” attacks rather than all attacks, and states that 

companies should “avoid generic risk factor disclosure.” Corp Fin, noted above, stated that the 

guidance reflects only its views on cybersecurity disclosures, that it is not a rule, regulation or 

statement of the SEC, and that the commission has neither approved nor disapproved the guidance.”  

The SEC hosted a roundtable on ‘Cybersecurity Issues and Challenges’42 on March 26, 

2014 with the following key messages: Board of Directors’ Involvement: Cybersecurity is a threat 

that necessitates the involvement of every level of a company, especially the board of directors, 

but exactly how that responsibility should be allocated and the level of necessary expertise 

may depend on the industry and other considerations. Public Disclosure: Companies must 

disclose cybersecurity threats and incidents, but when and how is currently unclear even 

despite that security breach notification laws have existed in the USA since 2002 starting with 

                                                           
39 http://www.sec.gov/divisions/corpfin/guidance/cfguidance-topic2.htm 
40 http://www.sec.gov/News/Speech/Detail/Speech/1370539878806 
41 http://www.mofo.com/files/Uploads/Images/131014-SEC-Continues-to-Target-Cybersecurity-Disclosures.pdf 
42 http://www.sec.gov/spotlight/cybersecurity-roundtable.shtml 
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the California data security breach notification law SB 138643. Information Sharing: Sharing 

information among companies and with the government is essential in preventing 

cyberattacks and the government can help by defining the legal protections covering such 

information and by giving the private sector the appropriate clearances for access to classified 

information. Preparation: Companies must be prepared to defend against and respond to 

cyberattacks on a timely basis. Adequate preparation includes performing tests and risk 

assessments daily, quarterly, and annually and developing playbooks defining response plans 

for breaches. Government Guidelines: Government guidance on disclosure and standards that 

can be implemented by companies to prevent cyberattacks are helpful, but prescriptive rules are 

not beneficial, given the changing and dynamic landscape of cybersecurity and the likelihood of having 

outdated rules.  

However, given lack of specific rules, regulations, or compliance requirements except 

for the discretionary assessment of ‘materiality,’ the scores that are most pertinent to cyber risk 

and cyber insurance modeling are simply not accessible to public as they are not available in 

any public database. Such scarcity of financial loss disclosure exists even while investors and 

shareholders as well as public officials have been pressing SEC for requiring such cyber risk 

disclosures44. Such scarcity of available and reliable data on cyber risks further hampers 

objective and reliable quantification of cyber risk and modeling of cyber risk and cyber 

insurance.  Despite absence of data to test any model, VaR model from finance has emerged as 

the predominant model being used for commercial cyber risk and cyber insurance offerings. 

The specifics of the above insight based on original research are discussed further in Chapter 4 

which also focuses on the Review of Quantitative Models in Cyber Risk and Cyber Insurance. 

2.6 Using VaR to Model Financial Risk and Cyber Risk 

Given our focus on interacting web of cyber and economic trust relationships, and 

scorekeeping of economic value, potential ‘value at risk’, literally, seems a plausible measure of 

risk assessment. One such commonly used technical – as contrasted from literal – measure of 

risk assessment used in Finance and Banking industry is called ‘Value at Risk’ or in short 

‘VaR.’ Two points of distinction about VaR are important. First, the technical notion of VaR 

must be distinguished from literal notion of ‘value at risk.’ Both terms are used in the cyber 

                                                           
43 http://oag.ca.gov/ecrime/databreach/reporting 
44 http://www.forbes.com/sites/ciocentral/2013/05/15/how-to-prepare-for-when-the-sec-comes-asking-about-
cybersecurity-risk/ 
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risk and cyber insurance literature by well-regarded organizations. Attention to detail is hence 

necessary which specific notion they are referring to. The literal notion can literally mean 

anything as it is up to the specific interpretation of the specific firm. The technical notion of 

VaR is what we focus upon given its increasingly prominent and central role in the nascent 

cyber risk assessment and cyber insurance modeling industry. Further, the statistical technical 

notion of VaR (with small case ‘a’) as used in our analysis must also be differentiated from 

statistical technical notion of VAR (with capital case ‘a’) which stands for ‘Vector 

Autoregressive Models’ outside the scope of our current discussion. 

VaR is essentially a point estimate measure of risk used for assessing various types of 

financial risks such as market risk, credit risk, and (increasingly) operational risk. To 

understand the philosophical, methodological, statistical significance of a model such as VaR 

when it is transplanted from finance to cyber domain, it is critical to understand the compatibility 

of contexts across the two domains. If the transplant of a model is done without ensuring 

compatibility of contexts within the bounds of measurement model, the model is bound to fail.  

Such risk of failures of a model when it fails given that its underlying assumptions, 

boundaries, and limitations are not compatible with its application is called model risk. 

Ensuring that the application of the model is consistent and compatible with the assumptions, 

boundaries, and limitations of the model is called model risk management.  

The focus of the current thesis is on model risk management of VaR in cyber risk and 

cyber insurance modeling. Model risk management of VaR is important given its emerging 

and growing role as the prominent model being applied for cyber risk and cyber insurance 

modeling. Model risk management of VaR is also critically important given what many attribute 

to its central and key role in the Global Financial Crisis of 2007-200945,46. The specific reasons 

for the critical failure of VaR Models include its limitations in not factoring in systemic risks, i.e., 

risks resulting from interdependencies and correlations between the risks that are components 

in computing the aggregate risk47.  

The above matters of critical concern are even more critical in the context of cyber risk 

as compared to financial risk given that systemic risks, i.e., risks resulting from 

interdependencies and correlations, are much more extreme as discussed further in our analysis. 

                                                           
45 http://www.futuresmag.com/2010/11/30/var-number-killed-us 
46 https://books.google.com/books?isbn=1118171543 
47 http://www.ft.com/cms/s/0/b8713aba-a102-11e1-aac1-00144feabdc0.html 
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Hence, application of VaR models (as distinguished from its extensions discussed later which 

are denote as VaR methodology) will result in significant model risk in cyber risk and cyber 

insurance modeling. More importantly, given the interdependencies and correlations 

characterizing cyber risk, given its intrinsic nature, these model risks of VaR will be of much 

more extreme levels than even in finance.  

The next chapter introduces and explains the concepts of Model Risk and Model Risk 

Management to set the background for subsequent chapters on alleviating model risk of using 

VaR for cyber risk and cyber insurance modeling.  
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Chapter 3.  

Model Risks and Model Risk Management 

“This reliance on models to handle risk carries its own risks.” 

-- Emanuel Derman, Quantitative Strategies Research Notes, Goldman Sachs, April 

1996. 

 

3.1 Model Risk Management Framework for Cyber Insurance 

In the current chapter, we develop the first known model risk management framework 

for cyber insurance modeling as model risk management has received sparse attention in cyber 

risk assessment and cyber insurance modeling. 

We start with an overview of what model risk means and what is model risk 

management from the perspective of finance. Our motivation in doing so for cyber risk and 

cyber insurance modeling is twofold. First, cyber risk and cyber insurance modeling are 

currently predominantly reliant upon financial risk models such as VaR for cyber risk 

assessment. Hence, we need context-sensitive understanding of such models being adopted 

for assessment of cyber risk. Second, VaR model has been the subject of intense criticism 

regarding its neglect of systemic risk arising from interdependent and correlated risks. Hence, 

in the context of cyber risk which is characterized by high level of interdependent and 

correlated risks, it is all the more critical to examine how to manage model risk of VaR. We 

need to develop context-sensitive understanding of model risk management from two related 

perspectives.  

The first perspective is that of financial practice as leading firms and domain experts 

have pioneered the leading industrywide model risk management practices. The second 

perspective is of financial regulators who have promulgated model risk management 

compliance requirements for the financial firms after the Financial Crisis. Following analysis 

accomplishes the above stated objectives. For applying practical understanding about model 

risk management to cyber insurance modeling, we analyze the model risk management 
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practice pioneered at Quantitative Research group of Goldman Sachs48. For applying practical 

understanding from a regulatory standpoint, we analyze the model risk management 

compliance guidance of the US Federal Reserve and the Office of Comptroller of Currency49,50.  

3.2 Model Risk Management and Uncertainty Management 

Within finance, it is relevant to understand the Model Risk Management practice from 

the firm and the modeler who may be considered its pioneers. Dr. Emanuel Derman51 was the 

Head of Quantitative Risk Strategies Group at Goldman Sachs before leading the Financial 

Engineering program at the Columbia University. In his research note published in April 1996 

while at Goldman Sachs, he characterizes Model Risk as “assumptions and risks involved in 

using models” for financial securities valuations observing that “reliance on models to handle 

risk carries its own risks.52” In the specification of a model, the objects of concern are causally 

related and that relationship of cause and effect is presumed to be stable while applying the 

model. In contrast to the domain of natural sciences such as Physics, in sociotechnical contexts 

such as financial markets and cyber risk management, often the cause-effect variables may 

themselves reflect human ‘expectations’ such as expected risk and expected return, not 

realized quantities53. Models about future valuation scenarios require the modeler to translate 

one’s thought and intuitions about independent variables into specific numerical values 

reflecting dollar figures. Such dollar figures could be ‘profits’ (Knight (1921)) of the pre-cyber 

era and ‘scores’ as we define in this dissertation for the era of cyber games of finance. 

The ‘overwhelming unknown’ as Derman calls it in models applied in sociotechnical 

fields such as finance (and more so for cyber, as we analyze in this dissertation) is uncertainty. 

His comment, like others (such as Morini (2011), Haldane & Nelson54 (2012)) underscores the 

critical disconnect between what is often modeled and what needs to be really managed. All of them 

explicitly relate to the most crucial distinction originally made by Knight (1921) between the 

theory of risk modeling and related practice of risk management. The critical unknown variable 

of interest in finance (and more so in cyber) is uncertainty; however, the variable that most 

                                                           
48 http://www.emanuelderman.com/media/gs-model_risk.pdf 
49 http://www.federalreserve.gov/bankinforeg/srletters/sr1107a1.pdf 
50 http://www.occ.treas.gov/news-issuances/bulletins/2011/bulletin-2011-12a.pdf 
51 http://books.google.com/books/about/My_Life_as_a_Quant.html?id=GJdhjA9fTQMC 
52 http://www.emanuelderman.com/media/gs-model_risk.pdf 
53 https://books.google.com/books?id=lke_cwM4wm8C 
54 http://www.bankofengland.co.uk/publications/Documents/speeches/2012/speech582.pdf 
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often actually gets estimated using quantitative models (based on classical statistical inference 

methodologies) is risk. That is the underlying basis for Derman’s key point above that all 

models (including VaR) entail model risk and hence must rely upon model risk management. 

The distinction between risk and uncertainty is most crucial and is attributed to the economist 

Frank Knight (Knight 1921). Knight was one of the founders of the Chicago School who taught 

multiple (future) Nobel laureate economists.  

Knight outlined the following important distinction between uncertainty and risk 

(Knight 1921, p. 9): "Uncertainty must be taken in a sense radically distinct from the familiar 

notion of Risk, from which it has never been properly separated.... The essential fact is that 

'risk' means in some cases a quantity susceptible of measurement, while at other times it is 

something distinctly not of this character; and there are far-reaching and crucial differences in 

the bearings of the phenomena depending on which of the two is really present and 

operating.... It will appear that a measurable uncertainty, or 'risk' proper, as we shall use the 

term, is so far different from an unmeasurable one that it is not in effect an uncertainty at all.” 

Furthermore, he noted (p. 9, emphasis added): “We shall accordingly restrict the term 

‘uncertainty’ to cases of the non-quantitative type. It is this ‘true’ uncertainty, and not risk, as has 

been argued, which forms the basis of a valid theory of profit and accounts for the divergence between 

actual and theoretical competition.”  

Therein lies Knight’s emphasis of his distinction between the practice of (non-

quantitative) risk management relying upon ‘true’ uncertainty and the theory of (quantitative) 

risk modeling of ‘theoretical competition’ relying upon ‘measurable uncertainty’, i.e., risk55.  

Both Derman56 and Morini (2011) recognize and relate to the above distinction between true 

uncertainty and measurable uncertainty as does Malhotra (2004)57. Consistently, all three 

evidently relate to Knight’s distinction between “‘objective’ and subjective ‘probability’” 

(Knight 1921, p. 121) in terms of ‘risk modeling’ and ‘uncertainty management’ respectively in 

their research papers.  

 

 

                                                           
55 http://www.yogeshmalhotra.com/blackswans.html 
56 http://www.emanuelderman.com/media/gs-model_risk.pdf 
57 In contrast to Derman and Morini who as quantitative modelers who became fascinated by uncertainty management, 
Malhotra as scholar-practitioner of uncertainty management became fascinated by quantitative modeling. He also 
distinguishes theory from practice in his research focused on ‘anticipation of surprise’ in contrast to ‘historical prediction.’ 
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3.3 Model Risk Management at Goldman Extended to Cyber  

Given the entangled Web of trust relationships that determine cyber risk, one may 

argue that the cyber domain is not only much more uncertain but also more dynamic than 

finance. In finance models, variables may also include people’s opinions. In cyber, however, 

given intensity and velocity of social and other information flows and resultant impact, not 

only actors’ opinions but also their actions (such as in social engineering, as a target, accessory, 

attacker, or carrier) are variables. Often major cyberattacks are known months or years after 

they are initiated in contrast to the real-time ticker of the Financial markets data feeds where 

speed of (high-frequency) competition is in the order of microseconds and nanoseconds. 

Hence, the cyber domain which is more or less covert, as compared with finance domain, has 

not only to deal with an even greater ‘overwhelming unknown’ of uncertainty (as any actor, 

agent, device, or network could be or become a potential threat), but also another 

‘overwhelming unknown’ of complexity given the worldwide entanglement of the troika of 

cyber-finance-trust relationships described earlier.  

Some perspective of the uncertainty in finance compared with uncertainty in cyber may 

be evident in Sony’s recent debacle being described as the first cyber-attack of its kind. One 

senior executive at Sony earlier estimated the firm’s cyber risk in low double-digit millions, 

whereas the actual loss assessment within few short weeks of the cyberattack is to the tune of 

$200-$300 million58. Extending Derman’s comparison of the world of natural sciences to 

sociotechnical domains such as financial markets and cyber risk can perhaps help illustrate 

this point.  

Since Nov. 24, 2014, when the news surfaced about the hack of unprecedented scale and 

scope that shut all networks and devices at Sony Pictures specifically, and Sony Corporation, 

despite reported loss of $300 million, Sony’s financial stock seems to be tracking the main 

market indices quite well while seemingly doing even better than its competitive rival 

Panasonic as seen in Fig. 3-1.  The loss estimate of the relatively smaller subsidiary Sony 

Pictures ($10 billion annual sales) of the Sony holding company ($80 billion annual sales) from 

the cyberattack is perhaps miniscule compared with the parent’s loss estimate forecast of $2.15 

                                                           
58 http://www.washingtonpost.com/blogs/the-switch/wp/2014/12/05/why-its-so-hard-to-calculate-the-cost-of-the-sony-
pictures-hack/ 



 

29 
 

billion of Sep. 17, 2014, for the year. Furthermore, the above hacked entity, SPE, had Cyber 

insurance coverage of $60 million from Marsh59.  

 

Fig. 3-1. Sony Corporation (SNE) Stock Performance just after the Cyberattack 

Derman contrasts the world of natural sciences such as Physics with the socio-technical 

world to underscore the relatively much higher uncertainty that is characteristic of socio-

technical domains such as finance. Most can predictably forecast a man-made satellite’s 

position with high precision. However, uncertainty is inherent in predicting a stock price 

which no one expects to forecast with much precision at all. Compared to the financial market 

though, uncertainty in cyberattack loss estimates seems even much higher60. For instance, the 

cyberattack loss from an earlier hack that the Sony corporation encountered in 2011 on its PSN 

Playstation® Network was estimated at $171 million in a Wired61 report of May 23rd and 

estimated to cost a ‘Billion-Dollar’ repair bill in a prior Wall Street Journal62 report of May 6th.  

Another point that Derman raises is the intimate knowledge of the domain needed by 

modelers for application of the respective model such as VaR. In finance, they need intimate 

knowledge such as specific times during which specific securities trade, relevant trading rules, 

settlement conventions, etc. In contrast, however, the Cyber (attack) domain defies any such rules 

                                                           
59 http://www.propertycasualty360.com/2014/12/18/sony-pictures-holds-60-million-cyber-policy-with-m 
60 http://www.washingtonpost.com/blogs/the-switch/wp/2014/12/05/why-its-so-hard-to-calculate-the-cost-of-the-sony-
pictures-hack/ 
61 http://www.wired.com/2011/05/sony-psn-hack-losses/ 
62 http://www.wsj.com/articles/SB10001424052748703859304576307664174667924 



 

30 
 

and conventions which all attackers adhere to or play by. Rather, it is a  round-the-clock increasingly 

sophisticated global meta-market composed of worldwide open markets such as the Absolute 

Zero-Day™ Exploit Exchange operated by the once world’s most wanted hacker Kevin 

Mitnick as well as underground exploit markets that sell software such as used in Sony’s 

recent attack.  

A critical point that Derman notes is that even the finest model is just a model, and not the 

real thing. In that respect, cyber risk assessment and cyber insurance models should represent 

as naturally as possible the essential variables of the systems and their inter-relationships to 

allow assessment of cause and effect. Such models can only do few important things really 

well, hence it is critical to ensure that they focus on the most appropriate and important things 

for the task at hand.  Specifically, in a sociotechnical domain such as finance, and more so in 

case of cyber, given the predominant role of social engineering in the most critical and 

damaging cyberattacks, it may be more damaging to apply a model that really doesn’t apply than 

realizing that there isn’t one63. 

Besides the predominant role of social engineering in cyberattacks to which the most 

valuable assets and resources have been found to be susceptible, there are additional concerns 

that may contribute to model risk. Such concerns include besides using a model that is clearly 

not applicable, missing key variables, incorrect assumptions about certainty (deterministic) vs. 

uncertainty (stochastic), incorrect dynamics in terms of applicable statistical distributions, 

incorrect assumptions or missing critical assumptions about the variable inter-relationships, 

context-sensitivity of the model thus making it valid only in specific contexts, theoretically 

precise model hindered in applicability when real world doesn’t match theoretical logic or 

assumptions, incorrect estimation of underlying data, and, instability of theoretical 

assumptions in dynamic real world contexts.  

Unless careful testing is done to ensure that analytic solution to the model behaves 

consistently for all reasonable parameters, even though the model is correct, it may yet have an 

incorrect solution. Hence, in the case of cyber risk and cyber insurance models, given sparse 

and unreliable available data makes it much more challenging to test or empirically validate 

current models, VaR as well as others. However, key characteristics that define the 

fundamental assumptions, boundaries, and limitations of scope as in the case of VaR applied 

to finance domain as well as cyber domain can provide valuable insights. In case of complex 

                                                           
63 http://www.emanuelderman.com/media/gs-model_risk.pdf 
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models which may be correct, greater probability of inappropriate use contributes to model 

risk. Hence, cyber risk attacks that lead to losses with high variance may need to be modeled 

with different parameters than those that lead to losses with low variance. Therefore for best 

results, users knowledgeable about the model, the solution, as well as what can go wrong with 

it need to test the model with different parameters as well as different methods to determine the 

methods and parameters for which convergence of findings is achieved. As models are 

sophisticated programs integrated with backend databases, frontend user interfaces, live data 

feeds, and, data entry screen inputs, their end result is only good as their weakest link.  

Similarly, model risk can result from using different sampling duration windows for 

computing future estimates of independent variables from historical data. Model risk is thus 

influenced by the specific domain, the model’s applicability, underlying mathematical and 

numerical analysis of its solution, computer programming and software engineering of its 

implementation, and, the communication and translation across various inter-linkages 

connecting the integrated components64. When the above tasks are split between users, 

modelers, and programmers, it may be desirable to have them work together in close-knit 

teams that know what can go wrong and test the model as well its boundaries and 

assumptions.  Simpler cases of complex models should be tested first with analytical solutions 

before scaling them as complex models can go wrong if complexity obfuscates the error in the 

simpler part of the model. Even small discrepancies should be paid attention to as they may 

lead to large errors. The importance of graphical user interfaces needs to be underscored as 

often displays of graphical information can help determine or pinpoint model errors. To 

ensure rigorous testing before they are used at large scale, models need to be diffused 

gradually from original developers to testers to users to clients so that most kinks are resolved 

before they are applied in large scale use. 

3.4 Model Risk Management Compliance Guidance for Banks 

On April 4, 2011, the Board of Governors of the US Federal Reserve System and the US 

Office of the Comptroller of the Currency published the Supervisory Guidance on Model Risk 

Management65,66. That guidance requires compliance of Banking and Finance firms and 

provides broad guidance on both model risk and model risk management. Presented below 

                                                           
64 http://www.emanuelderman.com/media/gs-model_risk.pdf 
65 http://www.federalreserve.gov/bankinforeg/srletters/sr1107a1.pdf 
66 http://www.occ.treas.gov/news-issuances/bulletins/2011/bulletin-2011-12a.pdf 
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are the key points from that document followed by the US finance industry for assessing and 

managing model risk of models such as VaR. The US Fed and OCC guidance specifies model 

risk in terms of “potential indirect costs of relying on models, such as the possible adverse 

consequences (including financial loss) of decisions based on models that are incorrect or 

misused.” Further: “Those consequences should be addressed by active management of model 

risk.”   

Consistently, JP Morgan, one of the world’s largest bank based on AUM, defines model 

risk as follows: “Model Risk arises from the potential adverse consequences of making 

decisions based on incorrect or misused model outputs and reports, leading to financial loss, 

poor business decision making, or reputational damage.” Many such financial institutions 

have Model Risk Groups such as the above bank which notes that it: “is responsible for 

conducting model validation to help identify, measure, and mitigate Model Risk. The objective 

is to ensure that models are used appropriately in the business context and that model users 

are aware of the models’ strengths and limitations and how these can impact their decisions.”  

Given the emphasis on model validation evident in the above bank’s model risk 

management practice note, the US Fed and OCC guidance further observe that (emphasis 

added): “Rigorous model validation plays a critical role in model risk management; however, 

sound development, implementation, and use of models are also vital elements. Furthermore, model 

risk management encompasses governance and control mechanisms such as board and senior 

management oversight, policies and procedures, controls and compliance, and an appropriate 

incentive and organizational structure.”  

 

US Fed and OCC guidance refer to model as: “a quantitative method, system, or 

approach that applies statistical, economic, financial, or mathematical theories, techniques, and 

assumptions to process input data into quantitative estimates… (consisting of) three 

components: an information input component, which delivers assumptions and data to the 

model; a processing component, which transforms inputs into estimates; and a reporting 

component, which translates the estimates into useful business information.” The guidance 

also includes “quantitative approaches whose inputs are partially or wholly qualitative or 

based on expert judgment, provided that the output is quantitative in nature.” The guidance, 

not unlike the prior banking practice notes acknowledges that models are “simplified 

representations” of real-world relationships among observed characteristics, values, and 

events. Simplification is inevitable, given inherent complexity of relationships and to focus 



 

33 
 

attention on specific aspects that are most important for a given application. Model quality 

attributes such as precision and accuracy are relevant to future forecasts whereas attributes 

such as discriminatory power are relevant to relative rank ordering of risk. Regardless, there is 

imperative need of knowing the boundaries of model’s capabilities as well as limitations given 

its simplifications and assumptions such as in case of VaR. 

 

US Fed and OCC guidance defines model risk as: “the potential for adverse 

consequences from decisions based on incorrect or misused model outputs and reports 

(which) can lead to financial loss, poor business and strategic decision making, or damage to a 

bank's reputation.” This definition shows consistency of the prior definition used by JP 

Morgan. Model risk may occur because of two reasons: because of fundamental errors and 

because of incorrect or inappropriate use. For instance, our focus on application of VaR in the 

context of cyber risk assessment primarily focuses on the second reason. It is for its incorrect 

and inappropriate use as a point estimate measure of average risk which doesn’t really specify 

how much maximum loss can occur for which other models discussed later are more appropriate.  

 

In addition, previously mentioned limitations of VaR such as its neglect of systemic 

risks, interdependent risks, and correlated risks (that together characterize the cyber domain) 

further compounded the problems resulting from its underestimation of actual risk of loss 67: 

“VaR played a key negative role in the 2008 credit crisis, by severely underestimating the 

danger from toxic mortgage products and by allowing banks to enjoy excessive levels of 

leverage on their trading positions… Recognising all this, the Basel Committee for Banking 

Supervision, which had enthusiastically adopted VaR since 1995, has been busy at work 

disowning the model and tweaking the bank capital formula. Just a few weeks ago, Basel 

announced that it no longer wants to keep using VaR.” However, as subsequent developments 

since then establish, given sparse if any global industry standard alternatives quantitative risk 

methodology alternatives, VaR methodology (distinct from the VaR model currently predominant 

in cyber insurance commercial applications) continues as the foundation for inspiring most 

recent quantitative risk modeling advancements in both theory and applied practice. 68,69  

 

                                                           
67 http://lexicon.ft.com/Term?term=value-at-risk-_-VaR 
68 http://yogeshmalhotra.com/BayesianVsVARToModelRiskManagement.pdf 
69 http://papers.ssrn.com/sol3/papers.cfm?abstract_id=2538401 
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The US Fed and OCC guidance notes that factors contributing to higher model risk 

typically include greater complexity of the model, greater uncertainty about inputs and 

assumptions, as well as broader use which may result in larger potential impact.  Fundamental 

errors resulting in inaccurate outputs may result from errors in application of theory, choice of 

sample, selection of inputs and estimation, incorrect assumptions, and, information systems 

implementations. Errors in use occur if a model is used outside the environment for which it 

was designed or in ways not consistent with the original intent such as when it is applied to 

new products or markets, or inadvertently as market conditions or changes in targeted 

behavior. All such errors result in model risk.  Aggregate model risk that is relevant to 

systemic risk in finance as well as to cyber risk is another key concern. Such errors can also occur 

if VaR model that neglects systemic risk, interdependent risks, and correlated risks is applied to 

assessment of cyber risks that are in fact much more extremely systemic, interdependent and correlated 

than are risks related to different financial assets or financial institutions.  

 

Particularly in a network of interacting nodes, it depends upon interaction and 

dependencies among respective models; reliance on common assumptions, data, or 

methodologies; and factors adversely affecting several models at the same time. The guidance 

specifies that model risk management be accomplished by "effective challenge" of models 

which it interprets as “critical analysis by objective, informed parties who can identify model 

limitations and assumptions and produce appropriate changes.” In summary, model risk 

management includes robust model development, implementation, and use; a sound model 

validation process; and, governance resulting in an effective framework for communication of 

model limitations and assumptions. 

 

Advancing beyond the analysis of model risk and model risk management, the next 

chapter further elaborates on the factors underlying high model risk of extant cyber risk 

assessment and cyber insurance models in commercial use. Besides their predominant reliance 

upon VaR which is a matter of concern for reasons already discussed, unreliable and sparse 

cyberattack loss data hinders empirical validation of analytical results. Multiple factors 

contributing to the unique nature of cyber risk making it much different from market risk and 

credit risk contribute to its relative much higher riskiness. Given the application of imprecise 

and perhaps inadequate model, unreliable and sparse empirical testing, model risk and hence 

model risk management are all the more critical in the case of current cyber risk and cyber 

insurance models and measures being applied in commercial practice. The next chapter’s focus 

is on the above exogenous and endogenous factors that exacerbate model risk in case of the 
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cyber domain, the predominant risk models applied in current cyber risk and cyber insurance 

modeling in academic research and applied practice, and related model risk management 

concerns.      



 

36 
 

Chapter 4.  

Cyber Insurance and Cyber Risk Models 

"I was concerned about inconsistencies in disclosures, investor confusion, and the fact 

that many corporate leaders did not fully recognize the relationship between their 

companies' cybersecurity measures and financial success." 

-- John D. Rockefeller IV, Chairman, United States Senate Committee on Commerce, 

Science, and Transportation in letter to the Chairwoman, U.S. Securities and Exchange 

Commission, April 9, 2013. 

 

4.1 Review of Quantitative Models in Cyber Risk Insurance 

In the current chapter, our review of quantitative models in cyber risk and cyber 

insurance modeling develops the first known analysis establishing significant and extreme 

model risks, tail risks, and, systemic risks related to predominant models in use.  

Developing upon analysis of model risks and model risk management and how they 

apply to cyber risk and cyber insurance modeling, this chapter further elaborates upon factors 

contributing to those model risks. Our analysis reveals that besides their predominant reliance 

upon VaR despite its known limitations relevant to cyber risk modeling, availability of 

adequate and reliable public data further hampers empirical testing of analytical solutions. 

Besides endogenous concerns related to appropriate application and use of models, exogenous 

factors characterizing the cyber domain and associated cyber risks further make their 

modeling and testing challenging. Those exogenous factors further exacerbate the concerns 

about model risk management.  

Following analysis further elaborates upon the above concerns while observing the 

relatively greater level of riskiness (in terms of uncertainty and complexity) of cyber risk relative 

to other (financial) risk types modeled using similar quantitative finance risk models. A review 

of such models being applied for cyber risk and cyber insurance modeling in academic 

research and practice indicates VaR as the predominant model of choice. Specific VaR models 

in cyber insurance modeling are examined and their model risks analyzed. The next section 

delves into the factors that contribute paucity of reliable data for empirical testing of analytical 

models being applied in cyber risk assessment and cyber insurance modeling.  
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4.2 No Material Disclosures of Cyber Risks in Public Filings  

The US ‘Executive Order -- Improving Critical Infrastructure Cybersecurity’70 of 

February 12, 2013, described cyber threat to the nation’s critical infrastructure as “one of the 

most serious national security challenges.” In wake of the recent Sony hack, Department of 

Justice and FBI also noted that “cyber threats pose one of the gravest national security 

dangers” to the United States. Yet, we see negligible disclosures of cyberattack related losses in public 

filings. SEC’s lack of rules or regulations about reporting cyberattacks related losses except for 

the optional guidance which it “neither approves nor disapproves”71 seems to explain why 

companies don’t disclose losses from cyberattacks. The companies don’t do so because they 

are not required to do so. In prior discussion about SEC’s guidance, it was also observed that the 

discretionary application of materiality about specific cyberattack losses is left to the discretion 

of respective firms. The Treasury & Risk report of July 15, 2013, ‘Putting a Price Tag on Cyber 

Crimes’72, observes that cyberattacks have become so common, they are becoming less material.  

As noted by the prior head of SEC’s Office of Internet Enforcement and U.S. advisory 

cybersecurity leader at PwC, (emphasis added) “Everybody’s getting breached. With most 

companies, it’s not a matter of if, but when, they get a data breach,” he said. “The quantitative 

materiality of a data breach I do believe is deteriorating.” He also noted that while it may be very 

hard to quantify the damages, “It may also be the case that companies do not necessarily want to 

disclose the full impact of an IT theft.” He contrasted the challenge of quantification of costs of 

compromise of very sensitive information or intellectual property (as in the case of SPE hack) 

relative to easier to quantify costs. Example of such easily quantifiable costs are costs of 

incidents in which credit card numbers or other personal information is stolen, costs that 

include the expense of any remediation, such as offering credit monitoring to customers.  

Consistently, cybersecurity survey firm Ponemon Institute Founder Larry Ponemon observed 

that “We basically know that companies don’t measure these things” as they’re not captured in 

any of the financial metrics that companies use for financial reporting of their performance. 

In other words, publicly-traded US firms rely totally on their experienced human judgment 

and discretion to determine ‘materiality’ of loss from cyberattacks. Also, as observed above, a 

                                                           
70 http://www.whitehouse.gov/the-press-office/2013/02/12/executive-order-improving-critical-infrastructure-
cybersecurity 
71 http://www.sec.gov/divisions/corpfin/guidance/cfguidance-topic2.htm 
72 http://www.treasuryandrisk.com/2013/07/15/putting-a-price-tag-on-cyber-crimes 
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data breach may be deemed not quantitatively material as everyone else is getting breached. SEC 

notes that “Materiality concerns the significance of an item to users of a registrant's financial 

statements. A matter is ‘material’ if there is a substantial likelihood that a reasonable person 

would consider it important.73”  In its Statement of Financial Accounting Concepts No. 2, the 

FASB stated the essence of the concept of materiality as follows74: “The omission or 

misstatement of an item in a financial report is material if, in the light of surrounding 

circumstances, the magnitude of the item is such that it is probable that the judgment of a 

reasonable person relying upon the report would have been changed or influenced by the 

inclusion or correction of the item.”  

The Financial Accounting Standards Board (FASB), which sets accounting standards for 

public companies, has rejected promulgating quantitative materiality guides thus leaving it to 

‘experienced human judgment’ for determination of materiality. In April, 2013, Sen. Jay 

Rockefeller wrote to the SEC Chairman that while companies’ reporting had improved since 

the SEC released its guidance, “Investors deserve to know whether companies are effectively 

addressing their cyber security risks — just as investors should know whether companies are 

managing their financial and operational risks... Formal guidance from the SEC on this issue 

will be a strong signal to the market that companies need to take their cyber security efforts 

seriously… The disclosures are generally still insufficient for investors to discern the true costs 

and benefits of companies’ cybersecurity policies.”75  

Given above observations about regulatory compliance and critical need thereof, the 

following disconnects about cyberattack losses between what U.S. companies are reporting to 

their shareholders and what they are sharing with the policy makers may seem 

understandable.  The Treasury & Risk report of April 4, 2013 ‘Disconnect on Cost of 

Cyberattacks’76, notes that retired [retired] Army General Keith Alexander, head of U.S. Cyber 

Command and the National Security Agency, called cybercrime “the greatest transfer of 

wealth in history.” Similarly, Rep. Michael Rogers, a Michigan Republican who leads the 

House Intelligence Committee, had said foreign intruders “are stealing literally billions” of 

dollars from companies. On a related note, the study of May 2014 titled ‘The Rising Strategic 

                                                           
73 http://www.sec.gov/interps/account/sab99.htm 
74 http://www.sec.gov/interps/account/sabcodet1.htm 
75 http://www.forbes.com/sites/ciocentral/2013/05/15/how-to-prepare-for-when-the-sec-comes-asking-about-
cybersecurity-risk/ 
76 http://m.treasuryandrisk.com/2013/04/04/disconnect-on-cost-of-cyberattacks 
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Risks of Cyberattacks’77 by the consulting firm McKinsey concluded that over the next five to 

seven years, $9 trillion to $21 trillion of economic-value creation, worldwide, depends on the 

robustness of the cybersecurity environment. Figure 4-1 based on a Bloomberg report provides 

a summary perspective of negligible ‘material’ filings about cyberattacks losses (Strohm et al., 

2013)78. 

 
Fig. 4-1. Less than 4% Companies Report Materiality of Cyber Attack Losses 

 

Also, almost all of the top 100 U.S. companies by revenue stated in most recent financial 

annual reports that they rely on technology that may be vulnerable to security breaches, theft 

of proprietary data and disrupted operations. Yet, almost none of them reported “material” 

effects of cyberattacks on their financial performance or financial projections. Even firms 

whose cyberattacks have been reported in public press mostly reported no “material” effects in 

SEC filings of financial statements. ConocoPhillips, reported to have been breached by China-

based hackers beginning in 2009, said in its 2012 annual report no cyber breaches “had a 

                                                           
77 http://www.mckinsey.com/insights/business_technology/the_rising_strategic_risks_of_cyberattacks 
78 http://www.bloomberg.com/news/2013-04-04/cyberattacks-abound-yet-companies-tell-sec-losses-are-few.html 
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material effect.” Coca-Cola was told by the FBI that hackers broke into its computers to steal 

related files prior to its aborted $2.4 billion bid for China Huiyan Juice Group in 2009. Without 

mentioning the incident in SEC filings, the company noted that it’s “information systems are a 

target of attacks,” and the disruptions “to date have not had a material effect on our business, 

financial condition or results of operations.” Dow Chemical which declared in prepared 

testimony in a Senate hearing that it was “regularly” attacked “from sources that are 

advanced, persistent and targeting our intellectual property” made only passing reference to 

cyber threats in its annual report in the same quarter, putting the risks on par with severe 

weather events79.  

Absence of public data about the costs of cyberattacks as well as the unwillingness of 

public firms to report about it given needed regulatory compliance could make the task of 

finding valid models for assessing costs of cyber insurance all the more challenging. 

Furthermore given implicit and explicit acknowledgement by regulators and firms being 

regulated that cyber risk and cybersecurity are fast evolving domains, any specific model 

validated in one context may require rethinking in another context given dynamics of the fast 

evolving context. Above observations makes it all the more important to consider all models as 

tentative and very approximate representations of a fast changing reality. In sum, regardless of 

the model applied, model risk management is all the more crucial in case of cyber insurance 

modeling to ensure that it maps on to the most critical and material aspects of the relevant 

context and the overall framework of cyber risk management. 

4.3 Cyber Risk Insurance Riskier than other Risks Types 

Before 2000, negligible commercial demand existed for cyber insurance given infancy of 

WWW, always ‘active’ and live systems were few; tools, capabilities, and expertise of 

cyberattacks were limited, and, software installation and upgrades were primarily done offline 

using floppy drives. Rapid growth of e-Business with related DDOS attacks in 2000 resulted in 

earlier interest in cyber insurance coverage. Subsequently, consumer data privacy and security 

related federal regulations such as Graham-Leach-Bliley Act (GLBA) for financial firms and 

Health Insurance Portability and Accountability Act (HIPAA) have furthered interest in 

seeking coverage from related liability claims. In 2002-2003, insurance companies specifically 

started excluding ‘intangible’ data from general commercial property and liability policies 
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covering ‘tangible’ physical assets. Hence started era of underwriting coverage based on 

stand-alone specialized policies with firms such as AIG providing cyber insurance coverage 

for specific markets such as tailoring it to financial services organizations80.  

From an economic perspective, insurance firms have tackled the key problems of 

economic risk, namely asymmetric information, adverse selection and moral hazard, long before 

underwriting cyber insurance (Akerlof, 1970). Asymmetric information implies that the firm 

being provided insurance coverage and the insurance underwriting firm providing coverage 

don’t have similar access to information. Given the key role of ‘experienced human judgment’, 

materiality may also be interpreted and applied differently by the above two parties. Given the 

nature of cyber risks and their measurement and reporting discussed earlier, insurance firms 

face the asymmetric information problem both before and after underwriting or selling 

coverage to a firm. The risk to the insurance firm in providing cyber insurance coverage gets 

compounded by the adverse selection problem given the ‘pooled’ nature of risks of all 

underwritten client firms in its portfolio. An insurance firm can remain in business and 

profitable as long as the proportion of high risk clients is minuscule compared with low risk 

clients relative to the premium charge. 

Client firms exposed to higher risk of cyberattack related loss – because of the intrinsic 

nature of business, intentionally risky choices or simple neglect, or exposure to high risk 

dynamic environment – cost more to the insurance underwriter. Adverse selection occurs 

when the insurance firms underwrites more high risk clients at a given premium which is 

optimally targeted for lower risk clients. The problem of adverse selection may also occur after 

the insurance coverage starts as a covered client may choose to take greater risks or become 

negligent given the fact it is already covered.  The last problem of the covered client choosing 

to pursue high risk behavior given the fact it is covered is called the problem of moral hazard 

(Hölmstrom, 1979).  

Conversely, if on purchase of the insurance coverage, the covered client firm takes extra 

precautions and invests in further reducing risk, that could alleviate the moral hazard 

problem. Involving much greater levels of asymmetric information, adverse selection, and 

moral hazard, cyber risks are quite different from risks to tangibles such as commercial 

property as well as intangibles such as financial securities (Baer, 2007). Additionally, scarcity of 
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reinsurance providers for cyber insurance firms further contributes to inherent risks in cyber 

insurance coverage as there is no one to backstop losses if a cyber insurance provider defaults.   

4.4 Sociotechnical Makes Model Risk More Critical for Cyber  

 Prior discussion mentioned the two key intrinsic characteristics of cyber risk in the 

networked context that distinguish it from other known risk types. Related to underlying 

information and communication technologies (ICT), these two intrinsic characteristics are: (i) 

cyber risks are interdependent, and, (ii) cyber risks are correlated as seen in Fig. 4-2. The 

difference between correlation and interdependence is in the fact that correlation doesn’t imply 

causation, i.e., interdependence. Additionally, in the context of economics of security, 

interdependence in the above schematic results from externalities in security decisions. Such 

interdependence resulting from economic externalities is distinguished from statistical 

correlation (without reference to cause and effect) as well as statistical dependence (with 

reference to cause and effect). As shown in Fig. 4-2, the above risks follow from the very 

intrinsic characteristics of the underlying information and communication technology 

infrastructures. 

 
Fig. 4-2. Cyber Risks are intrinsically Interdependent and Correlated 
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Source: Modeling Cyber-Insurance towards a Unifying Framework81 

November 10 - 11, 2010, TRUST Workshop at Stanford University 
 

 

Specifically, success of underlying information and communication technology is 

determined by its networked interconnections and distribution networks – greater the 

networked interconnections and wider the distribution networks, more successful the related 

information and communication technology. Networked interconnections and distribution 

networks also characterize the interconnectedness and thus interdependence of the networked 

nodes. Secondly, the flip side is that the interconnection and distribution of related cyber risks 

in the networked context when compromised by an adversary results in correlated cyber risks.   

  To remain viable, insurance underwriters must maintain a large enough portfolio of 

insured firms representing risks that are independent and uncorrelated. The model risk 

management concern is of central significance given that most statistical models of cyber risk and cyber 

insurance assessment critically depend on the above two key premises about covered risks: they should 

be independent and they should not be correlated. However, unlike insurance of other tangibles and 

intangibles, in case of cyber insurance, risks are interdependent and correlated. According to 

Financial Times report of April 27, 2014, ‘Diversity Is the Way to Avoid Cyber Collapse’82, 

“what is worrying is the potential for a global systemwide IT failure occurring simultaneously 

across many organisations – a “correlated loss” event that affects a vast number of companies, or 

an entire sector. As businesses get more interconnected, this type of threat becomes a real 

possibility.” 

The finance domain has had its own share of globally “correlated loss” resulting from 

model risk that remained unheeded until after it had already played key role in creating the 

Global Financial Crisis. That model risk was attributable to the Gaussian copula (Li, 2000)83 

model (joint distribution of random variables used in finance for the estimation of the 

probability of correlated defaults) which “will go down in history as instrumental in causing 

the unfathomable losses that brought the world financial system to its knees.”84 That ‘formula’ 

was at the center of bundling of hundreds or even thousands of mortgages into pools of 

                                                           
81 http://weis2010.econinfosec.org/papers/session5/weis2010_boehme_pres.pdf 
82 http://www.ft.com/cms/s/0/7fc4e282-bfcf-11e3-b6e8-00144feabdc0.html 
83 http://stevereads.com/papers_to_read/on_default_correlation-_a_copula_function_approach.pdf 
84 http://archive.wired.com/techbiz/it/magazine/17-03/wp_quant 
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collateralized debt obligations, or CDOs. Those CDOs modeled the probability of ‘correlated’ 

defaults of mortgages in the pool not based on actual empirical data on mortgage defaults 

(which was sparse just like the current cyber risk loss data) but instead used historical prices 

from credit default swaps (CDS) market. The implied assumption was that CDS markets price 

default risk accurately. Given prolific use of the model, which experts cautioned was not 

suitable for valuation or risk management, the CDS market rapidly grew from $920Bn in 2001 

to $62Tn by end of 2007, and, simultaneously, CDO market grew from $275Bn in 2000 to 

$4.7Tn in 200685.  

The point that we are trying to highlight in current section is that extremely 

sociotechnical nature of cyber (cyberspace of globally networked humans is as sociotechnical 

as any social system can be) endows it with inherent attributes very high tail risk and systemic 

risk. The stark parallels of the extreme tail risk discussed in case of VaR being applied for cyber 

risk and cyber insurance and the above model at the center of the Global Financial Crisis are 

apparent. As defined earlier, tail risk results from theoretical statistical probabilistic 

distribution assumptions of Gaussian normality about the relative infrequency of extremely 

rare but extremely high impact losses that may not hold in practice. Extreme tail risk results 

from fundamentally strong deviations from the underlying assumption of statistically normal 

distribution thus resulting in fat left tails characterizing high kurtosis.  

For example, risk doesn’t vanish in financial securitization or modeling86: “In finance, 

you can never reduce risk outright; you can only try to set up a market in which people who don't want 

risk sell it to those who do. But in the CDO market, people used the Gaussian copula model to 

convince themselves they didn't have any risk at all, when in fact they just didn't have any risk 

99 percent of the time. The other 1 percent of the time they blew up. Those explosions may have 

been rare, but they could destroy all previous gains, and then some.” When the mortgage boom 

ended abruptly and home values started falling across the country, default correlations 

jumped while the model accounted for less than ten years for which the CDS existed during 

which home prices had been simply going up and default correlations were low. Similar 

scenario, however much more extreme, can be contemplated in the case of cyber risks going 

forward into future given above parallels and unique nature of cyber risks.  

                                                           
85 http://archive.wired.com/techbiz/it/magazine/17-03/wp_quant?currentPage=all 
86 http://archive.wired.com/techbiz/it/magazine/17-03/wp_quant?currentPage=all 
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As apparent, cyber risks, given their highly interconnected, distributed, networked, and, 

universal contexts and being embedded in the medium and the message, unlike most other insured 

risks, are most highly interdependent as well as most highly correlated. One reason for such risks 

is the monoculture8788,,89 in installed operating systems such as Microsoft Windows9091,92,93, Apple 

iOS94,95,96, Android97,98, and more importantly software enabling underlying network and security 

protocols. National and global scale cyber risk exposures and vulnerabilities are being 

continuously detected and exploited with ongoing continuous patching and upgrades of active 

applications such as Java and Flash, and, as well as related network layer protocols with no respite 

in sight. Use of similar operating systems, software, hardware, and, perhaps most importantly 

reliance upon the same universal network protocol layers such as SSL/TLS represent critical 

vulnerabilities in the context of cyber risk and cyber insurance.  

The last point about network protocols is perhaps most critical as network layer protocols 

represent the ‘most universal’ of all interconnected, distributed, and, networked capabilities as well as 

potential vulnerabilities exposed to potential exploits.  That point is also critical given that the notion 

of monoculture itself is transitioning from vendor specific monoculture to monoculture of universal 

and global infrastructure enabling technologies underlying all or most of those systems.99 As a 

result of such national and global computing and communication information technology 

monocultures, “a large part of today’s computing technology suffers from the same weak 

spots and bugs. Consequently, worms and viruses can systematically exploit these 

vulnerabilities and thus epidemically cause huge damage by attacking all computers in a network 

almost at the same time.” 100,101,102 

                                                           
87 http://www.whitehouse.gov/files/documents/cyber/IEEE%20-%20IT%20Monoculture.pdf 
88 http://www.cs.sjsu.edu/faculty/stamp/DRM/DRM%20papers/CACMmono.pdf 
89 https://securityledger.com/2014/04/heartbleed-technology-monocultures-second-act/ 
90 http://www.symantec.com/connect/blogs/texting-atms-cash-shows-cybercriminals-increasing-sophistication 
91 http://www.csoonline.com/article/2865215/operating-system-security/google-unveils-windows-8-1-vulnerability-
releases-sample-code.html 
92 http://www.tripwire.com/state-of-security/incident-detection/microsoft-windows-zero-day-exploit-sandworm-used-in-
cyber-espionage-cve-2014-4114/ 
93 http://securityintelligence.com/ibm-x-force-researcher-finds-significant-vulnerability-in-microsoft-windows/ 
94 http://www.zdnet.com/article/apple-ios-7-1-patches-41-vulnerabilities/ 
95 https://www.us-cert.gov/ncas/alerts/TA14-317A 
96 https://www.fireeye.com/blog/threat-research/2014/11/masque-attack-all-your-ios-apps-belong-to-us.html 
97 https://www.blackhat.com/docs/us-14/materials/us-14-Forristal-Android-FakeID-Vulnerability-Walkthrough.pdf 
98 http://www.zdnet.com/article/half-of-all-android-devices-still-vulnerable-to-privacy-disaster-browser-bug/ 
99 https://securityledger.com/2014/04/heartbleed-technology-monocultures-second-act/ 
100 http://infosecon.net/workshop/pdf/15.pdf 
101 https://securityledger.com/2014/03/sohowned-300k-home-routers-hacked/ 
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Our research findings and concern about the criticality of transition of monoculture 

from vendor-specific platforms to universal global digital communication network protocols are 

shared by others.  Dan Geer, the Chief Security Officer at In­Q­Tel, the CIA’s venture capital 

arm, who co-authored the influential report titled ‘CyberInsecurity: The Cost of Monopoly’103 

with co-authors such as Bruce Schneier, recently wrote about similar transition of 

monoculture104: “The critical infrastructure’s monoculture question was once centered on 

Microsoft Windows. No more. The critical infrastructure’s monoculture problem, and hence its 

exposure to common model risk, is now small devices and the chips which run them. As the 

monocultures build, they do so in ever more pervasive, ever smaller packages, in ever less 

noticeable roles.”  

The problem of increasingly wider impact of transitioning (from vendor specific to 

underlying universal network protocol specific) of monoculture is in things such as world 

pervasive Internet-of-Things on top of universal protocols such as SSL/TLS that have universal 

vulnerabilities resulting in wholescale exploitation (CVE-2014-0160105) such as in the case of 

Heartbleed106,107,108 (which allows a remote attacker to expose sensitive data, possibly including 

user authentication credentials and secret keys) or more recently in case of POODLE109 (CVE-

2014-3566110) (which allows an attacker to decrypt and extract information from inside an 

encrypted transaction for SSL 3.0 with CBC mode encryption). 

In addition to above technological concerns, the economic free rider problem that 

compounds the risks related to cyber security as a ‘common public good’ further contributes to 

the externality and extremity of cyber risks relative to other insured risks. Specifically, 

incentives to invest in cyber security at the intra-enterprise level and (more commonly) to 

invest in cyber security of network backbones enabling all cyber activities at the inter-

enterprise level are perverse. At the intra-enterprise level, specific divisions recognizing that 

they are exposed to ‘lateral’ attacks launched by adversary using another division’s 

                                                                                                                                                                                                         
102 https://www.fireeye.com/blog/threat-research/2014/08/ssl-vulnerabilities-who-listens-when-android-applications-
talk.html 
103 http://cryptome.org/cyberinsecurity.htm 
104 http://www.lawfareblog.com/2014/04/heartbleed-as-metaphor/ 
105 http://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2014-0160 
106 https://www.us-cert.gov/ncas/alerts/TA14-098A 
107 http://business.financialpost.com/2014/04/12/heartbleed-bug-highlights-banks-severe-cyber-security-headaches/ 
108 https://www.schneier.com/blog/archives/2014/04/heartbleed.html 
109 http://krebsonsecurity.com/2014/12/poodle-bug-returns-bites-big-bank-sites/ 
110 https://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2014-3566 
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infrastructure, may question if their own cybersecurity investment does them any good. At the 

inter-enterprise level, specific firms recognizing that their private benefits from investing in 

cyber security of ‘public goods’ such as network security protocols are lesser than the social 

benefits, have until recently chosen not to invest in them despite being subjects of cyberattacks 

from related vulnerabilities111. This has occurred despite the fact that network layer protocols 

represent the most universal of all capabilities as well as potential vulnerabilities exposed to potential 

exploits and are being increasingly used most frequently and persistently for cyber-attacks.  

In recent global cyber-attacks as in the case of ‘heart-bleed’ bug, the underlying protocol 

on which everyone relied was developed and maintained by a couple of ‘volunteer’ scientists 

on the side112. That attack had brought into scrutiny the nature of ‘open source’ software and 

its reliability as a ‘public good.’ It apparently also motivated some of the more visible players 

to start publicly investing in such ‘public goods’ on which all commercial firms and 

governments relied upon as a free public good. The stark economics of profit-seeking entities 

using the open source software for commercial gain and the ‘starving’ volunteers developing 

and maintaining it came to surface with the heart-bleed exposure. Firms and organizations 

including Cisco, Google, Amazon, and Federal Bureau of Investigation had relied upon 

OpenSSL code in which the bug was found. 

“What makes Heartbleed so dangerous, security experts say, is the so-called OpenSSL 

code it compromised. That code is just one of many maintained by the open-source 

community. But it plays a critical role in making our computers and mobile devices safe to 

use... OpenSSL code has been picked up by companies like Amazon, Facebook, Netflix and 

Yahoo and used to secure the websites of government agencies like the F.B.I. and Canada’s tax 

agency. It is baked into Pentagon weapons systems, devices like Android smartphones, Cisco 

desktop phones and home Wi-Fi routers. 113” However, “firms don’t maintain OpenSSL code 

because they don’t profit directly from it, even though it is integrated into their products, and 

governments don’t feel political pain when the code has problems. 114” 

Another reason for greater riskiness of cyber risks is the intensely technical/human nature 

of cyberspace, making it more susceptible and vulnerable to social engineering risk. As compared 

with financial risks or insurance risks related to financial securities and commercial property, 

                                                           
111 http://mashable.com/2014/04/14/heartbleed-open-source/ 
112 http://www.nytimes.com/2014/04/19/technology/heartbleed-highlights-a-contradiction-in-the-web.html 
113 http://www.nytimes.com/2014/04/19/technology/heartbleed-highlights-a-contradiction-in-the-web.html 
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social engineering risks are multiple times higher in case of cyber risks. When the two 

problems of universal reliance upon most universal public good such as network layer 

protocols and the social engineering problem of exploitation of related vulnerabilities in those 

protocols are crossed over, we get the current era of exponentially increasing cyber risk115. 

Overwhelming interactions resulting from the intrinsic nature of ‘systems’ (systems are 

systems because they are interdependent) make most complex systems, natural and social, 

behave in non-normal ways. Such violation of statistical normality results from 

interdependence of observations which fundamentally violates underlying central limit 

theorem and thus results in fat tails116. Furthermore, “Introducing human behaviour is likely to 

make for stronger interactions within the system, further fattening the tail.” 117 

Similar vulnerabilities in universally used software, hardware, and networks – and 

related network layer protocols at all levels – exploited by similar social engineering schemes 

using botnets or otherwise escalate cyberattacks causing global ‘spikes’ in the frequency of 

related cyber risks. The above observations raise questions about the claims of ‘materiality’ 

filed in SEC filings about the similarity of cyber risks being similar to risks related to weather. 

While earthquakes, tsunamis or tornadoes don’t strike anywhere and everywhere at the same 

time, global cyberattacks can! If the cyber risk is to be assessed and insured analogous to such 

natural catastrophes, then catastrophe modeling taking into account extreme risks is needed.   

When such cyberattacks are used for dropping malware or ransomware at a global scale 

exploiting vulnerable server or client software systems, as they impact hundreds or thousands 

of users, we get highly correlated and interdependent cyberattacks. Examples of attacks 

resulting from missing upgrade paths such as in the case of SOHO routers118 and in case of 

MS-Windows XP used for worldwide banking ATMs119 also represent related examples. 

Recent example of 6,000 employees at SPE knocked off their computer and e-mail systems is 

another smaller scale firm level example. Correlation and interdependence of cyber-attacks 

result is significant percentage of the ‘pool’ of insured ‘low risk’ and ‘high risk’ client firms 

becoming high risk at the same time. The resulting misfortune of the insurance firm 

challenged to cover such interdependent and correlated cyber risks will be a replay of story of 

                                                           
115 See for instance, http://www.infosecurity-magazine.com/news/android-malware-rockets-300x-in-2/ 
116 http://www.bankofengland.co.uk/publications/Documents/speeches/2012/speech582.pdf 
117 Introducing human behaviour is likely to make for stronger interactions within the system, further fattening the tail. 
118 http://arstechnica.com/security/2014/03/hackers-hijack-300000-plus-wireless-routers-make-malicious-changes/ 
119 http://www.computerworld.com/article/2488842/financial-it/most-atms-will-remain-on-windows-xp-after-microsoft-
pulls-plug-on-os-support.html 
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the insurance firm AIG. During Financial Crisis, AIG had to cover claims by multiple insured 

firms such as Goldman Sachs when and needed US government support for its survival120.   

The above discussion about the intrinsic characteristics of cyber risk is of central importance to 

understanding what really cyber risk is and how it is quite different from financial risks typically 

modeled by VaR.  The most critical point that is important to recognize is the fact that intrinsic 

nature of cyber risk in terms of above characteristics results in exponentially higher tail risks as 

well as systemic risks. However, as a modeling tool for assessing financial risks, VaR has had 

the most disastrous track record as it was not designed to assess such systemic risks and tail 

risks.  Therefore, using VaR for assessing cyber risk assessment and modeling cyber insurance 

even though it is perhaps the most unfit (and therefore misleading) model to do so is literally 

asking for disaster. Again, our criticism is not of VaR, but of the misuse and abuse of VaR such 

as in the context of cyber risk modeling given that doing so totally violates and contradicts the 

assumptions, logic, and boundaries of the VaR model (Malhotra, 2014).   

4.5 Cyber Risk and Cyber Insurance Modeling in Practice 

Our above analysis established two key points: (i) cyber risk is exponentially greater in 

real terms of scale of global and national impact as compared with traditional risks such as 

financial risks or property risks, and, (ii) hence there is critical need for model risk 

management in case of cyber risk modeling even more so than for financial risks or property 

risks. Developing on the above analysis, the following discussion focus is on the most 

predominantly used models for cyber risk and cyber insurance modeling found in our 

research. Incidentally, the quantitative models that are found to be currently most popular for 

commercial applications in cyber insurance modeling for financial assessment of cyber risk 

loss are characterized by extremely high model risks, systemic risks, and, tail risks. 

A review of extant cyber risk and cyber insurance models was undertaken with specific 

focus on quantitative and financial modeling of cyber risk and cyber insurance. A brief 

overview of the models observed in applied practice follows. It must however be observed 

that given paucity of available and reliable public financial data, most models in this domain 

are at relatively early stages. Even though availability of public data is anticipated to facilitate 

empirical testing and validation of analytical form of such models, yet the domain of cyber risk 

and cyber insurance is dynamic and evolving. With increasing concerns of the general public 
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voiced by their representatives, shareholders are asking for better visibility into dollar-figure 

cyber risk assessments of firms. Firms are hesitant to share information beyond standard press 

releases given materiality standards of SEC discussed earlier. Firms and regulators such as 

SEC are both cognizant about not providing too much specific information so as not to abet 

and aid the adversaries which may further escalate the cyber risks. Our research focused on a 

broad spectrum of all available quantitative models for risk assessment and modeling in the 

nascent domain of ‘quantification’ of cyber risk and cyber insurance. Our research on cyber 

risk and cyber insurance modeling shows that the most prominent model being applied by 

most key players across diverse business economic and technology sectors is ‘Value-at-Risk’ 

model also called VaR for short.   

4.6 VaR Models in Use for Cyber Risk Insurance Modeling 

Our analysis of all available quantitative models of cyber risk assessment and cyber 

insurance modeling found a few recent empirical studies as well as several interesting 

applications in practice. Given that cyber risk assessment and cyber insurance modeling are 

fast-evolving domains, most models being applied are at a nascent stage. We also found 

several other academic and theoretical studies that were not directly related to cyber risk loss 

assessment and cyber insurance modeling in our specific context. Given our specific focus on 

the real world application of quantitative finance models in the newly emerging domain of 

cyber risk assessment and cyber insurance modeling, we focus here on a representative sample 

of those application-focused studies and applications. We first review representative academic 

research studies in this domain, thereafter we review specific examples of commercial 

applications by the industry leading players in the US cyber insurance industry.  

4.6.1 Catastrophe Modeling of Tail Risks Using EVT with VaR 

One early empirical studies on quantitative modeling of cyber risk and cyber insurance 

is the 2014 study titled Insurability of ‘Cyber Risk: An Empirical Analysis’121 published by the 

Institute of Insurance Economics at the University of St. Gallen. That study deployed VaR and 

TVaR (Tail Value at Risk) models for cyber risk assessment within the overall framework of 

Extreme Value Theory (EVT)122,123 for estimating the loss severity distribution for the tail risk. 

                                                           
121 http://www.palgrave-journals.com/gpp/journal/v40/n1/abs/gpp201419a.html 
122 http://www.casact.org/library/studynotes/embrechts_extremevalue.pdf 
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While VaR measures Maximum Loss Not Exceeded with a Certain Probability, T-VaR 

measures Expected Loss if Tail Event Occurs. This study is an example of catastrophe (‘cat’) 

modeling mentioned earlier which uses EVT with its focus on extreme losses resulting from 

rare or random events. It estimated the loss severity distribution using a spliced distribution 

approach: the exponential generalized Pareto distribution (GPD) model to model exceedances 

over a defined threshold. EVT uses two kinds of models for modeling extreme values: 

generalized extreme value (GEV) models for modeling block maxima/minima models; and, 

GPD for modeling peaks-over-thresholds (POT) models. GPD is a family of continuous 

probability distributions often used to model the tails of another distribution and is specified 

by thee parameters: location, scale, and shape. Losses above the predefined threshold are 

modeled by a GPD, while losses below the threshold are modeled with an exponential 

distribution, Weibull distribution, Gamma distribution, or lognormal distribution124. The above 

study tested empirical data using all four distributions for the body of the distribution. Having 

modeled the spliced distribution, it used a VaR estimator to determine estimated loss of 

severity distribution finding empirical VaR close to modeled VaR.   

4.6.2 Portfolio Modeling of Risk Optimization Using MVO with CVaR 

In finance, VaR modeling is typically done in the context of Mean Variance Optimization 

(MVO) 125of a portfolio of assets. Hence, it seems intuitive to situate the computation of cyber 

risk assessment models based upon VaR within overarching Portfolio Construction and 

Optimization Models. Analogous to financial asset portfolio models, cyber risk portfolio models 

will instead focus on construction and optimization of a portfolio of risks. This approach 

seems consistent with the risk management frameworks that are typically used for 

characterizing the cyber risks in cybersecurity related Information Assurance frameworks. The 

initial concept of one such portfolio model of risks is available in a recent article titled 

‘Measuring and Optimizing Cybersecurity Investments: A Quantitative Portfolio Approach’ 

(Zhuo & Solak, 2014)126 and related presentation titled ‘Cybersecurity Investment Optimization 

                                                           
124 These parametric statistical distributions are used in catastrophic risk modeling such as in this case modeling the tail risk 
exceeding the specified threshold because of rare and random events. Poisson distribution is often used to model rare and 
random events (e.g., earthquake occurrence), Pareto distribution is used to estimate the flood frequency or fire loss, and 
lognormal distribution is often used to track the earthquake motion, or Tornado path. 
125 Markowitz, H.M. (March 1952). "Portfolio Selection". The Journal of Finance 7 (1): 77–91. 
126 “Measuring and Optimizing Cybersecurity Investments: A Quantitative Portfolio Approach,” with S. Solak. Proceedings of 
IIE Annual Conference 2014, May 31-June 3, Montreal, Canada. 
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with Risk: Insights for Resource Allocation’ (Solak 2014)127. The general portfolio modeling of 

cyber risks depends on measuring returns from cybersecurity investments, defining 

uncertainty around those returns, while taking into consideration continuous evolving 

dynamics of the cyber environment.  

Based on the Information Assurance CIA troika of confidentiality, integrity, and 

availability, a taxonomy (presented earlier) is used for classifying assets such as confidential 

assets and non-confidential assets. Cyberattacks correspond to all types of threats to information 

systems of a firm and are distinguished using a taxonomy classifying them as basic attacks and 

advanced attacks. Cybersecurity countermeasures are the set of security measures used to protect 

the assets against cyberattacks and are distinguished into preventive and detective 

countermeasures. In the context of cyber risk assessment, the risk portfolio’s return on 

investment is computed in terms of effectiveness in reducing expected loss. An organization’s 

cyber risk strategy determining how much to invest in each countermeasure depends on 

distribution of the potential losses over basic and advanced attacks as well as the effectiveness of 

each type of countermeasure on these attack categories. Combined effect of countermeasures is 

then determined by the difference between Losses without countermeasures and Losses 

reduced with countermeasures. Definition and measurement of risk in cyber risk optimization 

setting is challenging as discussed earlier. However, reduction of variance around expected 

losses to minimize the likelihood of extremely high losses is a realistic assumption. Conditional 

Value at Risk (CVaR) is used as a measure in optimizing investments in the Portfolio Model. 

CVaR is defined as the expected loss that will be incurred if the realized losses lie in some 

given percentile of the total loss distribution. 

4.6.3 ‘CyberV@R: A Model to Compute Dollar Value at Risk of Loss to Cyber Attack’ 

The above titled presentation at FloCon 2013128 organized by CERT uses VaR for 

constructing risk models that can provide relative comparison of economic costs of a 

cyberattack. The basic premise of this framework is that CIOs face the challenge of 

safeguarding their enterprise cyber infrastructure from breaches that could lead to 

‘catastrophic economic losses.’ Hence, this framework seems a good candidate for the ‘cat’ or 

‘catastrophic’ risk assessment models based on EVT discussed above. However, the 

framework presents the use of ordinary VaR model (without any specific mention of tail risks 
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or EVT) for the cyber risk loss computation. In their framework, “a VaR model answers the 

question 'what is the amount of money $X, such that the odds of losing more than $X , over 

time window T , fall below some threshold of probability P?' We call this the 'P-percent VaR.'” 

Their model is based on the standard VaR model that doesn’t tail risk into consideration (e.g. 

Christoffersen 2012) and answers the question: What loss is such that it will only be exceeded 

p.100% of the time in the next T trading days? It is called “p-percent VaR." For example, 1% 

VaR is the maximal loss that can be suffered on the current portfolio with 99% confidence. In 

other words, loss worse than VaR should occur only one in 100. VaR is often defined in dollars 

as $VaR, hence $VaR loss is implicitly defined from probability of getting an even larger loss 

as in: Pr ($Loss > $VaR) = p. By definition, (1 – p).100% of the time, $Loss will be smaller than 

the VaR. SANS Security Trend Line note of Sep. 23, 2014, titled ‘It Always Costs Less to Avoid 

a Breach Than to Suffer One’ (Pescatore, 2014)129 illustrates how CyberVaR application would 

assess how much it would have cost Home Depot to avoid its well-publicized breach130. 

However, that illustration doesn’t really show how VaR modeling is applied beyond the 

assumption of a dollar figure of a $500 million potential liability somehow associated with a 

“value at risk of $246,000,000.” 

4.6.4 Other Key Examples of VaR Models in Commercial Cyber Insurance Modeling 

As noted earlier, our literature research on models used for cyber risk and cyber 

insurance assessment shows that the most prominent model being applied by most key 

players across diverse business economic and technology sectors is ‘Value-at-Risk’ model 

called VaR for short. Above two academic empirical studies seem to be in the small minority 

that seem cognizant and cautious about using regular VaR models for cyber risk and cyber 

insurance modeling. Like the commercial CyberV@R (also, known as CyberVaR) model above, 

many of the commercial models of cyber risk and cyber insurance seem to rely upon the 

regular VaR model. One notable exception at a concept level that seems to be aligned with the 

portfolio model of one of the above two academic studies is that of Aon Risk Solutions 

presentation of May 10th, 2012, on Integrated Approach to Operational Risk. It refers to its 

proprietary source of external data called OpBase for developing scenarios and estimated 

exposures which are then classified into Expected Loss (left body of the statistical distribution 

of cyberattack losses), Unexpected Loss (right body of the statistical distribution of expected 
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losses), and Catastrophic Loss (right tail of the statistical distribution). Summary of other 

examples from the research indicating use of regular VaR and similar models follows. 

Network Risk Assessment Tool (NRAT) model131 published in the IAnewsletter Vol 11 

No 1 Spring 2008 (of the DoD Information Analysis Centers) uses a framework containing the 

likelihood of an adverse event and the severity of that event to determine reduction in ‘value 

at risk’ based upon deployment of specific protection strategy. Autumn 2011 report titled ‘Can 

You Hack It? Managing the Cybersecurity Challenge132 from the McKinsey & Company 

Consulting firm’s Government proposes a “value at risk” framework and related taxonomy for 

assessment of cyber risks. They “value at risk analysis” seems to focus on the dollar-figure 

impact of specific cyberattacks without any specific link to the technical statistical VaR models 

or methodologies. They do note that their “value at risk” is a combination of three elements: 

the attacker’s capability, the asset’s vulnerability, and the relative financial and nonfinancial 

costs of the attack. Similarly a World Economic Forum titled ‘Risk and Responsibility in a 

Hyperconnected World Pathways to Global Cyber Resilience’ prepared by Deloitte focuses on 

“values at risk” without specifying their technical or statistical nature133. A presentation of Sep. 

19-20, 2011, by Visa at the ‘Securing the Enterprise from a Dangerous World’ mentions 

‘Enterprise Value at Risk’ in its focus on ‘Cyber Security Measures within the context of ABC-

based Balanced Scorecard analysis’. A presentation titled ‘Cyber Risk in the Financial System 

through the Stakeholder Lens’134 of 2011 lists the example of multi-level security deployment 

for the Philadelphia Stock Exchange in terms of Value-at-Risk corresponding to Economic 

Value and Brand Integrity Value.  

The 2013 Society of Actuaries (SOA) Valuation Actuary Symposium session of 23rd 

September 2013 titled ‘ASOP-46 Risk Evaluation in Enterprise Risk Management’135 (ERM) and 

its ‘Case Study: Emerging Risk Analysis Cybersecurity Risk’ classify cyber risk as an emerging 

risk defined in terms of Actuarial Standard of Practice (ASOP) as “New or evolving risks that 

may be difficult to manage since their likelihood, impact, timing or interdependency with 

other risks are highly uncertain.” While observing industry experience data, firm’s own 

historical incidence data, deterministic scenarios, and, Monte Carlo simulations as possible 

avenues for quantification of cyber risk, it acknowledged lack of any standard methodologies. 

                                                           
131 http://iac.dtic.mil/iatac/download/Vol11_No1.pdf 
132 http://www.mckinsey.com/client_service/public_sector/latest_thinking/mckinsey_on_government/can_you_hack_it 
133 http://www3.weforum.org/docs/WEF_IT_PathwaysToGlobalCyberResilience_Report_2012.pdf 
134 http://www.theprobitygroup.com/The_Probity_Group/CyberRiskInTheFinancialSystem.pdf 
135 http://www.actuarialstandardsboard.org/pdf/asop046_165.pdf 
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Related presentation titled ‘Risk Evaluation in Enterprise Risk Management’ in the same 

symposium specified VaR and T-VaR as recommended ERM risk evaluation methodologies 

while observing the caveat about not relying upon assumptions of normality. It distinguished 

VaR and T-VaR in the following terms. VaR: ‘The amount of loss not to be exceeded with a certain 

probability in a given time frame; typically expressed as a percent of capital.’ T-VaR: ‘The expected 

amount of loss if the VaR loss threshold is exceeded.’ It specified VaR and T-VaR as potential ERM 

risk assessment methodologies without any specific illustration of their application to cyber 

risk. World Economic Forum agenda note of Nov. 13th, 2013, by the consulting firm Wipro 

observed that136: “Wipro’s approach for quantification of cyber risk is based on the concept of 

Value-at-Risk (VaR), which measures the potential loss in value of a risky asset or portfolio 

over a defined period for a given confidence interval. This VaR sums up the risk in dollar 

terms, which helps to communicate the likely impact of cyber risk in a language that is familiar 

to the senior management and helps them make their risk management decisions.” 

At an organizational level focus on uncertainty management and risk modeling, the 

notion of enterprise risk management (ERM) guides most firms. “The underlying premise of 

enterprise risk management is that every entity exists to provide value for its stakeholders. All 

entities face uncertainty, and the challenge for management is to determine how much 

uncertainty to accept as it strives to grow stakeholder value. Uncertainty presents both risk 

and opportunity, with the potential to erode or enhance value. Enterprise risk management 

enables management to effectively deal with uncertainty and associated risk and opportunity, 

enhancing the capacity to build value.137” The June 2014 report titled ‘Insurance Modernization 

Stakeholder Analysis Risk’138 from the Big-4 management consulting firm PwC considers cyber 

risk within the overall enterprise risk framework ERM. It notes about the use of VaR that: 

“Realizing ERM’s promise requires more than just complex economic capital and value at risk 

(VAR) models. It requires confidence in these models and an understanding of their key 

assumptions and limitations. This confidence and understanding need to be pervasive – from 

risk, finance and actuarial personnel themselves, through line of business leadership, up to 

senior management and the Board of Directors.” Their perspective about model risk 

                                                           
136 https://agenda.weforum.org/2013/11/how-to-measure-cyber-risk/ 
137 http://www.coso.org/documents/coso_erm_executivesummary.pdf 
138 http://www.pwc.com/us/en/insurance/publications/assets/pwc-insurance-risk.pdf 
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management for balancing risk and uncertainty is consistent with the current dissertation and 

prior related research and analysis (Malhotra 2014139, Malhotra 2012140).  

The report titled ‘Clear and Present Danger: The Pressing Need to Address Cyber Risk 

Requires its Better Understanding and Adequate Quantification’141 in Financier Worldwide 

magazine of August 2014 underscores that even though cyber risk continues to grow, it 

remains underestimated. The report notes that even in terms of regulatory compliance such as 

HIPAA, large number of US companies are either non-compliant, or, even unaware about 

compliance requirements. The report noted use of VaR like risk measures adapted to specific 

context of cyber risk such as Value at Cyber Risk (VaCR) or Marginal Value at Cyber Risk 

(MVaCR) unless the degree of uncertainty gets too high to make those measures unusable. 

Presentation titled ‘A Practical Guide to Getting Your Hands around Cyber Risk’142 at Aegis 

2014 Policyholders’ Conference shows application of VaR using a Threats-Vulnerabilities-

Consequences matrix. Based upon their identification of (1) threats, (2) vulnerabilities, (3) 

affected assets, (4) range of consequences, and (5) current mitigation strategies, they quantify 

the minimum / most likely / maximum impacts based on primary and secondary costs and use 

estimation of frequency / likelihood of specific adverse incidents. Based upon those inputs, 

they developed a loss distribution for all cyber risks using a product of Poisson Distribution143 

(Frequency) and a Pert Distribution144 (Impact). 

4.7 Significant VaR Model Risk for Cyber Insurance Modeling 

Regular VaR refers to the plain baseline VaR model to distinguish it from the VaR 

methodology (Malhotra 2014145) underlying more advanced models including EVT, GARCH, etc. 

that overcome many of the limitations of VaR. Reliance of many of the commercial industry 

players in cyber risk and cyber insurance on regular VaR seems to result from their apparent 

lack of recognition or acknowledgement of the most fundamental limitations and caveats of 

                                                           
139 http://papers.ssrn.com/sol3/papers.cfm?abstract_id=2538401 
140 http://yogeshmalhotra.com/MarkovChainMonteCarloModels.pdf 
141 http://www.financierworldwide.com/clear-and-present-danger-the-pressing-need-to-address-cyber-risk-requires-its-
better-understanding-and-adequate-quantification/ 
142 https://www.aegislink.com/content/dam/aegislink/resources/presentations/public/2014/2014_07-29_07-
31/Hands_Around_Cyber_Risk_link.pdf 
143 The Poisson distribution expresses the probability of a given number of events occurring in a fixed interval of time. 
144 The PERT distribution is a special case of the beta distribution that takes three parameters: a minimum, maximum, and 
most likely (mode).  
145 http://papers.ssrn.com/sol3/papers.cfm?abstract_id=2538401 
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regular VaR. Limitations inherent in regular VaR as a risk measurement have prompted books 

on it such as The Number That Killed Us: A Story of Modern Banking, Flawed Mathematics, and a 

Big Financial Crisis (Wiley, 2011). The obvious caveat is that the ordinary VaR model doesn’t account 

for the extreme risk in the tails which could lead to ‘catastrophic economic losses.’ Furthermore, the 

problem with ordinary VaR which is all the more critical in case of cyber risk assessment is 

that VaR is not a systemic risk measure. This point is all the more crucial given that the lack of 

independence and correlations across diverse cyber risks as well as entities subject to cyber risks 

discussed earlier can result in significant systemic risk that VaR doesn’t account for. In fact, the above 

key issues, in addition to the limitations of VaR in not accounting for non-linear and non-

normal statistical distributions have been primary shortcomings of VaR for which it has faced 

intense criticism.  

As apparent from the above analysis of nascent cyber risk assessment and cyber 

insurance modeling, these applications and practices are predominantly reliant upon the VaR 

model. Based upon recognized limitation of VaR in terms of model risks, tail risks, and 

systemic risks, one comes away with the unsettling conclusion that given very high 

interdependence and correlations characterizing cyber risks, application of VaR for cyber risk 

assessment and cyber insurance is fraught with peril. Based upon the details available in 

publicly available sources on the applications of VaR in cyber risk assessment and cyber 

insurance modeling, it appears that VaR is being adopted as a ‘black box’ in this domain. Our 

analysis of those applications presented earlier, that most of those commercial practice 

applications of VaR in cyber risk assessment and cyber insurance modeling did not consider 

model risks, tail risks, or systemic risks at all. Furthermore, what is even more alarming is the 

fact that such ‘blackbox’ reliance upon VaR (or any other model for that matter) is the 

strongest indicator of model risk calling to attention the most critical need for model risk 

management. 

Our analysis established that if left unchecked and uncontrolled, large-scale commercial 

reliance upon quantitative models with inherent model risks, tail risks, and systemic risks in 

current form is expected to lead to impending national cyber risk and cyber-insurance disaster. 

How can such impending national cyber risk and cyber-insurance modeling disaster be pre-

empted and prevented?  What can be possibly done to alleviate and minimize the model risk 

of what looks like unknowing and unquestioning appropriation of VaR model from finance 

into cyber risk assessment and cyber insurance modeling? This thesis in our knowledge is the 

first attempt to recognize the impending cyber insurance crisis as well as provide a solution by 



 

58 
 

helping steer cyber risk assessment and cyber insurance modeling practice away from that crisis by 

judicious applications of model risk management related to the relevant quantitative models. 

Applications such as CyberVaR (also denoted as CyberV@R) presented at the CERT 

conference share the rationale for adopting the methodology based upon their notion of ‘Proof 

of concept: Risk models in finance’ in following terms146,147: “In finance, trading desks maintain 

Value at Risk (VaR) models for measuring portfolio loss exposure…” asking ‘Can we do 

something similar for cyber?’ and ‘Yes: if we map from finance to cyber.’ Many other 

applications of VaR in cyber risk assessment and cyber insurance some of which we reviewed 

earlier are based upon similar implicit or explicit logic and assumptions.  

The focus of our in-depth qualitative analysis in the current section based on state-of-art 

research and practice in cyber risk assessment and cyber insurance modeling was on ‘what 

exactly is cyber risk.’ Before modeling any risk, it is most critical to understand what exactly it 

is in terms of its most critical risk related attributes as explicitly delineated in prior focus on 

model risk management. Based on the related insights, commercial applications of cyber risk 

assessment and cyber insurance modeling can substantially benefit from answers to the 

following questions. It is worth reiterating those questions (listed earlier in the first chapter on 

Introduction) at the current mid-point of the dissertation. Continuing to answer these 

questions will help modelers and users better recognize and manage model risk: 

(a) How is VaR exactly applied in its native empirical real world context of measuring 

portfolio loss by real world financial trading desks using VaR models as we explain 

further in Chapter 5?  

(b) What are the most critical limitations of VaR that are known in the finance domain 

related to model risks, tail risks, and systemic risks related to VaR as explained 

earlier in Chapters 3 and 4, and discussed further in Chapters 5 and 7?  

(c) How are the critical model risks, tail risks, and, systemic risks related to VaR even all 

the more relevant to the cyber domain and cyber risk assessment and cyber insurance 

modeling VaR as explained earlier in Chapters 3 and 4, and discussed further in 

Chapter 7? 

                                                           
146 http://www.cert.org/flocon/2013/presentations/ulrich-james-cybervar.pdf 
147 http://resources.sei.cmu.edu/asset_files/Presentation/2013_017_101_51300.pdf 
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(d) How cyber domain’s exponentially greater interconnectedness, interdependence, 

and correlations in case of cyber risks contribute to the above risks related to VaR as 

explained earlier in Chapters 2 and 4? 

(e) How can cyber risk assessment and cyber insurance modeling applications and 

practices minimize the above model risks, tail risks, and systemic risks of VaR as 

explained earlier in Chapters 3 and 4, and discussed further in Chapters 5 and 7? 

(f) What alternative models can cyber risk assessment and cyber insurance modeling 

applications use to further minimize the above model risks, tail risks, and systemic 

risks of VaR as explained further in Chapters 5, 6, and 7? 

Our prior analyses and discussion in the current chapter as well as the prior chapters in 

this dissertation already focused on helping applied practice of cyber risk assessment and 

cyber insurance modeling develop actionable knowledge about concerns (b) through (e) listed 

above. The next chapter focuses on helping them understand (a) How is VaR exactly applied 

in its native empirical real world context of measuring portfolio loss by real world financial 

trading desks using VaR models? Subsequent two chapters help them understand (f): What 

alternative models can cyber risk assessment and cyber insurance modeling applications use to 

further minimize the above model risks, tail risks, and systemic risks? 

The discussion until the current mid-point of the dissertation has been grounded in 

theoretical foundations of statistics and probability of quantitative risk modeling, and, cutting-

edge research and practice of cyber risk assessment and cyber insurance modeling. Our stated 

goal of the dissertation is: “To avert the impending national Cyber risk and Cyber-insurance 

disaster based upon large-scale commercial reliance upon quantitative models with inherent 

model risks, tail risks, and systemic risks in current form.” Consistent with the specific 

objective, our in-depth qualitative analysis with real world case studies and examples has 

hopefully helped you develop the critical financial intuition and insight about the specific 

(cyber, financial, trust) risks and related contrasts and inter-relationships we are dealing with. 

Such financial insight and intuition is most critical to model risk management of any risk 

model as underscored by the pioneer of model risk management we introduced to you earlier 

(Derman, 2014148; Derman, 1996149; Derman, 2009150). As noted in the introduction, intuitive 

understanding of the above qualitative frameworks is most essential for appropriate use of the 

                                                           
148 http://www.emanuelderman.com/writing/entry/speech-at-commencement-2014-to-berkeley-mse-grads 
149 http://www.emanuelderman.com/media/gs-model_risk.pdf 
150 http://www.emanuelderman.com/media/Fischer_Black_by_Derman_Bloomberg_2009.pdf 
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technical models that we discuss in some more depth in the next half of the dissertation. This 

should help minimize the model risk in applying the frameworks we discussed earlier and the 

technical models we discuss further. 
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Chapter 5.  

Empirical VaR and Bayesian Modeling 

“VaR is just one of multiple measures of risk we use to assess overall risk in the 

organization.” 

– CFO of Morgan Stanley in Financial Times interview, October 18, 2012 

 

5.1 Empirical Study of VaR and Bayesian Inference  

In the current chapter, we develop an empirical study of VaR and Bayesian 

statistical inference methodologies with specific guidance for containing model risks by 

applying multiple simple and advanced models for cross-checking the reliability of VaR 

models. In addition to managing model risk of the model, we also focus on managing 

model risk of the methodology by offering an analysis of the Bayesian statistical 

inference methodology. The Bayesian methodology is anticipated to overcome many of 

the known model risks of the classical statistical inference methodology, also known as 

the frequentist methodology and the null hypothesis significance testing methodology. 

In doing so we also clarify the ambiguity that sometimes practitioners encounter in 

distinguishing between the above two model risks, the first related to the model and the 

second related to the methodology. 

In aftermath of the Financial Crisis, some risk management practitioners 

advocate wider adoption of Bayesian inference to replace Value-at-Risk (VaR) models for 

minimizing risk failures (Borison & Hamm, 2010). They claim reliance of Bayesian 

inference on subjective judgment, the key limitation of Bayesian  methodology as 

underscored by statisticians (Kass & Raftery, 1995; Kruschke, 2011; Lynch, 2007), as the 

most significant advantage compared with VaR (Christoffersen, 2012). Despite its well-

known limitations, just like all other quantitative models (Derman, 1996; Morini, 2011), 

VaR – (mostly) non-Bayesian and (increasingly) Bayesian – continues to be a key 

methodological foundation of risk management and regulation related risk modeling 

practices in global finance (Danielsson et al., 2014; Zangari, 1996). Bayesian inference 

modeling and VaR modeling frameworks are outlined to facilitate model risk management 
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(Derman, 1996; Morini, 2011; US Fed & OCC, 2011) for minimizing risk of any model – 

Bayesian, VaR, or Bayesian VaR. VaR frameworks are empirically applied for hedge 

fund risk modeling (Darbyshire & Hampton, 2012, 2014) of a multi-asset fund of funds 

portfolio of a large Wall Street investment bank. Multiple risk models and measures 

with transparent assumptions to cross-validate convergent findings across multiple 

levels of risk analysis are examined for empirical model risk management. 

 

5.2 Distinguishing VaR Model vs.  Bayesian Methodology 

In aftermath of the Global Financial Crisis (GFC) of 2008-2009, critical analyses of 

financial risk management failures and the role of quantitative models such as Value-at-

Risk (VaR) continue unabated (Danielsson et al., 2014; US Senate, 2013). How to Manage 

Risk (After Risk Management Has Failed) (Borison & Hamm, 2010) in Sloan Management 

Review is one such article addressed to risk management executives, decision-makers, 

and modelers. Its authors’ Bayesian vs. VaR argument advocates for wider adoption of 

Bayesian inference to replace Value-at-Risk (VaR) models. Their central message is that 

choosing Bayesian instead of VaR models would minimize risk management failures 

because of the key role of ‘subjective judgment’ in the Bayesian methodology.  They 

specifically assert that if Bayesian inference had been used in financial risk management 

practice instead of VaR, then risk management failures of GFC would have been minimal. 

Their basis for choosing Bayesian over VaR is subjective judgment which has its 

advantages, it is however a key limitation as recognized by Bayesian statisticians 

(Kruschke, 2011; Lynch, 2007). Further, since before GFC, both non-Bayesian and 

Bayesian VaR models have been used in financial risk management practice (Danielsson 

et al., 2014; Hull & White, 1998; Venkataraman, 1997; Zangari, 1996). Hence, the Bayesian 

vs. VaR dilemma needs to be resolved in order to minimize model specification and 

estimation errors in risk modeling (Boucher et al., 2014). 

 

Current research contributes to congruent theme of improving financial risk 

management practices focused on model risk management. The key problem of model 

risk in any risk model such as VaR results from the fact that risk cannot be measured, 

but must be estimated using a statistical model (Boucher et al., 2014; Danielsson et al., 

2014) . Hence, model risk occurs because a statistical model is used for risk estimation: 

model use entails model risk (Derman, 1996; Morini, 2011). Using range of different 
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plausible models which can be robustly discriminated between, the disagreement 

between their range of readings is a succinct measure of model risk (Danielsson et al., 

2014). We apply this notion of model risk and model risk management methodology 

empirically in course of fund-of-funds portfolio construction and optimization for a top 

Wall Street investment bank which we discuss here. 

VaR, originally popularized by JP Morgan, introduced quantitative rigor to 

fathom multi-dimensional complexity of risk with a simple and easy to implement 

measure (Hull & White, 1998; Jackson et al., 1998). It became the “de facto industry 

standard” for risk management practices among financial institutions as well as their 

regulators (Simons, 1996). Despite its well-known limitations (e.g. (Berkowitz et al., 

2011; Berkowitz & O’Brien, 2002)) just like all other quantitative models (Derman, 1996; 

Morini, 2011), VaR – (mostly) non-Bayesian and (increasingly) Bayesian – remains the 

“methodological common root” of finance risk modeling underlying risk management 

and regulation (Danielsson et al., 2014).  It is therefore important to advance beyond the 

Bayesian vs. VaR dilemma to focus on model risk management for all models – including 

Bayesian, VaR, and, Bayesian VaR – as that is what really matters (Derman, 1996; Morini, 

2011; US Fed & OCC, 2011). Hence, the contributions of this paper are as follows. 

 

First, we modulate the ‘silver bullet’ expectations about ‘replacing’ VaR with 

Bayesian models with realities of computational statistical modeling. Specifically, we 

inform the Baysian vs. VaR debate by outlining analytical frameworks of Bayesian 

inference (based on (Kruschke, 2011)) and VaR (based on (Darbyshire & Hampton, 2012, 

2014)). Bayesian statistical inference methodology is anticipated to overcome known 

limitations of frequentist, also known as null hypothesis significance testing (NHST), 

statistical inference methodology. Modeling of ‘Bayesian priors’ – referred by some as 

‘subjective judgment’ – remains a key challenge and limitation of Bayesian 

methodology. Feasibility as well as precision and accuracy of Bayesian modeling 

depend on computational statistical algorithms such as Markov Chain Monte Carlo 

(MCMC) which are themselves reliant upon exponential computing powers (Kruschke, 

2011; Lynch, 2007). Such computing power accessibility is becoming available in recent 

years for mainstream use which explains recent re-emergence of applied interest in 

Bayesian inference.  
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Second, we resolve the Bayesian vs. VaR dilemma by providing analytical 

frameworks of Bayesian inference modeling and VaR modeling and advance beyond to 

empirical model risk management. Related discussion elucidates the central concern of 

model risk management which is relevant to every model – including Bayesian, VaR, and, 

Bayesian VaR – and necessary for minimizing modeling related risk management 

failures by minimizing model risk. Our current choice of empirical methodology and 

risk modeling framework is based upon the contextual domain and related current real 

world practice for risk modeling for multi-asset portfolio hedge funds. Our empirical 

focus on risk modeling and VaR frameworks for construction and optimization of fund-

of-funds portfolio helps fathom the multi-dimensional complexity of financial risk 

modeling. We empirically examine multiple risk models and measures to cross-validate 

convergent findings across various levels of risk analysis as one such method of model 

risk management by applying VaR using classical methodology. 

 

The outline of the chapter is as follows. In next section we discuss the analytical 

framework of the Bayesian statistical inference methodology as a viable contender for 

the classical frequentist methodologies of statistical inference. Next we discuss the 

quantitative risk modeling frameworks including VaR that are relevant to the 

contextual domain and related current real world practice for risk modeling of multi-

asset portfolio hedge funds.  Subsequent section presents the empirical context that 

applies the risk modeling frameworks including VaR in multi-asset portfolio hedge 

fund risk modeling for a half-trillion dollar fund-of-funds portfolio comprised of 

diverse equity, currency, commodity, alternative investments, and, hedge fund asset 

classes. Empirical findings in the next section illustrate the use of multiple risk 

measures and models at various levels of analysis to find convergence across the 

observations. The final section concludes our discussion outlining limitations and 

directions for future research. 

 

5.3 Bayesian Modeling 

To align expectations of practice with the challenges of computational statistical 

modeling inherent in Bayesian modeling, we outline the following analytical 

framework. The proposed framework aims to facilitate Bayesian estimation of 

parameter values, prediction of data values, and model comparison (based on 
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(Kruschke, 2011)). Our synthesis advances beyond the ambiguity of the Bayesian vs. VaR 

dilemma by clarifying central concerns that characterize Bayesian modeling. First, the 

role of ‘subjective judgment’ known more formally as ‘Bayesian priors’ is recognized as 

key challenge and limitation of Bayesian inference by its strongest critics and 

proponents alike (Kruschke, 2011; Lynch, 2007). Second, statistical computational 

complexity necessary for realizing more sophisticated Bayesian inference even when 

overcome at much expense may not necessarily result in more accurate or precise 

model. Hence, regardless of models being used, VaR or Bayesian, model risk management is 

necessary for minimizing risk management failures. Readers informed by this framework 

should be wiser in considering the prescriptive advice about ‘replacing VaR models 

with Bayesian’ (Borison & Hamm, 2010). Those new to Bayesian statistical inference 

probabilistic modeling may find Appendix 5-1 Bayesian Inference: Probability 

Background relevant.  

 

5.3.1 Bayes’ Rule 

Bayes’ rule is based on conditional probability, the probability of one event given 

that we know that the other event is true. Conjoint probability is the probability of two 

outcome events occurring together when considering a conjunction of the two events. 

Given conjoint events x and y, total probability of occurrence of a specific value of x 

regardless of the probability of any value for y is called marginal probability of x. Marginal 

probability of a specific value of x regardless of any value of y equals sum of all conjoint 

probabilities p(x, y) for the specific value of x.   

Marginal probability of x = 𝑝(𝑥) =  ∑       𝑝(𝑥, 𝑦)𝑦     when x and y are discrete,  

                                                𝑝(𝑥) = ∫ 𝑑𝑦  𝑝(𝑥, 𝑦)
𝑦

    when x and y are 

continuous. 

Above process is called marginalizing over y or integrating out the variable y (Kruschke, 

2011). 

 

Probability of a specific outcome of y given known outcome of x could differ from its 

probability if outcome of x is not known. Conditional probability of event y is then 

limited by the conjoint probability of x and y for that specific value of y given the 

specific value of x (for all values of y). Conditional probability of y given x denoted as 
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𝑝(𝑦|𝑥) equals the conjoint probability of x and y divided by the sum of conjoint 

probabilities for the specific value of x over all values of y where 𝑝(𝑦, 𝑥) =  𝑝(𝑥, 𝑦). 

𝑝(𝑦|𝒙) =  
𝑝(𝑦,𝑥)

∑   𝑝(𝑦,𝑥)𝒚
  =  

𝑝(𝑦,𝑥)

𝑝(𝒙)
   ,     𝑝(𝑥|𝑦) =  

𝑝(𝑥,𝑦)

∑   𝑝(𝑥,𝑦)𝑥
  =  

𝑝(𝑥,𝑦)

𝑝(𝑦)
    given discrete x 

and y, 

𝑝(𝑦|𝑥) =  
𝑝(𝑦,𝑥)

∫ 𝑑𝑦 𝑝(𝑦,𝑥)
𝑦

 =  
𝑝(𝑦,𝑥)

𝑝(𝑥)
 ,  𝑝(𝑥|𝑦) =  

𝑝(𝑥,𝑦)

∫ 𝑑𝑥  𝑝(𝑥,𝑦)
𝑥

  =  
𝑝(𝑥,𝑦)

𝑝(𝑦)
  given continuous x 

and y. 

In summary, (Conditional Probability = Conjoint Probability / Marginal Probability), 

which can also be expressed as (Conjoint Probability = Conditional Probability * 

Marginal Probability). From above expressions, it also follows that:   𝑝(𝑥, 𝑦) = 

𝑝(𝑦|𝑥)𝑝(𝑥)= 𝑝(𝑥|𝑦) 𝑝(𝑦). 

 

𝑝(𝑥|𝑦) should not be interpreted as denoting temporal order implying that y precedes x. 

It only implies limiting the calculations of probability to a particular subset of possible 

events: among all events with value y, 𝑝(𝑥|𝑦) of them also have value x (Kruschke, 

2011). When two events x and y have no influence on each other, they are called 

independent events.  

When value of y has no influence on value of x, in general, 𝑝(𝑦|𝑥) = 𝑝(𝑦) =  
𝑝(𝑦,𝑥)

𝑝(𝑥)
.  

Likewise,  

when value of x has no influence on value of y, in general, 𝑝(𝑥|𝑦) = 𝑝(𝑥) =  
𝑝(𝑥,𝑦)

𝑝(𝑦)
. 

 

Hence for two independent events x and y, conjoint probability 𝑝(𝑥, 𝑦) equals the 

product of marginal probabilities 𝑝(𝑥) 𝑎𝑛𝑑 𝑝(𝑦). Symmetrically, when 𝑝(𝑥, 𝑦)  =

 𝑝(𝑥) 𝑝(𝑦) for all values of x and y, then 𝑝(𝑥|𝑦) = 𝑝(𝑥) and 𝑝(𝑦|𝑥) = 𝑝(𝑦). Both 

expressions specify independence of attributes. The relationship between 𝑝(𝑥|𝑦) and 

𝑝(𝑦|𝑥) called Bayes’ Rule is derived as follows. 

 

From above expressions, 𝑝(𝑦|𝑥)𝑝(𝑥) = 𝑝(𝑦, 𝑥)  , and,   𝑝(𝑥|𝑦)𝑝(𝑦) = 𝑝(𝑥, 𝑦)   

=>    𝑝(𝑦|𝑥)𝑝(𝑥) = 𝑝(𝑥|𝑦)𝑝(𝑦) 

=> 𝒑(𝒚|𝒙)  =   
𝒑(𝒙│𝒚)𝒑(𝒚)

𝒑(𝒙)
         (1)   =>    𝒑(𝒚|𝒙)  =  

𝒑(𝒙│𝒚)𝒑(𝒚)

∑  𝒑(𝒙,𝒚)𝒚
   ⇔  

𝑝(𝑥│𝑦)𝑝(𝑦)

∫ 𝑑𝑦  𝑝(𝑥,𝑦)
𝑦
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As noted earlier, marginal probability of x is  𝑝(𝑥) =  ∑  𝑝(𝑥, 𝑦)𝑦   when x and y are 

discrete, and, 𝑝(𝑥) = ∫ 𝑑𝑦  𝑝(𝑥, 𝑦)
𝑦

  when x and y are continuous. As 𝒑(𝒙, 𝒚)= 

𝒑(𝒙|𝒚)𝒑(𝒚), it follows: 

=> 𝒑(𝒚|𝒙)    =  
     𝒑(𝒙│𝒚)𝒑(𝒚)

∑ 𝒑(𝒙│𝒚)𝒑(𝒚)𝒚
    (2) 

 

Above two expressions (1) and (2) called the Bayes’ Rule are at the core of Bayesian 

Inference.  

Bayes’ Rule holds when x and y are independent as well as when x and y are not 

independent. 

5.3.2 Key Objectives of Bayesian Inference 

 

Pre-existing beliefs about different possible values of a parameter before taking 

into account some particular set of observations are called prior beliefs or simply priors. 

The modified beliefs resulting from taking the particular set of data or observations into 

account are called posterior beliefs. Even though the terms prior and posterior may seem to 

suggest historical or temporal ordering, in fact it is not the case (Kruschke, 2011). Prior 

simply means the probability distribution of beliefs held without including a particular 

set of data. In contrast, posterior simply means the probability distribution of beliefs 

held after including, i.e., after taking into consideration that particular set of data. 

Bayesian inference transforms prior beliefs into posterior beliefs. Statistical inference 

based on data observations typically fulfills one of the following three goals: estimation 

of parameter values, prediction of data values, and model comparison.  

 

Estimation of parameter values is used to determine the probability distribution of 

beliefs in different possible values of a parameter. For a random process, underlying 

true parameter is not known and hence related beliefs are uncertain; therefore posterior 

beliefs about that parameter are an estimate. Data can result in modification of beliefs 

given that specific probabilities assigned to different values of the parameter may 

change. Degree of belief in some possible values of a parameter may increase resulting 

in corresponding decrease in other possible values. Hence, such reassignment of 

probabilities across different possible parameter values is called estimation of 

parameter values as it results in shifting of beliefs across those values (Kruschke, 2011).   
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Prediction of data values means inferring values of data other than that we have 

already considered based upon current beliefs. Again, prediction means inferring value 

of data that is not included based on data that has already been included regardless of the 

actual temporal relationship between the two (Kruschke, 2011). Bayesian prediction is 

based upon taking weighted average of predictions based on respective beliefs, 

specifically taking a summated weighted average of each possible value of unknown 

data and the respective (believed) probability of occurrence of the specific value. Model 

selection, also known as model comparison, is based upon choosing the model which can 

generate the observed data with greater likelihood. Bayesian inference can help 

determine exactly how much more to believe the selected model than those not selected 

and intrinsically adjusts for model complexity. Complex models, being more flexible, 

will fit the data better as well as fit random noise better than simpler models (Kruschke, 

2011).   

5.3.3 Bayes’ Rule Applied to Models and Data 

In context of application to models and data, a key application of Bayes’ Rule is 

in assessment of conditional probabilities of observed data values and related model 

parameter values. Its crucial application is in determining the probability of a model 

when given a set of data. The model itself provides the probability of the data, given 

specific parameter values and the model structure. Specifically, Bayes’ Rule helps to get 

from the probability of the data, given the model to the probability of the model, given the data.  

 

Having observed some data, Bayes’ Rule is then applied to determine strength of 

our beliefs across competing parameter values in a model, and, also to determine 

strength of our beliefs across competing models. Beliefs held prior to the observation of 

data are called prior beliefs or priors. Observed data may modify those priors and result 

in posterior beliefs or posteriors. Again, the notion of “historical data” (Borison & 

Hamm, 2010) needs to be interpreted carefully especially in the context of Bayesian 

analysis. Even though the terms ‘prior’ and ‘posterior’ may seem to suggest historical or 

temporal ordering, in fact it is not the case (Kruschke, 2011).  

Prior simply means the probability distribution of beliefs held without including a 

particular set of data. In contrast, posterior simply means the probability distribution of 

beliefs held after including, i.e., after taking into consideration that particular set of data. 

Bayesian inference transforms prior beliefs into posterior beliefs thus helping us make 
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inference from data to uncertain beliefs. Uncertainty in beliefs results from differing 

likelihood of diverse possibilities. By helping precisely determine likelihood of diverse 

possibilities, statistical inference models help precisely define such uncertainty with 

precise numerical bounds. This is particularly useful with increasing variance in data 

and increasing uncertainty in beliefs.  

Data denotes the observable sample statistic observed for a process to estimate 

corresponding parameter of the process which cannot be directly observed. The first set 

of assumptions about the process that generates probabilistic observable data outcomes 

for the unobservable parameter is the model of observable events. The second set of 

assumptions about our beliefs regarding the likelihood of different levels of the specific 

process parameter is the model of our beliefs.  Bayes’ rule can be visualized spatially 

(Kruschke, 2011) in terms of events x listed in i rows Ri and events y listed in 

intersecting j columns Cj wherein any specific intersection of the two is the conjoint 

probability 𝑝(𝑅𝑖 , 𝐶𝑗) =  𝑝(𝑅𝑖|𝐶𝑗) 𝑝(𝐶𝑗) = 𝑝(𝐶𝑗|𝑅𝑖) 𝑝(𝑅𝑖). Then, normalization of 

probabilities in row Ri by dividing conjoint probabilities by p(Ri) yields the following. 

𝑝(𝐶𝑗│𝑅𝑖)  = 
  𝑝(𝐶𝑗,𝑅𝑖)

𝑝(𝑅𝑖)
   = 

  𝑝(𝑅𝑖│𝐶𝑗)𝑝(𝐶𝑗)  

𝑝(𝑅𝑖)
                                 (1a) 

𝑝(𝑅𝑖|𝐶𝑗)  =  
  𝑝(𝑅𝑖,𝐶𝑗)

𝑝(𝐶𝑗)
  = 

𝑝(𝐶𝑗│𝑅𝑖)  𝑝(𝑅𝑖)

𝑝(𝐶𝑗)
   =   

𝑝(𝐶𝑗│𝑅𝑖)  𝑝(𝑅𝑖)

∑  𝑝(𝐶𝑗│𝑅𝑖)  𝑝(𝑅𝑖)𝑖
     (2a) 

Applying Bayes’ Rule in spatial representation to data values Di in rows and 

intersecting column parameter values θi, we get the following expressions about the 

Bayesian inference for model given data. The following expressions are based upon the 

earlier observation that conjoint probability equals the product of conditional 

probability and marginal probability. The first expression is that of the posterior for 

which we need to avoid the computation of large complex integral in the denominator 

for ease of computation.  

𝒑(𝜽𝒋│𝑫𝒊)  = 
  𝑝(𝜃𝑗,𝐷𝑖)

𝑝(𝐷𝑖)
   = 

  𝒑(𝑫𝒊│𝜽𝒋) 𝒑(𝜽𝒋)  

𝒑(𝑫𝒊)
                                  (1 b) 

 

𝑝(𝐷𝑖│𝜃𝑗)  = 
  𝑝(𝐷𝑖,𝜃𝑗)

𝑝(𝜃𝑗)
   = 

  𝑝(𝜃𝑗│𝐷𝑖) 𝑝(𝐷𝑖)  

𝑝(𝜃𝑗)
   =   

 𝑝(𝜃𝑗│𝐷𝑖) 𝑝(𝐷𝑖)

∑  𝑝(𝜃𝑗│𝐷𝑖) 𝑝(𝐷𝑖)𝑖
   (2 b) 

 

Bayes Rule helps us determine how strongly we believe in the model given the data. It helps us 

get from the probability of the data given the model 𝑝(𝐷𝑖│𝜃𝑗) to probability of the 
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model given the data 𝑝(𝜃𝑗│𝐷𝑖) (Kruschke 2011).  Writing expression (1b) as follows 

helps clarify the Bayesian analysis notation. 

𝑝(𝜃𝑗│𝐷𝑖) = 
  𝑝(𝐷𝑖│𝜃𝑗) 𝑝(𝜃𝑗)  

𝑝(𝐷𝑖)
   i.e.   Posterior = 

  𝐿𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑 ∗ 𝑃𝑟𝑖𝑜𝑟  

𝐸𝑣𝑖𝑑𝑒𝑛𝑐𝑒
   where 

Posterior  𝑝(𝜃𝑗|𝐷𝑖) denotes strength of our belief in parameter 𝜃𝑗  when data 𝐷𝑖 is 

considered. 

Prior          𝑝(𝜃𝑗)       denotes strength of our belief in parameter 𝜃𝑗   without considering 

data 𝐷𝑖. 

Likelihood   𝑝(𝐷𝑖|𝜃𝑗) denotes probability that data 𝐷𝑖 could be generated by model with 

parameter 𝜃𝑗 . 

Evidence 𝑝(𝐷𝑖)          denotes probability of the data according to the model. 

For Likelihood 𝑝(𝐷𝑖|𝜃𝑗), θ that maximizes its value is called the Maximum 

Likelihood Estimate of θ. Evidence is used here as in machine learning and equals the 

numerical sum across all possible parameter values weighted by respective strength of 

the belief in those parameter values. Hence,  

                   𝑝(𝐷𝑖) =∑ 𝑝(𝐷𝑖 , 𝜃𝑗)𝜃 =  ∫ 𝑑𝜃  𝑝(𝐷𝑖|𝜃𝑗)
𝜃

 𝑝(𝜃𝑗)   . 

Because parameter value θi makes sense only in context of the respective model, it helps 

to make the specific model explicit. 

𝑝(𝜃𝑗│𝐷𝑖, 𝑀) = 
  𝑝(𝐷𝑖│𝜃𝑗,   𝑀) 𝑝(𝜃𝑗│𝑀)  

𝑝(𝐷𝑖│𝑀)
 . Correspondingly  𝑝(𝐷𝑖│𝑀)  = 

∫ 𝑑𝜃 𝑝(𝐷𝑖│𝜃𝑗 ,   𝑀)
𝜃

 𝑝(𝜃𝑗│𝑀) .  

Above assessment of the strength of (posterior) beliefs given data for a specific 

model can be extended to the case of comparison of strength of belief in two different 

models M1 and M2 given observed data. 

𝑝(𝑀1│𝐷𝑖) = 𝑝(𝑀1, 𝐷𝑖) / 𝑝(𝐷𝑖) = 𝑝(𝐷𝑖|𝑀1) 𝑝(𝑀1) / 𝑝(𝐷𝑖) and 

𝑝(𝑀2│𝐷𝑖) = 𝑝(𝑀2, 𝐷𝑖) / 𝑝(𝐷𝑖) = 𝑝(𝐷𝑖|𝑀2) 𝑝(𝑀2) / 𝑝(𝐷𝑖).  

Equating the ratios of LHS and RHS above, we get, 
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  𝑝(𝑀1│𝐷𝑖)  

𝑝(𝑀2│𝐷𝑖)
  = 

𝑝(𝐷𝑖|𝑀1) 𝑝(𝑀1) 

 𝑝(𝐷𝑖|𝑀2)  𝑝(𝑀2) 
    where the ratio of evidence terms  

  𝑝(𝐷𝑖|𝑀1) 

𝑝(𝐷𝑖|𝑀2)
 is 

called the Bayes’ Factor. 

Hence, for comparison of 𝑀1and 𝑀2, ratio of posterior beliefs equals Bayes’ Factor times 

the ratio of priors. 

5.4 What Makes Bayesian Inference Challenging 

Beyond estimation of model parameters, Bayesian methodology is far more 

flexible in evaluating model fit and comparing models, producing parameters samples 

not directly estimated within the model, handling missing data, while capturing greater 

uncertainty than the classical approach in prediction and forecasting (Lynch, 2007). It is 

however recommended to think of sophistication and complexity of models as a two-edged sword. 

Simple models are always preferred if they help understanding the assumptions and limits of 

their scope which helps in managing model risk. Complex and sophisticated models may increase 

the model risk if they obfuscate such understanding and clarity (Kruschke, 2011). Bayesian 

modeling can help to the extent given that it automatically accounts for model 

complexity when assessing the strength of belief in any given model. Let’s consider the 

case wherein for estimation of parameter values a simple model with a few parameter 

values is compared with one containing many parameter values.  

Given that the same probability is spread out over a larger number of values, the 

simpler model is favored as it shows greater posterior values for the lesser parameter 

values. However, the complex model may be favored when the observed data do not fit 

the simpler model. In any case, the model comparison simply tells about the relative 

evidence for each model and makes sense in the context of relative comparison. Regardless 

of which model seems relatively superior, it may still not be a good model of the data, but the 

least worse of the models that are compared (Kruschke, 2011). 

The evidence 𝑝(𝐷𝑖) and 𝑝(𝐷𝑖│𝑀) involve a complex integral over a possibly high 

dimension parameter space 𝜃𝑗  ∈ Θ. Such complex integration over high dimension 

parameter space is the principal inferential operation in Bayesian analysis as compared 

to optimization in classical inference. Evaluation of such complex integrals over high 

dimensional parameter space poses major challenge for actual use of Bayesian analysis. All three 
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goals of Bayesian inference depend upon the solution of the evidence term which is in the 

denominator of Bayes’ formula (Kruschke, 2011).  

Few methods have been typically used to overcome the problems such as those 

noted above that severely constrain the application of Bayesian analysis. The first 

method involves using prior and posterior distributions of the same form, i.e., satisfying 

the condition of conjugacy. In other words, the functional forms of distributions 𝑝(𝐷𝑖|𝜃𝑗) 

and 𝑝(𝜃𝑗) combine so that the posterior distribution has same form as prior distribution 

(e.g. both are normal distributions), then 𝑝(𝜃𝑗) is called the conjugate prior for 𝑝(𝐷𝑖|𝜃𝑗). 

Another pure analytical method involves approximation of the actual functions with 

easier to compute alternatives while demonstrating their reasonableness.  Third method 

involves numerical approximation of the difficult-to-compute integral by 

approximating the continuous function 𝜃𝑗  as a sum over a fine grid of discrete 𝜃𝑗  values.  

Such grid approximation is based upon approximating the integral by 

summation of discrete intervals across the grid. Instead of treating 𝜃𝑗 as a continuous 

function with associated probability densities, it uses discrete finite values of 𝜃𝑗  and 

aggregates respective probability masses as shown below.  

𝑝(𝐷𝑖│𝑀)  =  ∫ 𝑑𝜃 𝑝(𝐷𝑖│𝜃𝑗 ,   𝑀)
𝜃

 𝑝(𝜃𝑗│𝑀)       ≈    ∑  𝑝(𝐷𝑖│𝜃𝑗 ,   𝑀) 𝑝(𝜃𝑗│𝑀)𝜃  

The above grid approximation method is limited to cases where the number of 

parameters is relatively very small. For instance, considering a model which may have say, 

eight parameters, each having a thousand values, the eight-dimensional parameter space contains 

(1E3)E8 i.e. 1E24 combinations of parameter values which is a computationally complex problem 

to solve. Markov Chain Monte Carlo (MCMC) numerical techniques (Gelfand & Smith, 

1990; Malhotra, 2014) that work by simulating a discrete time Markov chain on high 

dimension parameter space 𝜃𝑗  ∈ Θ by using statistical computing algorithms provide a 

relatively recent breakthrough for making Bayesian analysis feasible for solving high 

dimensionality problems. MCMC use Monte Carlo simulations to approximate the true 

posterior probability density 𝑝(𝜃𝑗|𝐷𝑖) by constructing Markov chains whose steady 

state distribution matches 𝑝(𝜃𝑗|𝐷𝑖). The samples returned by the MCMC methods of 

simulation based inference can be assumed as random draws from 𝑝(𝜃𝑗|𝐷𝑖). Only with 

availability of MCMC statistical computing algorithms such as Metropolis Hastings algorithm 

and Gibbs Sampling algorithm and faster inexpensive computing power has Bayesian inference 
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become feasible lately for mainstream use for doing high dimension parameter space analyses 

(Gelfand & Smith, 1990; Malhotra, 2014). 

 5.5 ‘Subjective Judgment’ Limitation of Bayesian Inference 

A key limitation of Bayesian inference is often attributed to the choice of the appropriate 

and reasonable prior distribution.  For all parameters, proper priors have to be used in 

order to avoid possible non-integrability of the posterior parameter distribution which 

would make the Bayesian model selection rather questionable (Kass & Raftery, 1995). 

Choice of suitable priors is generally a ‘contentious issue’ (Miazhynskaia et al., 2003): 

"One wants the priors to reflect one’s believes about parameter values and at the same 

time to use non-informative (flat) priors that does not favor particular values of the 

parameter over other values.” To avoid the “subjectivity” criticism of Bayesian 

approach as in choice of ‘subjective’ priors when contrasted from the classical approach, 

many Bayesian analyses have used uniform, reference, or otherwise ‘non-informative’ 

priors (Lynch, 2007). This has lessened the use of priors as a distinguishing 

characteristic of Bayesian analyses even though most Bayesian analyses specifically 

attempt to minimize the effect of the prior such as by excluding the ‘burn in’ period. It 

may be however argued that explicit priors should be used because prior beliefs 

influence rational inference from data because new data modifies beliefs from what 

they were prior to the new data.  

However, it must be recognized that prior beliefs are not capricious and 

idiosyncratic and unknowable but based on publicly agreed facts and theories and 

admissible by a skeptical scientific audience (Kruschke, 2011). Hence, it must be 

emphasized that Bayesian analysis doesn’t ipso facto imply reliance upon ad hoc and 

subjective personal judgment but is rather based upon use of priors that are agreeable to a 

skeptical audience (Kruschke, 2011). In case of disagreement about two sets of priors, 

either each can be used to conduct separate analysis and then robustness of posterior 

assessed w.r.t. changes in prior or they can be mixed into joint prior with posterior 

reflecting the uncertainty in the prior.  

The above synthesis of a Bayesian analytical modeling framework is intended to 

clarify prescriptive advice about ‘replacing VaR with Bayesian models’ for its actual 

execution in applied practice. It is important to recognize three key points from the 

above discussion. First, Bayesian and VaR models cannot and should not be treated as 
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mutually exclusive alternatives in risk modeling for minimizing risk management 

failures given existence of non-Bayesian VaR, Bayesian VaR, as well as risk models 

other than VaR. Second, Bayesian approach, even though more sophisticated 

statistically, comes at much computational expense and does not necessarily ensure 

more precise or accurate model. Third, but most importantly, regardless of using 

Bayesian approach with or without VaR, model risk management is necessary in all 

cases for mitigating risk management failures.   

5.6 Value at Risk (VaR) Modeling 

The following discussion focus is on VaR and ES models most widely used in 

hedge fund risk modeling practice (Darbyshire & Hampton, 2012, 2014; J.P. Morgan, 

2008). These risk models are used for empirical analysis as described in the next section.  

Other sophisticated risk management models which share the “methodological 

common root” of VaR (Danielsson et al., 2014) are reviewed in the concluding 

discussion of the current section. 

5.6.1 Key Concept of Value-at-Risk 

 

For a given portfolio of assets, Value at Risk (VaR) quantifies how much at most 

can be lost with a given probability over a specific time horizon. Value-at-Risk denotes 

the worst expected loss over a given time horizon at a given confidence level under 

normal market conditions (J.P. Morgan, 2008). VaR provides a single number 

summarizing the firm’s exposure to market risk and the likelihood of an unfavorable 

move in the portfolio’s positions. It also provides a predictive tool to prevent portfolio 

managers from exceeding risk tolerances defined in the portfolio policies. It can be 

measured at the portfolio, sector, asset class, and security levels. VaR is just an estimate 

and not a uniquely defined value (J.P. Morgan, 2008). Unlike, Expected Shortfall 

discussed later, VaR does not provide any information on losses that exceed its value, 

i.e., VaR is not the ‘worst case scenario’(J.P. Morgan, 2008). 

 

95% VaR level was defined by the popular Riskmetrics methodology of JP 

Morgan. 99% VaR level had been the Basel committee’s market risk regulatory criterion 

until 2013 when they proposed replacing it with 97.5% ES in Basel III which is to be 

implemented sometime until 2019 as of the time of writing. In case of a hedge fund (or a 
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fund of funds), assumptions about hedge fund portfolio returns following a normal 

distribution and being affected by linear market forces are called the normality and 

linearity assumptions.  The normal distribution of hedge fund returns can be described 

by just two parameters, mean µ and standard deviation σ.  

Assuming normal distribution (X ∼ N (µ, σ2) = N (0, 1)) for monthly returns and a 

c% confidence level, where c = 100(1 – α), c% VaR implies that the worst estimated 

portfolio loss for the next month is no more than zασ, i.e. zα standard deviations below 

the mean µ. For c% = 95% and corresponding critical value zα = –1.645, VaRc = VaR1–α 

implies 95% probability of portfolio loss not exceeding 1.645σ, i.e., 5% probability of 

portfolio loss worse than 1.645σ.  Similarly, for c% = 99% and corresponding critical 

value zα = –2.2326, VaRc = VaR1–α implies 99% probability of portfolio loss not exceeding 

2.2326σ, i.e. 1% probability of portfolio loss worse than 2.2326σ. VaR does not specify the 

amount of loss expected in excess of VaR for the respective time period, but only specifies 

that there is only α% probability (i.e., event occurrences out of 100) resulting in loss of at 

least zασ.  

 

5.6.2 Traditional methods for estimating VaR 

Hedge fund industry traditional methods for estimation of VaR for funds-of-

funds risk management practices include the following (Darbyshire & Hampton, 2012, 

2014; J.P. Morgan, 2008): i. Historical Simulation, ii. Parametric Method, and, iii. Monte 

Carlo Simulation. 

While Historical Simulation is based upon actual data, Parametric Method uses 

the data only for generating the necessary parameters for specifying the distribution, 

and Monte Carlo generates data using simulation. Each of the three methods is different 

in terms of how it defines distribution of losses and has its advantages and limitations 

as discussed below. 

i) Historical Simulation based VaR 

Historical simulation relies upon the past data of returns based upon the 

assumption that historic monthly returns are an accurate representation of future 

returns with no specific assumptions about the return distribution.  The data set of 

historical monthly % returns needs to be adequately large to calculate for each historical 
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% return a corresponding simulated P&L value by multiplying the % return with the 

index AuM. The simulated P&L values are then sorted in order of decreasing losses and 

increasing profits so that the highest loss is on the top and highest profit on the bottom. 

For each simulated P&L value, an associated cumulative weight is computed based 

upon total number of data points starting from the highest profit on the bottom for 

which the cumulative weight is simply the inverse of the number of data points. That 

value is incremented for each subsequent lower value of profit (or higher value of loss) 

with lowest profit (or highest loss) accumulating a final cumulative weight of 100%.  

The P&L value corresponding to c% confidence level value of the cumulative 

weights, where c% could be based upon interpolation between the adjacent P&L 

cumulative weights, is the estimated VaR for the specific confidence interval 

represented as VaRc. Its key feature is that it is independent of any assumptions about 

the underlying statistical distribution or related parameters and is thus non-parametric 

in nature. Its advantages are the following: it is easy to calculate, easy to understand, 

does not assume normal distribution, not as data intensive as Monte Carlo, and can be 

applied to various time periods (J.P. Morgan, 2008).  However, historical returns may 

not be an accurate representation of the future returns. Hence, its disadvantage lie in its 

assumption that historical correlations will repeat (J.P. Morgan, 2008).  

ii) Parametric Method based VaR  

For a portfolio of N risky assets, the portfolio variance is given by the expression: 

𝜎𝑝
2 = WT∑W   where WT is the matrix transpose of W, the vector of individual asset class 

weights wi, and, ∑, the variance-covariance matrix of the individual assets w1 thru wn:  

∑ = (

𝜎11 𝜎12 ⋯ 𝜎1𝑛

𝜎21 𝜎22 ⋮ 𝜎2𝑛

⋮ ⋮ ⋱ ⋮
𝜎𝑛1 𝜎𝑛2 ⋮ 𝜎𝑛𝑛

) 

For portfolio standard deviation 𝜎𝑝 = (WT∑W)1/2, estimated VaR is computed as follows: 

VaRc = VaR1–α = Pzα𝜎𝑝 where P is the market value of the portfolio. The vector of 

individual asset weights wi is derived through the solution of the mean-variance 

optimization (Markowitz, 1952) for achieving a desired level of portfolio expected 

return for corresponding level of portfolio risk. The portfolio of weighted assets 

optimized to yield minimum variance (i.e. risk) for a higher expected portfolio return 
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needs to be rebalanced through computation of new weights as market conditions and 

risk conditions evolve while considering transaction costs involved in such rebalancing.  

The mean-variance optimization problem can be stated in terms of a target expected 

portfolio return r* as:  min 𝜎𝑝
2 = min WT∑W    s.t.          WTR = r*,   ∑ 𝑤𝑖

𝑁
𝑖 =   1      where 

R is the vector of mean returns of assets in a fully invested portfolio with respective 

returns elements corresponding to weights in the vector W of individual asset weights 

wi. If short selling is not allowed, then additional constraint of 𝑤𝑖 ≥ 0  can be added.     

The portfolio variance listed above follows from the following expressions: 

𝜎𝑝
2 = ∑ ∑ 𝑤𝑖

𝑁
𝑗=1

𝑁
𝑖=1 𝑤𝑗𝜎𝑖𝜎𝑗𝜌𝑖𝑗          ⇨       𝜎𝑝

2 = ∑ ∑ 𝑤𝑖
𝑁
𝑗=1

𝑁
𝑖=1 𝑤𝑗𝜎𝑖𝑗         ⇨        𝜎𝑝

2 = WT∑W 

Parametric approach is mathematically simple and intuitive to understand and 

implement using matrices. Hence, its advantages include the following: it is easy to 

calculate, easy to understand, has minimal data requirements, and can be applied to 

various time periods (J.P. Morgan, 2008). Parametric methods suffer from the 

limitations inherent in the normality and linearity assumptions about portfolio returns 

being normally distributed and linear relationships assumed between risk variables. 

They rely upon strong assumptions about statistical parametric return distributions in 

terms of mean µ and standard deviation σ such as of the independent and identically 

distributed (iid) random variables of N (0, 1) normal distribution. Such assumptions of 

normality are clearly oversimplifications particularly for portfolios of hedge funds and 

funds of funds for which extensions of traditional VaR methods are discussed later.  

 Furthermore, linear relationships of parametric methods are oversimplifications 

for portfolios employing sophisticated trading strategies based upon derivatives such as 

options that have non-linear risk-return characteristics. Therefore, such estimates are 

not as accurate when asset portfolio consists of non-linear instruments such as in case of 

specific hedge fund strategies. Hence, disadvantages of parametric VaR include 

assumption of normality, difficulty of estimating correlations in complex portfolios, and 

lesser accuracy for non-linear securities such as MBS (J.P. Morgan, 2008).  

iii) Monte Carlo Simulation based VaR 

Monte Carlo (MC) methods based VaR is based on the premise that the portfolio 

returns can be characterized by a stochastic model typically based upon a non-

deterministic component. Such a component introduces some degree of uncertainty or 
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randomness in the data generating process (DGP) by use of random number generators. 

Simulation based upon a specific mathematical stochastic model over thousands or 

millions of trials generate corresponding time-based paths that series of portfolio returns 

are probabilistically likely to follow over a certain time period. Each of those trials 

results in a terminal value for the portfolio return (or P&L) at the end of the simulated 

time period. Just as in the case of Historical Simulation discussed earlier, VaRc at a 

specific confidence interval c is estimated from the simulated P&L distribution by 

sorting the P&L values and computing P&L value corresponding to c% confidence level 

value by interpolation between adjacent P&L cumulative weights as needed.  

Consistent with prior discussion on Bayesian inference, the stochastic model is 

driven by the µ and σ of the asset returns distribution based upon historical data as well 

as inclusion of a degree of subjective knowledge based upon market experience in the 

model as necessary. MC methods are robust and probabilistically strong and are 

excellent for building and understanding non-linearity associated with use of 

derivatives in multi-asset portfolios. Such subjective knowledge based MC models are 

“extensively used throughout the financial markets” and are a “much used technique 

for estimating VaR within the hedge fund community” (Darbyshire & Hampton, 2012, 

2014). Hence, incorporation of ‘subjective judgments’ into the model and flexibility of 

choosing the appropriate stochastic DGP are the strong points of MC methods based 

VaR models. MC methods being mathematically complex and challenging are most 

demanding of computational resources.  

When dealing with intrinsic complexities of specific multi-asset portfolio strategy 

with derivatives, they can become mathematically challenging and computationally 

expensive to implement. Markov Chain Monte Carlo (MCMC) algorithms (Gelfand & 

Smith, 1990; Malhotra, 2014) are often used in such cases for portfolio modeling 

especially in case of Bayesian inference models. Advantages of Monte Carlo VaR thus 

include their ability to use any return distribution or asset correlation and greatest 

suitability for non-linear assets while disadvantages include requirements of too many 

assumptions and extensive computing power and time (J.P. Morgan, 2008).  

In addition to the traditional VaR methods, portfolio managers also run stress 

tests for testing sensitivity of the models to magnified values of parameters and risk 

factors to allow for extreme or adverse events that could result in catastrophic losses. 

From portfolio optimization perspective, stress testing also includes sensitivity analysis 
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that shocks one or several risk factors by a relative small change such as +/- 5 basis 

points and revalues the portfolio to ascertain the sensitivity of the portfolio to the small 

change in one or several risk factors (J.P. Morgan, 2008). Similarly, they may also run 

scenario analyses using historical data and associated parameters to test for 

comparability with high turbulence market events such as the market crash of 1987 and 

the financial crisis of 2008. 

iv) Modified VaR  

The normality assumption is the greatest drawback of the above traditional VaR 

approaches despite use of stress testing and scenario analysis practices. Particularly, 

hedge fund and fund-of-funds returns are characterized by negative skew and excess 

positive kurtosis resulting in asymmetric return distributions with fat tails. Hence, 

extensions of traditional VaR methods have been proposed to address better estimation 

and specification of market risk for such portfolios. Contemporary extensions of VaR 

models are based upon explicit consideration of the standardized third (skew) and 

fourth (kurtosis) central moments of the returns distribution. In addition, they are also 

focused on the left tails of the returns distribution wherein most of the extreme losses 

are concentrated. The concept of Modified VaR is based upon the Modified Sharpe 

Ratio (MSR) wherein the denominator of Sharpe ratio is modified to account for the 

higher (third and fourth) moments of the returns distribution.  

Sharpe ratio which is a measure of risk-free rate per unit of risk, risk being 

measured in terms of portfolio’s standard deviation, is modified by using the Cornish-

Fisher expansion (Cornish & Fisher, 1937) to get the MSR. Cornish-Fisher expansion 

transformation helps transform a standard Gaussian random variable 𝑧∝ into a non-

Gaussian 𝑧𝑐𝑓 random variable as follows: 

𝑧∝  ≈ 𝑁(0,1)          𝐸(𝑧∝) = 0          𝐸(𝑧∝
2 ) = 1          𝐸(𝑧∝

3 ) =  0           𝐸(𝑧∝
4) =   3  

𝑧𝑐𝑓  ≈  𝑧∝  +  (𝑧∝
2  − 1)

𝑆

6
  +  (𝑧∝

3  − 3𝑧∝)
𝐾

24
  −  (2𝑧∝

3  −   5𝑧∝)
𝑆2

36
 

 where sample skew is given by:     S = 
𝑛

(𝑛−1)(𝑛−2)
 ∑ (

𝑥𝑖− 𝑥̅

𝑠
)

3
𝑛
𝑖= 1     

and sample excess kurtosis by:        K = [
𝑛(𝑛+1)

(𝑛−1)(𝑛−2)(𝑛−3)
 ∑ (

𝑥𝑖− 𝑥̅

𝑠
)

4
𝑛
𝑖= 1 ] − 

3(𝑛−1)2

(𝑛−2)(𝑛−3)
  . 

The portfolio Modified VaR is then given by  MVaRc = MVaR1–α = µ − 𝑧𝑐𝑓 𝜎𝑝 
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and Modified Sharpe Ratio is given by  MSR =    
𝑅𝑃−𝑅𝐹

MVaR1–α

 

where 𝑅𝑃 is the annualized return and 𝑅𝐹 is the annualized risk-free rate computed 

using T-bill as a proxy. 

The above expression for Modified VaR MVaR1–α represents a more accurate 

estimate of VaR at a c% confidence level, where c = 100(1 – α), µ = mean of the portfolio 

returns, and 𝑧∝ = critical value from the normal distribution for the specific confidence 

interval.   

A limitation of the Modified VaR relates to higher confidence intervals (e.g. 99%) 

leading further into the left tail of the distribution and to inaccurate results. Another 

limitation is unreliability of MVaR in case of highly skewed and fat-tailed returns or 

P&L distributions. 

5.7 Expected Shortfall (Expected Tail Risk, T-VaR) 

In addition to the non-normality and non-linearity related limitations of 

traditional VaR methodologies, VaR has additional limitation of not being a coherent risk 

measure (Artzner et al., 1999). A risk measure R (such as VaR) that is a coherent risk 

measure should satisfy all four following axioms for a random loss L. 

 Subadditivity (diversification) 𝑅 (𝐿1 + 𝐿2) ≤  𝑅 (𝐿1)  +  𝑅(𝐿2) 

o Risk of portfolio of two assets should not be greater than the sum of risk of 

individual assets 

 Positive homogeneity (scaling) 𝑅 (𝜆𝐿) = 𝜆𝑅(𝐿), for every 𝜆 > 0 

o Increasing size of portfolio by 𝜆-times should increase risk by a multiple of 

𝜆 𝑐𝑒𝑡𝑒𝑟𝑖𝑠 𝑝𝑎𝑟𝑖𝑏𝑢𝑠 

 Monotonicity 𝑅 (𝐿1) < 𝑅(𝐿2) if 𝐿1 < 𝐿2 

o Higher risk is associated with higher loss and lesser risk with lesser loss, 

i.e., more +ve returns 

 Transition property 𝑅 (𝐿 + 𝑎) < 𝑅 (𝐿) − 𝑎 

o Adding cash or risk-free asset of value a should reduce risk by an 

equivalent amount a. 

As VaR doesn’t satisfy the first axiom of subadditivity, an alternative measure 

called Expected Shortfall was developed (Tasche, 2002). Expected Shortfall (ES) also 
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known as Expected Tail Risk, Tail VaR (T-VaR for short), and, Conditional VaR is the 

average of all the losses greater than (conditionally to going beyond VaR) VaR specified 

with the same confidence interval that VaR was estimated  (J.P. Morgan, 2008). For 

example, if VaR is calculated at a 99% confidence level, ES averages the worst 1% losses. 

As the conditional expectation of loss conditional on its value exceeding VaR, ES is a 

coherent measure as it is subadditive unlike VaR.  ES represents expected value 

(average) of the severity of losses beyond the VaR confidence threshold as these losses 

are important to regulators. A risk manager strictly relying upon VaR as the only risk 

measure may avoid losses within the confidence level while increasing the losses 

beyond the VaR level which are more severe and thus require the regulators or deposit 

insurers to backstop such losses. In addition, ES mitigates the disadvantages of VaR that 

result from the choice of a single confidence level and its impact on risk management 

decisions particularly as they relate to extreme events.  

Mathematically, ES as the conditional expectation of loss conditional on its value 

exceeding VaRc is described as: 𝐸𝑆1−𝛼 = 𝐸[𝐿|𝐿 > 𝑉𝑎𝑅1−𝛼 ] where 𝐸𝑆1−𝛼 is estimated ES 

at confidence level c for a loss distribution continuous in 𝛼. ES is the average loss in the 

distribution area beyond VaR in the extreme left-tail i.e. average of all VaRs from level 𝛼 

up to 1.   

𝐸𝑆𝛼 ≡  
1

1 −  𝛼
 ∫ 𝑉𝑎𝑅𝑐

1

𝛼

(𝐿)𝑑𝑐 

where, L = a random loss with distribution function FL, ∝ 𝜖 (0, 1) = confidence level 

close to 1. 

It is important to recognize that ES gives only ‘Expected’ value that is the 

average value of risk in the left tail if the related VaR confidence level is exceeded. 

Hence, even though ES is a more conservative estimate than VaR, it is only the average 

or ‘expected’ loss in the left tail beyond VaR 𝛼. The actual loss (and related risk), 

however, could be more extreme than the average of the left tail risk. Hence, ES does 

not provide any information about the severity of loss by which VaR is exceeded. For 

more precise tail risk analysis of extreme events, Extreme Value Theory techniques 

(Embrechts et al., 1999; Gumbel, 2004; Pickands III, 1975) such as Block Maxima and 

Peaks over Threshold represent more sophisticated techniques but (just as in case of 

Bayesian inference) computationally and mathematically demanding alternatives which 
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are often constrained by lack of adequate representative data for extreme events in case 

of hedge fund distributions thus leading to broad confidence intervals and weak 

significance estimates. 

5.8 Bayesian VaRs beyond ‘Bayesian vs. VaR’ Dichotomy 

Expected Shortfall overcomes classical problems of risk modeling associated 

with VaR while offering parsimony and transparency for lesser complexity and 

computational requirements. However, it must be reiterated that VaR and Bayesian 

modeling cannot be considered a dichotomy. Just like other statistical inference 

techniques available in both frequentist null hypothesis significance testing (NHST) and 

Bayesian statistical inference methodologies, VaR modeling continues to be used with 

both methodologies. For instance, the quasi-Bayesian and Bayesian versions of VaR 

have been referenced and applied in Banking & Finance practice since the years 

preceding the Global Financial Crisis (Hull & White, 1998; Venkataraman, 1997; 

Zangari, 1996). That being said, it is important to observe that both statistical inference 

paradigms, NHST as well as Bayesian, are moving away from point-estimates toward 

range based-estimates.  

In Bayesian VaR approaches, point estimates for parameters are substituted by 

distributions of parameters reflecting prior knowledge about the various parameter 

values with posterior distribution of parameters used for further analysis (Aussenegg & 

Miazhynskaia, 2006; Hoogerheide & van Dijk, 2008).  Hence, there are both non-

parametric modeling methods such as historical simulation (discussed earlier), and 

adjusted historical simulation and parametric modeling methods such as Bayesian, 

quasi-maximum likelihood (QML) and bootstrap methods for various types of GARCH 

modeling and analysis. Increasing interest in sophisticated Bayesian VaR models and 

extensions is evident in research literatures (Aussenegg & Miazhynskaia, 2006; Casarin 

et al., 2013; Danielsson et al., 2014; Hoogerheide & van Dijk, 2008; Meucci, 2009; 

Miazhynskaia et al., 2003; Osiewalski & Pajor, 2010). 

5.9 Data and Empirical Research Design 

Empirical focus was on quantitative risk modeling of a half-trillion dollar fund-

of-funds asset portfolio for a top Wall Street investment bank. Monthly returns over a 

21-year period from January 1991 until December 2011 for 12 different asset classes 
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comprising the portfolio were modeled in addition to market benchmark S&P 500 index 

(SPY). The specific (symbol:) asset classes included: (i) RIY: Developed Large Equity 

(proxy: Russell Developed Large Cap Index), (ii) RTY: Developed Small Equity (proxy: 

Russell Developed Small Cap Index), (iii) MXEF: Emerging Market Equity (proxy: MSCI 

Emerging Markets Index), (iv) LPX50TR: Listed Private Equity (proxy: LPX50 Listed 

Private Equity Index), (v) DJUBS: Various Commodities (proxy: DJ-UBS Commodity 

Index), (vi) USTW$: Major Currencies (proxy: Trade Weighted US Dollar Index: Major 

Currencies), (vii) HFRIEDI: Event Driven Hedge Fund (proxy: HFRI Event - Driven 

Index), (viii) HFRIEHI: Equity Hedge Fund (proxy: HFRI Equity Hedge (Total) Index), 

(ix) HFRIMAI: Merger Arbitrage Hedge Fund (proxy: HFRI ED: Merger Arbitrage 

Index), (x) HFRIMI: Macro Strategy Hedge Fund (proxy: HFRI Macro (Total) Index), (xi) 

HFRIRVA: Relative Value Hedge Fund (proxy: HFRI Relative Value (Total) Index), (xii) 

HFRIFOF: Fund of Funds Hedge Fund (proxy: HFRI Fund of Funds Index). All 

portfolio values, indexes, and returns were measured in US-Dollars (USD).  

As noted, the key problem of model risk in any risk model such as VaR results 

from the fact that risk cannot be measured, but must be estimated using a statistical 

model (Danielsson et al., 2014) . In other words, model risk occurs because a statistical 

model is used for estimation of risk: use of a model in itself entails model risk (Derman, 

1996; Morini, 2011). Consistent with industry practice guidelines, we used a range of 

different plausible risk models used in hedge fund risk modeling and analysis practice 

which can be robustly discriminated between, so that the disagreement between their 

range of readings could help us succinctly assess model risk (Danielsson et al., 2014). 

Given our focus of quantitative risk modeling on fund-of-funds multi-asset portfolio 

construction and optimization, we applied standard practices used in the industry for 

risk modeling of hedge funds and funds-of-funds. 

Statistical analysis of the various asset classes included basic performance plots 

such as Value-Added Monthly Index (VAMI) and Histograms; Probability Distributions 

and Probability Distribution Functions;  Normality Tests including Distribution, 

Normal Q-Q Plot, and Jarque-Bera Normality Test; First Four Moment of Distributions 

with Skewness and Excess Kurtosis analyzed using both Distributions and Numeric 

Representations; Regression Plots for finding relationship between each fund asset class 

and the benchmark market index. 
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We used Risk-Adjusted Return Metrics applied in standard hedge fund risk 

modeling practice. These included risk models for Tracking Error, M1/M2 ratio of 

annualized first and second moments of distributions, Sharpe Ratio, Modified Sharpe 

Ratio, Sortino Ratio,  Drawdown Ratio, Information Ratio, M-Squared Metric, Treynor 

Ratio, and, Jensen’s Alpha. Those new to standard hedge fund risk modeling practice 

will find the industry specific interpretations and application details in Appendix 5-2 

Hedge Fund Industry Risk-Adjusted Return Metrics relevant.  

We used VAMI for tracking the comparative performance of different funds 

within the fund-of-funds. VAMI is an index of fund performance of a hypothetical $100 

or $1000 investment in the specific asset class based on reinvestment of periodic returns. 

The focus of VAMI is on comparative assessment of risk in terms of draw-down, worst 

monthly draw-down, worst peak-to-valley-drawdown across different funds and fund 

managers (National Futures Association, 2013). Details about use of VAMI for risk 

assessment of funds are available in Appendix 5-3 Value Added Monthly Index (VAMI) 

Method. 

VaR modeling for portfolio construction and portfolio optimization was done 

using Historical Simulation, Parametric Method, and Monte Carlo Simulation. Modified 

VaR was done using Modified Sharpe Ratio. Expected Shortfall was modeled to 

overcome the known limitations of VaR as a coherent risk measure. In addition to 

stressing of return to risk ratios for the various asset classes by modifying the 

assumptions, the portfolio was also stress tested using sensitivity analysis tests 

including use of equal weights for all asset classes, minimizing variance, maximizing 

return, and targeting a specific return. Portfolio modeling with the Returns Maximizing 

portfolio was examined for volatility and chosen for further advanced analysis using 

VaR, CVAR, ARCH/GARCH, and EVT. 

5.10 Empirical Results 

In this section, we discuss the main findings of market risk modeling of a half-

trillion dollar fund-of-funds asset portfolio for a top Wall Street investment bank, 21-

year monthly returns of 12 different asset classes. The two tracking error measures, 

quadratic standard deviation (SD) and linear mean absolute deviations (MAD), for each 

asset class are shown in Table 5-1. HFRIMAI tracks the S&P index most closely, whereas 

MXEF tracks S&P index least closely.  
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Table 5-1. Tracking Errors Relative to S&P Index for Various Asset Classes 

 
 

Basic performance plots shown in Table 5-2 for each asset include historical 

performance in terms of Returns (RoR%); VAMI; and, histogram of monthly returns.  

Table 5-2. Performance Plots: Returns, VAMI, Histogram for Asset Classes 

 

RIY RTY MXEF LPX50TR DJUBS USTW$ HFRIEDI HFRIEHI HFRIMAI HFRIMI HFRIRVA HFRIFOF
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Table 5-2. Performance Plots: Returns, VAMI, Histogram for Asset Classes 
(contd.) 
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Table 5-2. (contd.) Performance Plots: Returns, VAMI, Histogram for Asset 
Classes 

 

Relative performance of VAMI for the hedge fund asset classes is clearly evident 

in Tables 5-1 and 5-2, and, Fig 5-1 which shows their comparison over the years.   

 
Fig. 5-1: VAMI Values for All Asset Classes in the Multi-Asset Portfolio: 

HFRIEDI and HFRIEHI are Shown as Solid Yellow Line and Red Line on Top 

 

The ROR% charts show that while returns volatility of RIY, RTY, DJUBS, is 

comparable to the SPY benchmark; MXEF has more downside risk; LPX50TR has more 

upside return as well as downside risk; the currencies index USTW$ as well as all the 
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six hedge fund indexes HFRIEDI, HFRIEHI, HFRIMAI, HFRIMI, HFRIRVA, HFRIFOF 

have lower upside return as well as downside risk relative to the benchmark. Relative 

indicates that the effect of hedges for the various hedge funds is realized consistent with 

hedging expectations. VAMI plots for various asset classes show different risk-return 

behaviors relative to the market index. VAMI for RIY tracks the market VAMI most 

consistently, whereas RTY VAMI lags the market VAMI for first half but tracks it more 

consistently for the second half. While USTW$ VAMI remains around the starting value 

for most of the duration, VAMI for MXEF and DJUBS that lag the market for the first 

two-thirds period, track the market closely over the last third. VAMI for all other asset 

classes show consistent outperformance of market VAMI with VAMI for two of the hedge fund 

asset classes, HFRIEHI Equity Hedge Fund and HFRIEDI Event Driven Hedge Fund 

demonstrating consistently higher highs and higher lows relative to all other asset classes.  

Table 5-3 shows the comparison of the empirical distributions of the benchmark 

return. Besides visual analysis of normality and respective Q-Q normality plots, 

normality of the distributions is also assessed using the Jarque-Barra Test that jointly 

checks for skewness and excess kurtosis. In addition to the above findings, Table 5-3 

also lists observed values of the first four moments of distribution for all asset class 

returns: mean, standard deviation (S.D.), skewness and excess kurtosis.  

Table 5-3. Normality Tests: Asset Returns: Distributions, QQ-Plots, Jarque-Bera 
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Table 5-3. Normality Tests: Asset Returns: Distributions, QQ-Plots, Jarque-Bera 
(contd.) 
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Table 5-3. Normality Tests: Asset Returns: Distributions, QQ-Plots, Jarque-Bera 
(contd.) 

 

 

 
Null hypothesis of normality is rejected for all the asset class return distributions. 

Highest mean value is 10.25 for the MXEF asset class (S.D. 23.94). Next highest mean 

values are 10.23 (S.D. 9.46) and 10.09 (S.D. 6.96) for HFRIEHI and HFRIEDI respectively. 

Based on per unit risk analysis for the three highest mean returns, highest mean return per unit 

risk is delivered by HFRIEDI and HFRIEHI in that order. The superiority of a portfolio that is 

composed of these two specific asset  is thus confirmed by most of the simple models that 

address third and fourth moments of statistical profit and loss distribution as well as more 

advanced models discussed later. 

The correlation matrix showing relative strength of variability of returns of the 

asset classes with respect to each other is shown in Table 5-4. All asset classes show 

relatively low correlations with the market index which is a characteristic feature of the hedge 

funds as active fund managers are compensated for beating the market. Each of the asset class 

returns was regressed against the benchmark and Adjusted R-Square for all regressions 
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was found to be insignificant or negligible. Even though less correlated with the market 

index, all asset class indices are strongly correlated with each other except for Currencies. 

Currencies (USTW$) show low to moderate negative correlation with all other asset 

classes.  

Table 5-4. Correlation Matrix of Asset Returns 

 

Interestingly, most other asset classes show moderate to strong positive correlations with 

each other.  In particular, three asset classes, HFRIEDI and HFRIEHI besides HFRIFOF, have 

correlations exceeding 50% with all other asset classes except for commodities with which they 

have correlations exceeding 40%. As the ‘most diversified’ portfolio is the market index 

portfolio, it is expected that the hedge funds will be least correlated with it given the 

very raison d'être of hedge funds is to beat the market by active investment 

management. Ergo, it is plausible that the above very high correlations of HFRIEDI 

(52% to 87%) and HFRIEHI (56% to 87%) besides HFRIFOF (62% to 87%) with most 

other asset classes relate to hedging characteristics (which as observed above are) 

uncorrelated with the market index. 

Mean-variance optimization was used to compute portfolio asset allocations for 

minimizing variance and for maximizing returns and compared with portfolio 

SP RIY RTY MXEF LPX50TR DJUBS USTW$ HFRIEDI HFRIEHI HFRIMAI HFRIMI HFRIRVA HFRIFOF

SP 1.000

RIY 0.099 1.000

RTY 0.103 0.835 1.000

MXEF 0.023 0.751 0.732 1.000

LPX50TR 0.130 0.730 0.745 0.679 1.000

DJUBS (0.033) 0.331 0.337 0.455 0.292 1.000

USTW$ (0.043) (0.251) (0.220) (0.320) (0.131) (0.309) 1.000

HFRIEDI 0.109 0.750 0.802 0.747 0.723 0.415 (0.273) 1.000

HFRIEHI 0.115 0.781 0.843 0.759 0.766 0.462 (0.244) 0.872 1.000

HFRIMAI 0.150 0.596 0.615 0.574 0.501 0.322 (0.143) 0.769 0.679 1.000

HFRIMI (0.063) 0.345 0.380 0.458 0.315 0.365 (0.106) 0.517 0.563 0.343 1.000

HFRIRVA 0.129 0.596 0.579 0.606 0.609 0.459 (0.295) 0.815 0.721 0.693 0.315 1.000

HFRIFOF 0.050 0.616 0.655 0.732 0.662 0.463 (0.190) 0.850 0.869 0.633 0.715 0.751 1.000

TABLE 4 Correlation Matrix
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containing equal weights for all asset classes. The covariance matrix created for 

portfolio mean-variance optimization is shown in Table 5-5.  

Table 5-5. Covariance Matrix of Asset Returns 

 

Tables 5-6 (a), (b), (c), and, (d) show the Mean-Variance Optimization Portfolios 

based upon the following criteria listed below. 

 

Table 5-6 (a) Equal Weights Portfolio 
Return 6.879%, Variance 0.071%, Sharpe Ratio 2.58 

 

SP RIY RTY MXEF LPX50TR DJUBS USTW$ HFRIEDI HFRIEHI HFRIMAI HFRIMI HFRIRVA HFRIFOF

SP 0.002043 0.000204 0.000272 7.2E-05 0.000419 -6.8E-05 -3.3E-05 9.88E-05 0.000142 7.18E-05 -5.5E-05 7.34E-05 3.94E-05

RIY 0.000204 0.002086 0.00223 0.002423 0.002378 0.000693 -0.00019 0.000687 0.000972 0.000288 0.000303 0.000343 0.000494

RTY 0.000272 0.00223 0.003419 0.003021 0.003109 0.000905 -0.00022 0.00094 0.001344 0.000381 0.000428 0.000426 0.000673

MXEF 7.2E-05 0.002423 0.003021 0.004983 0.003421 0.001473 -0.00038 0.001056 0.001461 0.000429 0.000623 0.000539 0.000907

LPX50TR 0.000419 0.002378 0.003109 0.003421 0.005093 0.000957 -0.00016 0.001034 0.001489 0.000379 0.000433 0.000547 0.000829

DJUBS -6.8E-05 0.000693 0.000905 0.001473 0.000957 0.002105 -0.00024 0.000381 0.000578 0.000157 0.000323 0.000265 0.000373

USTW$ -3.3E-05 -0.00019 -0.00022 -0.00038 -0.00016 -0.00024 0.000288 -9.3E-05 -0.00011 -2.6E-05 -3.5E-05 -6.3E-05 -5.7E-05

HFRIEDI 9.88E-05 0.000687 0.00094 0.001056 0.001034 0.000381 -9.3E-05 0.000402 0.000476 0.000163 0.000199 0.000206 0.000299

HFRIEHI 0.000142 0.000972 0.001344 0.001461 0.001489 0.000578 -0.00011 0.000476 0.000743 0.000112 7E-05 9.24E-05 0.000118

HFRIMAI 7.18E-05 0.000288 0.000381 0.000429 0.000379 0.000157 -2.6E-05 0.000163 0.000196 0.000112 7E-05 9.24E-05 0.000118

HFRIMI -5.5E-05 0.000303 0.000428 0.000623 0.000433 0.000323 -3.5E-05 0.000199 0.000295 7E-05 0.000371 7.64E-05 0.000242

HFRIRVA 7.34E-05 0.000343 0.000426 0.000539 0.000547 0.000265 -6.3E-05 0.000206 0.000247 9.24E-05 7.64E-05 0.000159 0.000166

HFRIFOF 3.94E-05 0.000494 0.000673 0.000907 0.000829 0.000373 -5.7E-05 0.000299 0.000416 0.000118 0.000242 0.000166 0.000308

TABLE 5  Covariance Matrix (Σ)

Optimization Portfolios based upon Equal Weights

Optimization Portfolios based upon Minimizing Variance

Optimization Portfolios based upon Targeted Return 10% 

Optimization Portfolios based upon Maximizing Return

TABLE 6 Mean Variance Portfolio Optimization

Fund Return (%) Fund Weight Limit

SP 6.83% SP 0.000 0.000

RIY 6.94% RIY 0.083 0.500

RTY 7.95% RTY 0.083 0.500

MXEF 6.06% MXEF 0.083 0.500

LPX50TR 8.36% LPX50TR 0.083 0.500

DJUBS 4.04% DJUBS 0.083 0.500

USTW$ -1.07% USTW$ 0.083 0.500

HFRIEDI 10.09% HFRIEDI 0.083 0.500

HFRIEHI 10.23% HFRIEHI 0.083 0.500

HFRIMAI 8.05% HFRIMAI 0.083 0.500

HFRIMI 8.40% HFRIMI 0.083 0.500

HFRIRVA 8.15% HFRIRVA 0.083 0.500

HFRIFOF 5.33% HFRIFOF 0.083 0.500
1.00

6.879% 6.879% Maximize Target Variance (%) 0.071% Minimize

Sharpe Ratio 2.58 Assuming Rf = 0

Portfolio Return (%)

Return Matrix (R ) Weight Matrix (W )

Target Return (%)

0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 

RIY RTY MXEF LPX50TR DJUBS USTW$ HFRIEDI HFRIEHI HFRIMAI HFRIMI HFRIRVA HFRIFOF

Weight

Fund

Fund Return (%) Fund Weight Limit

SP 6.83% SP 0.000 0.000

RIY 6.94% RIY 0.000 0.500

RTY 7.95% RTY 0.000 0.500

MXEF 6.06% MXEF 0.000 0.500

LPX50TR 8.36% LPX50TR 0.000 0.500

DJUBS 4.04% DJUBS 0.000 0.500

USTW$ -1.07% USTW$ 0.310 0.500

HFRIEDI 10.09% HFRIEDI 0.000 0.500

HFRIEHI 10.23% HFRIEHI 0.000 0.500

HFRIMAI 8.05% HFRIMAI 0.346 0.500

HFRIMI 8.40% HFRIMI 0.072 0.500

HFRIRVA 8.15% HFRIRVA 0.272 0.500

HFRIFOF 5.33% HFRIFOF 0.000 0.500
1.00

5.273% 5.273% Maximize Target Variance (%) 0.006% Minimize

Sharpe Ratio 6.75 Assuming Rf = 0

Portfolio Return (%)

Return Matrix (R ) Weight Matrix (W )

Target Return (%)

0.000 0.000 0.000 0.000 0.000 

0.310 

0.000 0.000 

0.346 

0.072 

0.272 

0.000 

RIY RTY MXEF LPX50TR DJUBS USTW$ HFRIEDI HFRIEHI HFRIMAI HFRIMI HFRIRVA HFRIFOF

Weight

Fund

Fund Return (%) Fund Weight Limit

SP 6.83% SP 0.000 0.000

RIY 6.94% RIY 0.000 0.500

RTY 7.95% RTY 0.000 0.500

MXEF 6.06% MXEF 0.000 0.500

LPX50TR 8.36% LPX50TR 0.000 0.500

DJUBS 4.04% DJUBS 0.000 0.500

USTW$ -1.07% USTW$ 0.000 0.500

HFRIEDI 10.09% HFRIEDI 0.500 0.500

HFRIEHI 10.23% HFRIEHI 0.425 0.500

HFRIMAI 8.05% HFRIMAI 0.065 0.500

HFRIMI 8.40% HFRIMI 0.000 0.500

HFRIRVA 8.15% HFRIRVA 0.010 0.500

HFRIFOF 5.33% HFRIFOF 0.000 0.500
1.00

10.000% 10.000% Optimize Target Variance (%) 0.046% Minimize

Sharpe Ratio 4.66 Assuming Rf = 0

Portfolio Return (%)

Return Matrix (R ) Weight Matrix (W )

Target Return (%)

0.000 0.000 0.000 0.000 0.000 0.000 

0.500 

0.425 

0.065 0.000 0.010 0.000 

RIY RTY MXEF LPX50TR DJUBS USTW$ HFRIEDI HFRIEHI HFRIMAI HFRIMI HFRIRVA HFRIFOF

Weight

Fund

Fund Return (%) Fund Weight Limit

SP 6.83% SP 0.000 0.000

RIY 6.94% RIY 0.000 0.500

RTY 7.95% RTY 0.000 0.500

MXEF 6.06% MXEF 0.000 0.500

LPX50TR 8.36% LPX50TR 0.000 0.500

DJUBS 4.04% DJUBS 0.000 0.500

USTW$ -1.07% USTW$ 0.000 0.500

HFRIEDI 10.09% HFRIEDI 0.500 0.500

HFRIEHI 10.23% HFRIEHI 0.500 0.500

HFRIMAI 8.05% HFRIMAI 0.000 0.500

HFRIMI 8.40% HFRIMI 0.000 0.500

HFRIRVA 8.15% HFRIRVA 0.000 0.500

HFRIFOF 5.33% HFRIFOF 0.000 0.500
1.00

10.161% 10.161% Optimize Target Variance (%) 0.052% Minimize

Sharpe Ratio 4.44 Assuming Rf = 0

Portfolio Return (%)

Return Matrix (R ) Weight Matrix (W )

Target Return (%)

0.000 0.000 0.000 0.000 0.000 0.000 

0.500 0.500 

0.000 0.000 0.000 0.000 

RIY RTY MXEF LPX50TR DJUBS USTW$ HFRIEDI HFRIEHI HFRIMAI HFRIMI HFRIRVA HFRIFOF

Weight

Fund
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Table 5-6 (b) Minimizing Variance Portfolio 
Return 5.273%, Variance 0.006%, Sharpe Ratio 6.75 

31% USTW$, 34.6% HFRIMAI, 7.2% HFRIMI, and 27.2% HFRIRVA 

 
Table 5-6 (c) Maximizing Return Portfolio 

Return 10.161%, Variance 0.052%, Sharpe Ratio 4.44 
50% HFRIEDI and 50% HFRIEHI 

 

Optimization Portfolios based upon Equal Weights

Optimization Portfolios based upon Minimizing Variance

Optimization Portfolios based upon Targeted Return 10% 

Optimization Portfolios based upon Maximizing Return

TABLE 6 Mean Variance Portfolio Optimization

Fund Return (%) Fund Weight Limit

SP 6.83% SP 0.000 0.000

RIY 6.94% RIY 0.083 0.500

RTY 7.95% RTY 0.083 0.500

MXEF 6.06% MXEF 0.083 0.500

LPX50TR 8.36% LPX50TR 0.083 0.500

DJUBS 4.04% DJUBS 0.083 0.500

USTW$ -1.07% USTW$ 0.083 0.500

HFRIEDI 10.09% HFRIEDI 0.083 0.500

HFRIEHI 10.23% HFRIEHI 0.083 0.500

HFRIMAI 8.05% HFRIMAI 0.083 0.500

HFRIMI 8.40% HFRIMI 0.083 0.500

HFRIRVA 8.15% HFRIRVA 0.083 0.500

HFRIFOF 5.33% HFRIFOF 0.083 0.500
1.00

6.879% 6.879% Maximize Target Variance (%) 0.071% Minimize

Sharpe Ratio 2.58 Assuming Rf = 0

Portfolio Return (%)

Return Matrix (R ) Weight Matrix (W )

Target Return (%)

0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 

RIY RTY MXEF LPX50TR DJUBS USTW$ HFRIEDI HFRIEHI HFRIMAI HFRIMI HFRIRVA HFRIFOF

Weight

Fund

Fund Return (%) Fund Weight Limit

SP 6.83% SP 0.000 0.000

RIY 6.94% RIY 0.000 0.500

RTY 7.95% RTY 0.000 0.500

MXEF 6.06% MXEF 0.000 0.500

LPX50TR 8.36% LPX50TR 0.000 0.500

DJUBS 4.04% DJUBS 0.000 0.500

USTW$ -1.07% USTW$ 0.310 0.500

HFRIEDI 10.09% HFRIEDI 0.000 0.500

HFRIEHI 10.23% HFRIEHI 0.000 0.500

HFRIMAI 8.05% HFRIMAI 0.346 0.500

HFRIMI 8.40% HFRIMI 0.072 0.500

HFRIRVA 8.15% HFRIRVA 0.272 0.500

HFRIFOF 5.33% HFRIFOF 0.000 0.500
1.00

5.273% 5.273% Maximize Target Variance (%) 0.006% Minimize

Sharpe Ratio 6.75 Assuming Rf = 0

Portfolio Return (%)

Return Matrix (R ) Weight Matrix (W )

Target Return (%)

0.000 0.000 0.000 0.000 0.000 

0.310 

0.000 0.000 

0.346 

0.072 

0.272 

0.000 

RIY RTY MXEF LPX50TR DJUBS USTW$ HFRIEDI HFRIEHI HFRIMAI HFRIMI HFRIRVA HFRIFOF

Weight

Fund

Fund Return (%) Fund Weight Limit

SP 6.83% SP 0.000 0.000

RIY 6.94% RIY 0.000 0.500

RTY 7.95% RTY 0.000 0.500

MXEF 6.06% MXEF 0.000 0.500

LPX50TR 8.36% LPX50TR 0.000 0.500

DJUBS 4.04% DJUBS 0.000 0.500

USTW$ -1.07% USTW$ 0.000 0.500

HFRIEDI 10.09% HFRIEDI 0.500 0.500

HFRIEHI 10.23% HFRIEHI 0.425 0.500

HFRIMAI 8.05% HFRIMAI 0.065 0.500

HFRIMI 8.40% HFRIMI 0.000 0.500

HFRIRVA 8.15% HFRIRVA 0.010 0.500

HFRIFOF 5.33% HFRIFOF 0.000 0.500
1.00

10.000% 10.000% Optimize Target Variance (%) 0.046% Minimize

Sharpe Ratio 4.66 Assuming Rf = 0

Portfolio Return (%)

Return Matrix (R ) Weight Matrix (W )

Target Return (%)

0.000 0.000 0.000 0.000 0.000 0.000 

0.500 

0.425 

0.065 0.000 0.010 0.000 

RIY RTY MXEF LPX50TR DJUBS USTW$ HFRIEDI HFRIEHI HFRIMAI HFRIMI HFRIRVA HFRIFOF

Weight

Fund

Fund Return (%) Fund Weight Limit

SP 6.83% SP 0.000 0.000

RIY 6.94% RIY 0.000 0.500

RTY 7.95% RTY 0.000 0.500

MXEF 6.06% MXEF 0.000 0.500

LPX50TR 8.36% LPX50TR 0.000 0.500

DJUBS 4.04% DJUBS 0.000 0.500

USTW$ -1.07% USTW$ 0.000 0.500

HFRIEDI 10.09% HFRIEDI 0.500 0.500

HFRIEHI 10.23% HFRIEHI 0.500 0.500

HFRIMAI 8.05% HFRIMAI 0.000 0.500

HFRIMI 8.40% HFRIMI 0.000 0.500

HFRIRVA 8.15% HFRIRVA 0.000 0.500

HFRIFOF 5.33% HFRIFOF 0.000 0.500
1.00

10.161% 10.161% Optimize Target Variance (%) 0.052% Minimize

Sharpe Ratio 4.44 Assuming Rf = 0

Portfolio Return (%)

Return Matrix (R ) Weight Matrix (W )

Target Return (%)

0.000 0.000 0.000 0.000 0.000 0.000 

0.500 0.500 

0.000 0.000 0.000 0.000 

RIY RTY MXEF LPX50TR DJUBS USTW$ HFRIEDI HFRIEHI HFRIMAI HFRIMI HFRIRVA HFRIFOF

Weight

Fund

Optimization Portfolios based upon Equal Weights

Optimization Portfolios based upon Minimizing Variance

Optimization Portfolios based upon Targeted Return 10% 

Optimization Portfolios based upon Maximizing Return

TABLE 6 Mean Variance Portfolio Optimization

Fund Return (%) Fund Weight Limit

SP 6.83% SP 0.000 0.000

RIY 6.94% RIY 0.083 0.500

RTY 7.95% RTY 0.083 0.500

MXEF 6.06% MXEF 0.083 0.500

LPX50TR 8.36% LPX50TR 0.083 0.500

DJUBS 4.04% DJUBS 0.083 0.500

USTW$ -1.07% USTW$ 0.083 0.500

HFRIEDI 10.09% HFRIEDI 0.083 0.500

HFRIEHI 10.23% HFRIEHI 0.083 0.500

HFRIMAI 8.05% HFRIMAI 0.083 0.500

HFRIMI 8.40% HFRIMI 0.083 0.500

HFRIRVA 8.15% HFRIRVA 0.083 0.500

HFRIFOF 5.33% HFRIFOF 0.083 0.500
1.00

6.879% 6.879% Maximize Target Variance (%) 0.071% Minimize

Sharpe Ratio 2.58 Assuming Rf = 0

Portfolio Return (%)

Return Matrix (R ) Weight Matrix (W )

Target Return (%)

0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 

RIY RTY MXEF LPX50TR DJUBS USTW$ HFRIEDI HFRIEHI HFRIMAI HFRIMI HFRIRVA HFRIFOF

Weight

Fund

Fund Return (%) Fund Weight Limit

SP 6.83% SP 0.000 0.000

RIY 6.94% RIY 0.000 0.500

RTY 7.95% RTY 0.000 0.500

MXEF 6.06% MXEF 0.000 0.500

LPX50TR 8.36% LPX50TR 0.000 0.500

DJUBS 4.04% DJUBS 0.000 0.500

USTW$ -1.07% USTW$ 0.310 0.500

HFRIEDI 10.09% HFRIEDI 0.000 0.500

HFRIEHI 10.23% HFRIEHI 0.000 0.500

HFRIMAI 8.05% HFRIMAI 0.346 0.500

HFRIMI 8.40% HFRIMI 0.072 0.500

HFRIRVA 8.15% HFRIRVA 0.272 0.500

HFRIFOF 5.33% HFRIFOF 0.000 0.500
1.00

5.273% 5.273% Maximize Target Variance (%) 0.006% Minimize

Sharpe Ratio 6.75 Assuming Rf = 0

Portfolio Return (%)

Return Matrix (R ) Weight Matrix (W )

Target Return (%)

0.000 0.000 0.000 0.000 0.000 

0.310 

0.000 0.000 

0.346 

0.072 

0.272 

0.000 

RIY RTY MXEF LPX50TR DJUBS USTW$ HFRIEDI HFRIEHI HFRIMAI HFRIMI HFRIRVA HFRIFOF

Weight

Fund

Fund Return (%) Fund Weight Limit

SP 6.83% SP 0.000 0.000

RIY 6.94% RIY 0.000 0.500

RTY 7.95% RTY 0.000 0.500

MXEF 6.06% MXEF 0.000 0.500

LPX50TR 8.36% LPX50TR 0.000 0.500

DJUBS 4.04% DJUBS 0.000 0.500

USTW$ -1.07% USTW$ 0.000 0.500

HFRIEDI 10.09% HFRIEDI 0.500 0.500

HFRIEHI 10.23% HFRIEHI 0.425 0.500

HFRIMAI 8.05% HFRIMAI 0.065 0.500

HFRIMI 8.40% HFRIMI 0.000 0.500

HFRIRVA 8.15% HFRIRVA 0.010 0.500

HFRIFOF 5.33% HFRIFOF 0.000 0.500
1.00

10.000% 10.000% Optimize Target Variance (%) 0.046% Minimize

Sharpe Ratio 4.66 Assuming Rf = 0

Portfolio Return (%)

Return Matrix (R ) Weight Matrix (W )

Target Return (%)

0.000 0.000 0.000 0.000 0.000 0.000 

0.500 

0.425 

0.065 0.000 0.010 0.000 

RIY RTY MXEF LPX50TR DJUBS USTW$ HFRIEDI HFRIEHI HFRIMAI HFRIMI HFRIRVA HFRIFOF

Weight

Fund

Fund Return (%) Fund Weight Limit

SP 6.83% SP 0.000 0.000

RIY 6.94% RIY 0.000 0.500

RTY 7.95% RTY 0.000 0.500

MXEF 6.06% MXEF 0.000 0.500

LPX50TR 8.36% LPX50TR 0.000 0.500

DJUBS 4.04% DJUBS 0.000 0.500

USTW$ -1.07% USTW$ 0.000 0.500

HFRIEDI 10.09% HFRIEDI 0.500 0.500

HFRIEHI 10.23% HFRIEHI 0.500 0.500

HFRIMAI 8.05% HFRIMAI 0.000 0.500

HFRIMI 8.40% HFRIMI 0.000 0.500

HFRIRVA 8.15% HFRIRVA 0.000 0.500

HFRIFOF 5.33% HFRIFOF 0.000 0.500
1.00

10.161% 10.161% Optimize Target Variance (%) 0.052% Minimize

Sharpe Ratio 4.44 Assuming Rf = 0

Portfolio Return (%)

Return Matrix (R ) Weight Matrix (W )

Target Return (%)

0.000 0.000 0.000 0.000 0.000 0.000 

0.500 0.500 

0.000 0.000 0.000 0.000 

RIY RTY MXEF LPX50TR DJUBS USTW$ HFRIEDI HFRIEHI HFRIMAI HFRIMI HFRIRVA HFRIFOF

Weight

Fund
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Table 5-6 (d) Targeted Return 10% 
Return 10.000%, Variance 0.046%, Sharpe Ratio 4.66 

Portfolio of 50% HFRIEDI, 42.50% HFRIEHI and 6.5% HFRIMAI 

 

Another portfolio o9f Maximizing Return While Minimizing Variance Portfolio yielded 

with (Return 7.305%, Variance 0.008%, Sharpe Ratio 8.00) including the following asset 

classes: 9% USTW$, 50% HFRIMAI, 12% HFRIMI, and 29% HFRIRVA. As return is 

maximized at the cost of increasing variance, Sharpe ratio is penalized accordingly. 

Risk-adjusted return measures for all asset classes including M1/M2, Sharpe Ratio, 

MSR, Sortino Ratio, DD Ratio, Information Ratio, M-Squared Ratio, Treynor Ratio, and 

Jensen Ratio are shown in Tables 5-7 (a), (b), and (c).  
 

 

 

 

 

 

 

 

 

 

 

 

Optimization Portfolios based upon Equal Weights

Optimization Portfolios based upon Minimizing Variance

Optimization Portfolios based upon Targeted Return 10% 

Optimization Portfolios based upon Maximizing Return

TABLE 6 Mean Variance Portfolio Optimization

Fund Return (%) Fund Weight Limit

SP 6.83% SP 0.000 0.000

RIY 6.94% RIY 0.083 0.500

RTY 7.95% RTY 0.083 0.500

MXEF 6.06% MXEF 0.083 0.500

LPX50TR 8.36% LPX50TR 0.083 0.500

DJUBS 4.04% DJUBS 0.083 0.500

USTW$ -1.07% USTW$ 0.083 0.500

HFRIEDI 10.09% HFRIEDI 0.083 0.500

HFRIEHI 10.23% HFRIEHI 0.083 0.500

HFRIMAI 8.05% HFRIMAI 0.083 0.500

HFRIMI 8.40% HFRIMI 0.083 0.500

HFRIRVA 8.15% HFRIRVA 0.083 0.500

HFRIFOF 5.33% HFRIFOF 0.083 0.500
1.00

6.879% 6.879% Maximize Target Variance (%) 0.071% Minimize

Sharpe Ratio 2.58 Assuming Rf = 0

Portfolio Return (%)

Return Matrix (R ) Weight Matrix (W )

Target Return (%)

0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 

RIY RTY MXEF LPX50TR DJUBS USTW$ HFRIEDI HFRIEHI HFRIMAI HFRIMI HFRIRVA HFRIFOF

Weight

Fund

Fund Return (%) Fund Weight Limit

SP 6.83% SP 0.000 0.000

RIY 6.94% RIY 0.000 0.500

RTY 7.95% RTY 0.000 0.500

MXEF 6.06% MXEF 0.000 0.500

LPX50TR 8.36% LPX50TR 0.000 0.500

DJUBS 4.04% DJUBS 0.000 0.500

USTW$ -1.07% USTW$ 0.310 0.500

HFRIEDI 10.09% HFRIEDI 0.000 0.500

HFRIEHI 10.23% HFRIEHI 0.000 0.500

HFRIMAI 8.05% HFRIMAI 0.346 0.500

HFRIMI 8.40% HFRIMI 0.072 0.500

HFRIRVA 8.15% HFRIRVA 0.272 0.500

HFRIFOF 5.33% HFRIFOF 0.000 0.500
1.00

5.273% 5.273% Maximize Target Variance (%) 0.006% Minimize

Sharpe Ratio 6.75 Assuming Rf = 0

Portfolio Return (%)

Return Matrix (R ) Weight Matrix (W )

Target Return (%)

0.000 0.000 0.000 0.000 0.000 

0.310 

0.000 0.000 

0.346 

0.072 

0.272 

0.000 

RIY RTY MXEF LPX50TR DJUBS USTW$ HFRIEDI HFRIEHI HFRIMAI HFRIMI HFRIRVA HFRIFOF

Weight

Fund

Fund Return (%) Fund Weight Limit

SP 6.83% SP 0.000 0.000

RIY 6.94% RIY 0.000 0.500

RTY 7.95% RTY 0.000 0.500

MXEF 6.06% MXEF 0.000 0.500

LPX50TR 8.36% LPX50TR 0.000 0.500

DJUBS 4.04% DJUBS 0.000 0.500

USTW$ -1.07% USTW$ 0.000 0.500

HFRIEDI 10.09% HFRIEDI 0.500 0.500

HFRIEHI 10.23% HFRIEHI 0.425 0.500

HFRIMAI 8.05% HFRIMAI 0.065 0.500

HFRIMI 8.40% HFRIMI 0.000 0.500

HFRIRVA 8.15% HFRIRVA 0.010 0.500

HFRIFOF 5.33% HFRIFOF 0.000 0.500
1.00

10.000% 10.000% Optimize Target Variance (%) 0.046% Minimize

Sharpe Ratio 4.66 Assuming Rf = 0

Portfolio Return (%)

Return Matrix (R ) Weight Matrix (W )

Target Return (%)

0.000 0.000 0.000 0.000 0.000 0.000 

0.500 

0.425 

0.065 0.000 0.010 0.000 

RIY RTY MXEF LPX50TR DJUBS USTW$ HFRIEDI HFRIEHI HFRIMAI HFRIMI HFRIRVA HFRIFOF

Weight

Fund

Fund Return (%) Fund Weight Limit

SP 6.83% SP 0.000 0.000

RIY 6.94% RIY 0.000 0.500

RTY 7.95% RTY 0.000 0.500

MXEF 6.06% MXEF 0.000 0.500

LPX50TR 8.36% LPX50TR 0.000 0.500

DJUBS 4.04% DJUBS 0.000 0.500

USTW$ -1.07% USTW$ 0.000 0.500

HFRIEDI 10.09% HFRIEDI 0.500 0.500

HFRIEHI 10.23% HFRIEHI 0.500 0.500

HFRIMAI 8.05% HFRIMAI 0.000 0.500

HFRIMI 8.40% HFRIMI 0.000 0.500

HFRIRVA 8.15% HFRIRVA 0.000 0.500

HFRIFOF 5.33% HFRIFOF 0.000 0.500
1.00

10.161% 10.161% Optimize Target Variance (%) 0.052% Minimize

Sharpe Ratio 4.44 Assuming Rf = 0

Portfolio Return (%)

Return Matrix (R ) Weight Matrix (W )

Target Return (%)

0.000 0.000 0.000 0.000 0.000 0.000 

0.500 0.500 

0.000 0.000 0.000 0.000 

RIY RTY MXEF LPX50TR DJUBS USTW$ HFRIEDI HFRIEHI HFRIMAI HFRIMI HFRIRVA HFRIFOF

Weight

Fund
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Table 5-7 (a) Risk-Adjusted Return Measures for All Asset Classes 

 
 

Table 5-7 (b) Ranked Risk-Adjusted Return Measures for All Asset Classes 

 
 

 

 

 

 

 

 

M1/M2 Sharpe MSR Sortino DD Ratio Information M squared Treynor Jensen 

SP 0.436 0.236 0.523 0.607 0.139 - - - -

RIY 0.439 0.241 0.538 0.624 0.145 0.063 0.640 38.157 3.400

RTY 0.393 0.238 0.516 0.700 0.129 0.554 0.597 36.284 4.233

MXEF 0.248 0.120 0.283 0.349 0.070 (0.321) (1.253) 83.123 2.870

LPX50TR 0.338 0.212 0.438 0.695 0.090 0.670 0.185 25.511 4.255

DJUBS 0.254 0.057 0.132 0.097 0.027 (1.474) (2.230) (27.320) 1.224

USTW$ (0.182) (0.714) (1.553) (1.147) (0.390) (5.590) (14.316) 260.688 (3.986)

HFRIEDI 1.454 1.003 2.183 1.922 0.501 2.386 12.580 144.022 6.833

HFRIEHI 1.083 0.752 1.401 1.723 0.349 2.354 8.642 101.927 6.852

HFRIMAI 2.194 1.341 2.814 1.506 0.603 0.943 17.865 140.008 4.860

HFRIMI 1.260 0.791 1.341 1.396 0.502 1.086 9.249 (195.247) 5.551

HFRIRVA 1.870 1.152 4.487 1.502 0.464 1.012 14.908 139.942 4.960

HFRIFOF 0.876 0.362 0.769 0.514 0.164 (1.089) 2.535 114.262 2.227

HFRIMAI 2.194 HFRIMAI 1.341 HFRIRVA 4.487 HFRIEDI 1.922 HFRIMAI 0.603

HFRIRVA 1.870 HFRIRVA 1.152 HFRIMAI 2.814 HFRIEHI 1.723 HFRIMI 0.502

HFRIEDI 1.454 HFRIEDI 1.003 HFRIEDI 2.183 HFRIMAI 1.506 HFRIEDI 0.501

HFRIMI 1.260 HFRIMI 0.791 HFRIEHI 1.401 HFRIRVA 1.502 HFRIRVA 0.464

HFRIEHI 1.083 HFRIEHI 0.752 HFRIMI 1.341 HFRIMI 1.396 HFRIEHI 0.349

HFRIFOF 0.876 HFRIFOF 0.362 HFRIFOF 0.769 RTY 0.700 HFRIFOF 0.164

RIY 0.439 RIY 0.241 RIY 0.538 LPX50TR 0.695 RIY 0.145

SP 0.436 RTY 0.238 SP 0.523 RIY 0.624 SP 0.139

RTY 0.393 SP 0.236 RTY 0.516 SP 0.607 RTY 0.129

LPX50TR 0.338 LPX50TR 0.212 LPX50TR 0.438 HFRIFOF 0.514 LPX50TR 0.090

DJUBS 0.254 MXEF 0.120 MXEF 0.283 MXEF 0.349 MXEF 0.070

MXEF 0.248 DJUBS 0.057 DJUBS 0.132 DJUBS 0.097 DJUBS 0.027

USTW$ (0.182) USTW$ (0.714) USTW$ (1.553) USTW$ (1.147) USTW$ (0.390)

HFRIMAI 1.341 HFRIEDI 2.386 HFRIMAI 17.865 HFRIEDI 144.022 HFRIEHI 6.852

HFRIRVA 1.152 HFRIEHI 2.354 HFRIRVA 14.908 HFRIMAI 140.008 HFRIEDI 6.833

HFRIEDI 1.003 HFRIMI 1.086 HFRIEDI 12.580 HFRIRVA 139.942 HFRIMI 5.551

HFRIMI 0.791 HFRIRVA 1.012 HFRIMI 9.249 HFRIFOF 114.262 HFRIRVA 4.960

HFRIEHI 0.752 HFRIMAI 0.943 HFRIEHI 8.642 HFRIEHI 101.927 HFRIMAI 4.860

HFRIFOF 0.362 LPX50TR 0.670 HFRIFOF 2.535 MXEF 83.123 LPX50TR 4.255

RIY 0.241 RTY 0.554 RIY 0.640 RIY 38.157 RTY 4.233

RTY 0.238 RIY 0.063 RTY 0.597 RTY 36.284 RIY 3.400

SP 0.236 SP 0.000 LPX50TR 0.185 LPX50TR 25.511 MXEF 2.870

LPX50TR 0.212 MXEF (0.321) SP 0.000 SP 0.000 HFRIFOF 2.227

MXEF 0.120 HFRIFOF (1.089) MXEF (1.253) DJUBS 0.000 DJUBS 1.224

DJUBS 0.057 DJUBS (1.474) DJUBS (2.230) USTW$ 0.000 SP 0.000

USTW$ (0.714) USTW$ (5.590) USTW$ (14.316) HFRIMI (195.247) USTW$ (3.986)

Sharpe Information M squared Treynor Jensen 

Ranked Results

TABLE 7 Risk Adjusted Return Measures

Ranked Results

M1/M2 Sharpe MSR Sortino DD Ratio

M1/M2 Sharpe MSR Sortino DD Ratio Information M squared Treynor Jensen 

SP 0.436 0.236 0.523 0.607 0.139 - - - -

RIY 0.439 0.241 0.538 0.624 0.145 0.063 0.640 38.157 3.400

RTY 0.393 0.238 0.516 0.700 0.129 0.554 0.597 36.284 4.233

MXEF 0.248 0.120 0.283 0.349 0.070 (0.321) (1.253) 83.123 2.870

LPX50TR 0.338 0.212 0.438 0.695 0.090 0.670 0.185 25.511 4.255

DJUBS 0.254 0.057 0.132 0.097 0.027 (1.474) (2.230) (27.320) 1.224

USTW$ (0.182) (0.714) (1.553) (1.147) (0.390) (5.590) (14.316) 260.688 (3.986)

HFRIEDI 1.454 1.003 2.183 1.922 0.501 2.386 12.580 144.022 6.833

HFRIEHI 1.083 0.752 1.401 1.723 0.349 2.354 8.642 101.927 6.852

HFRIMAI 2.194 1.341 2.814 1.506 0.603 0.943 17.865 140.008 4.860

HFRIMI 1.260 0.791 1.341 1.396 0.502 1.086 9.249 (195.247) 5.551

HFRIRVA 1.870 1.152 4.487 1.502 0.464 1.012 14.908 139.942 4.960

HFRIFOF 0.876 0.362 0.769 0.514 0.164 (1.089) 2.535 114.262 2.227

HFRIMAI 2.194 HFRIMAI 1.341 HFRIRVA 4.487 HFRIEDI 1.922 HFRIMAI 0.603

HFRIRVA 1.870 HFRIRVA 1.152 HFRIMAI 2.814 HFRIEHI 1.723 HFRIMI 0.502

HFRIEDI 1.454 HFRIEDI 1.003 HFRIEDI 2.183 HFRIMAI 1.506 HFRIEDI 0.501

HFRIMI 1.260 HFRIMI 0.791 HFRIEHI 1.401 HFRIRVA 1.502 HFRIRVA 0.464

HFRIEHI 1.083 HFRIEHI 0.752 HFRIMI 1.341 HFRIMI 1.396 HFRIEHI 0.349

HFRIFOF 0.876 HFRIFOF 0.362 HFRIFOF 0.769 RTY 0.700 HFRIFOF 0.164

RIY 0.439 RIY 0.241 RIY 0.538 LPX50TR 0.695 RIY 0.145

SP 0.436 RTY 0.238 SP 0.523 RIY 0.624 SP 0.139

RTY 0.393 SP 0.236 RTY 0.516 SP 0.607 RTY 0.129

LPX50TR 0.338 LPX50TR 0.212 LPX50TR 0.438 HFRIFOF 0.514 LPX50TR 0.090

DJUBS 0.254 MXEF 0.120 MXEF 0.283 MXEF 0.349 MXEF 0.070

MXEF 0.248 DJUBS 0.057 DJUBS 0.132 DJUBS 0.097 DJUBS 0.027

USTW$ (0.182) USTW$ (0.714) USTW$ (1.553) USTW$ (1.147) USTW$ (0.390)

HFRIMAI 1.341 HFRIEDI 2.386 HFRIMAI 17.865 HFRIEDI 144.022 HFRIEHI 6.852

HFRIRVA 1.152 HFRIEHI 2.354 HFRIRVA 14.908 HFRIMAI 140.008 HFRIEDI 6.833

HFRIEDI 1.003 HFRIMI 1.086 HFRIEDI 12.580 HFRIRVA 139.942 HFRIMI 5.551

HFRIMI 0.791 HFRIRVA 1.012 HFRIMI 9.249 HFRIFOF 114.262 HFRIRVA 4.960

HFRIEHI 0.752 HFRIMAI 0.943 HFRIEHI 8.642 HFRIEHI 101.927 HFRIMAI 4.860

HFRIFOF 0.362 LPX50TR 0.670 HFRIFOF 2.535 MXEF 83.123 LPX50TR 4.255

RIY 0.241 RTY 0.554 RIY 0.640 RIY 38.157 RTY 4.233

RTY 0.238 RIY 0.063 RTY 0.597 RTY 36.284 RIY 3.400

SP 0.236 SP 0.000 LPX50TR 0.185 LPX50TR 25.511 MXEF 2.870

LPX50TR 0.212 MXEF (0.321) SP 0.000 SP 0.000 HFRIFOF 2.227

MXEF 0.120 HFRIFOF (1.089) MXEF (1.253) DJUBS 0.000 DJUBS 1.224

DJUBS 0.057 DJUBS (1.474) DJUBS (2.230) USTW$ 0.000 SP 0.000

USTW$ (0.714) USTW$ (5.590) USTW$ (14.316) HFRIMI (195.247) USTW$ (3.986)

Sharpe Information M squared Treynor Jensen 

Ranked Results

TABLE 7 Risk Adjusted Return Measures

Ranked Results

M1/M2 Sharpe MSR Sortino DD Ratio
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Table 5-7 (c) Ranked Risk-Adjusted Return Measures for All Asset Classes 

 
 

For computation of risk-adjusted return measures, Risk-Free rate was considered 

as the average T-bill % rate of 3.13 based upon St. Louis Fed data for test duration of Jan 

'94 - Dec '11. The ranked ordered risk-adjusted return measures show some interesting 

patterns consistent with observations from prior risk models about the relative risk 

return characteristics of various asset classes. Highest risk-adjusted returns in case of each 

risk-adjusted-measure (RAM) model were demonstrated by the hedge fund asset classes. 

Currencies showed the lowest (negative) return in 8 of 9 RAM models. Commodities 

showed the second lowest (some negative) return in 6 of 9 RAM models. All three of 

Sortino ratio, Jensen ratio, and Information Ratio show both HFRIEDI and HFRIEHI as the top 

two best performing asset classes.  

In terms of aggregate RoR% rankings HFRIEDI is ranked 1st by Sortino, 

Information, and Treynor ratios; 2nd by  Jensen ratio; and 3rd by M1/M2, Sharpe, MSR, 

DD, and M-squared ratios. HFRIEHI is ranked 1st by Jensen ratio and 2nd by Sortino and 

Information ratios. It is also plausible that the specific fund strategies that exploit 

known limitations of some ratios and non-stationarity and non-paramaetricity of 

returns distributions may be influencing finer ranking order of hedge funds relative to 

each other.  In any case, the broader pattern ranking the two hedge fund asset classes HFRIEDI 

and HFRIEHI is clearly discernible with this set of risk models and is consistent with prior 

findings with other risk models.  

M1/M2 Sharpe MSR Sortino DD Ratio Information M squared Treynor Jensen 

SP 0.436 0.236 0.523 0.607 0.139 - - - -

RIY 0.439 0.241 0.538 0.624 0.145 0.063 0.640 38.157 3.400

RTY 0.393 0.238 0.516 0.700 0.129 0.554 0.597 36.284 4.233

MXEF 0.248 0.120 0.283 0.349 0.070 (0.321) (1.253) 83.123 2.870

LPX50TR 0.338 0.212 0.438 0.695 0.090 0.670 0.185 25.511 4.255

DJUBS 0.254 0.057 0.132 0.097 0.027 (1.474) (2.230) (27.320) 1.224

USTW$ (0.182) (0.714) (1.553) (1.147) (0.390) (5.590) (14.316) 260.688 (3.986)

HFRIEDI 1.454 1.003 2.183 1.922 0.501 2.386 12.580 144.022 6.833

HFRIEHI 1.083 0.752 1.401 1.723 0.349 2.354 8.642 101.927 6.852

HFRIMAI 2.194 1.341 2.814 1.506 0.603 0.943 17.865 140.008 4.860

HFRIMI 1.260 0.791 1.341 1.396 0.502 1.086 9.249 (195.247) 5.551

HFRIRVA 1.870 1.152 4.487 1.502 0.464 1.012 14.908 139.942 4.960

HFRIFOF 0.876 0.362 0.769 0.514 0.164 (1.089) 2.535 114.262 2.227

HFRIMAI 2.194 HFRIMAI 1.341 HFRIRVA 4.487 HFRIEDI 1.922 HFRIMAI 0.603

HFRIRVA 1.870 HFRIRVA 1.152 HFRIMAI 2.814 HFRIEHI 1.723 HFRIMI 0.502

HFRIEDI 1.454 HFRIEDI 1.003 HFRIEDI 2.183 HFRIMAI 1.506 HFRIEDI 0.501

HFRIMI 1.260 HFRIMI 0.791 HFRIEHI 1.401 HFRIRVA 1.502 HFRIRVA 0.464

HFRIEHI 1.083 HFRIEHI 0.752 HFRIMI 1.341 HFRIMI 1.396 HFRIEHI 0.349

HFRIFOF 0.876 HFRIFOF 0.362 HFRIFOF 0.769 RTY 0.700 HFRIFOF 0.164

RIY 0.439 RIY 0.241 RIY 0.538 LPX50TR 0.695 RIY 0.145

SP 0.436 RTY 0.238 SP 0.523 RIY 0.624 SP 0.139

RTY 0.393 SP 0.236 RTY 0.516 SP 0.607 RTY 0.129

LPX50TR 0.338 LPX50TR 0.212 LPX50TR 0.438 HFRIFOF 0.514 LPX50TR 0.090

DJUBS 0.254 MXEF 0.120 MXEF 0.283 MXEF 0.349 MXEF 0.070

MXEF 0.248 DJUBS 0.057 DJUBS 0.132 DJUBS 0.097 DJUBS 0.027

USTW$ (0.182) USTW$ (0.714) USTW$ (1.553) USTW$ (1.147) USTW$ (0.390)

HFRIMAI 1.341 HFRIEDI 2.386 HFRIMAI 17.865 HFRIEDI 144.022 HFRIEHI 6.852

HFRIRVA 1.152 HFRIEHI 2.354 HFRIRVA 14.908 HFRIMAI 140.008 HFRIEDI 6.833

HFRIEDI 1.003 HFRIMI 1.086 HFRIEDI 12.580 HFRIRVA 139.942 HFRIMI 5.551

HFRIMI 0.791 HFRIRVA 1.012 HFRIMI 9.249 HFRIFOF 114.262 HFRIRVA 4.960

HFRIEHI 0.752 HFRIMAI 0.943 HFRIEHI 8.642 HFRIEHI 101.927 HFRIMAI 4.860

HFRIFOF 0.362 LPX50TR 0.670 HFRIFOF 2.535 MXEF 83.123 LPX50TR 4.255

RIY 0.241 RTY 0.554 RIY 0.640 RIY 38.157 RTY 4.233

RTY 0.238 RIY 0.063 RTY 0.597 RTY 36.284 RIY 3.400

SP 0.236 SP 0.000 LPX50TR 0.185 LPX50TR 25.511 MXEF 2.870

LPX50TR 0.212 MXEF (0.321) SP 0.000 SP 0.000 HFRIFOF 2.227

MXEF 0.120 HFRIFOF (1.089) MXEF (1.253) DJUBS 0.000 DJUBS 1.224

DJUBS 0.057 DJUBS (1.474) DJUBS (2.230) USTW$ 0.000 SP 0.000

USTW$ (0.714) USTW$ (5.590) USTW$ (14.316) HFRIMI (195.247) USTW$ (3.986)

Sharpe Information M squared Treynor Jensen 

Ranked Results

TABLE 7 Risk Adjusted Return Measures

Ranked Results

M1/M2 Sharpe MSR Sortino DD Ratio
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Following upon earlier discussion about VaR and its various types as well as ES, 

Historical Simulation based VaR, Parametric VaR, Modified VaR, and Expected 

Shortfall were computed for the specific Mean Variance Portfolio Optimizations 

discussed above and summarized earlier in Table 6. The empirical results of Historical 

Simulation based VaR, Parametric VaR, Modified VaR, and Expected Shortfall for all 

asset classes equally weighted portfolio, variance minimizing portfolio, and return 

maximizing portfolio are presented in Tables 5-8 (a), (b), and (c) respectively. 

Parametric VaR is computed based upon mean-variance optimization. Modified VaR 

takes into consideration and accounts for non-normality of the returns. Expected 

Shortfall takes into consideration subadditivity responsible for portfolio diversification 

of risk with diverse assets, a factor missing from VaR models.  

Table 5-8 (a) VaR and Expected Shortfall: At 95% confidence level, Optimization 

Portfolios based upon Equal Weights shows monthly Historical Simulation VaR of -

$3,466,790 (indicating 5% chance of monthly losses exceeding this figure in any given 

month, and so on); Parametric VaR of -$4,382,848; Modified VaR of -$7,361,621; and, 

Expected Shortfall of -$5,258,022 (indicating average expected loss of -$5,258,022 if the 

threshold level 𝛼 of 5% was exceeded without any indication of worst case loss).  

Table 5-8 (a) 3 VaR Models and Expected Shortfall for Equal Weights 

 

 

Historical Simulation VaR

Parametric VaR

Modified VaR

Expected Shortfall

TABLE 8 (a) VaR and Expected Shortfall: Optimization Portfolios based upon Equal Weights

PORT Index AuM ($) 100,000,000 

Confidence Level 95%

Critical Value (z α ) 1.645

Monthly VaR 95% ($)

-3,481,077 Approx.

-3,466,790 Precise

=PERCENTILE(D11:D260,(1

=NORMSINV(B2)
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ES95% = -$5,258,022 

ES95% = -$5,258,022 

PORT AuM ($) 100,000,000 

Variance (Min.) 7.10

St. Dev. 2.66%

Confidence Level 95%

Critical Value (z α ) 1.645

VaR 95% ($) 4,382,848     

PORT Index AuM ($) 100,000,000 

Mean P&L ($) 694,724         

St. Dev. P&L ($) 2,549,081      

Confidence Level 95%

VaR 95% ($) -3,466,790 

MVaR 95% ($) -7,361,621 

PORT Index AuM ($) 100,000,000 

Mean P&L ($) 694,724         

St. Dev. P&L ($) 2,549,081      

Confidence Level 95%

ES 95% ($) -5,258,022 

Historical Simulation VaR

Parametric VaR

Modified VaR

Expected Shortfall

TABLE 8 (a) VaR and Expected Shortfall: Optimization Portfolios based upon Equal Weights

PORT Index AuM ($) 100,000,000 

Confidence Level 95%

Critical Value (z α ) 1.645

Monthly VaR 95% ($)

-3,481,077 Approx.

-3,466,790 Precise

=PERCENTILE(D11:D260,(1

=NORMSINV(B2)
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PORT AuM ($) 100,000,000 

Variance (Min.) 7.10

St. Dev. 2.66%

Confidence Level 95%

Critical Value (z α ) 1.645

VaR 95% ($) 4,382,848     

PORT Index AuM ($) 100,000,000 

Mean P&L ($) 694,724         

St. Dev. P&L ($) 2,549,081      

Confidence Level 95%

VaR 95% ($) -3,466,790 

MVaR 95% ($) -7,361,621 

PORT Index AuM ($) 100,000,000 

Mean P&L ($) 694,724         

St. Dev. P&L ($) 2,549,081      

Confidence Level 95%

ES 95% ($) -5,258,022 
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Table 5-8 (a) 3 VaR Models and Expected Shortfall for Equal Weights (contd.) 

 

Table 5-8 (b) VaR and Expected Shortfall: At 95% confidence level,  Optimization 

Portfolios based upon Minimum Variance shows Historical Simulation VaR of -

$783,190; Parametric VaR of -$1,284,507; Modified VaR of -$1,884,524; and, Expected 

Shortfall of -$1,681,629.  

Table 5-8 (b) 3 VaR Models and Expected Shortfall for Minimum Variance 

 

Historical Simulation VaR

Parametric VaR

Modified VaR

Expected Shortfall

TABLE 8 (a) VaR and Expected Shortfall: Optimization Portfolios based upon Equal Weights

PORT Index AuM ($) 100,000,000 

Confidence Level 95%

Critical Value (z α ) 1.645

Monthly VaR 95% ($)

-3,481,077 Approx.

-3,466,790 Precise

=PERCENTILE(D11:D260,(1

=NORMSINV(B2)
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Table 5-8 (c) VaR and Expected Shortfall: At 95% confidence level, Optimization 

Portfolios based upon Maximizing Return shows Historical Simulation VaR of -

Historical Simulation VaR

Parametric VaR

Modified VaR

Expected Shortfall

TABLE 8 (b) VaR and Expected Shortfall: Optimization Portfolios based upon Minimum Variance
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$2,764,562; Parametric VaR of -$3,766,260; Modified VaR of -$5,733,689; and, Expected 

Shortfall of -$4,575,377.  

Table 5-8 (c) 3 VaR Models and Expected Shortfall for Maximizing Return 

 

Historical Simulation VaR

Parametric VaR

Modified VaR

Expected Shortfall

TABLE 8 (c) VaR and Expected Shortfall: Optimization Portfolios based upon Maximizing Return
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Table 5-8 (c) 3 VaR Models and Expected Shortfall for Maximizing Return 
 (contd.) 

 

The specific values of various types of VaR and ES within the portfolio categories 

as well as across the categories are consistent with prior observations and discussions. 

Minimum Variance portfolio is oriented toward minimization of risk and hence 

demonstrates the lowest values for each type of VaR and ES relative to other portfolio 

categories. Maximizing Return portfolio is relatively a riskier portfolio and hence shows 

higher values for each of VaR types as well as for ES relative to Minimum Variance 

portfolio. The equally weighted portfolio is sub-optimized as apparent from its lowest 

Sharpe Ratio of 2.58 as compared with all other portfolio categories shown earlier in 

Table 5-6: Minimizing Variance portfolio with Sharpe Ratio of 6.75 and Maximizing 

Return portfolio with Sharpe Ratio of 4.44.  

Within each portfolio category, Historical Simulation VaR has the smallest 

(negative) value (implying least loss), followed by Parametric VaR, Expected Shortfall, 

and Modified VaR in increasing order of loss. Parametric VaR is limited by its 

assumption of linear relationships between risk variables (because of exposure to non-

linear asset classes such as derivatives) and the assumption of normality about 

distributions of hedge fund returns.  Modified VaR (MVaR) explicitly accounts for the 

non-normality of hedge fund returns by taking into account skewness and excess 

kurtosis using the Cornish-Fisher expansion for the 𝑧∝ critical value from the normal 

distribution for the respective confidence interval c. Table 5-9 shows the results of the 

Portfolio modeling with the Returns Maximizing portfolio chosen for further advanced 

analysis using VaR, CVAR, ARCH/GARCH, and EVT.  
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TABLE 8 (c) VaR and Expected Shortfall: Optimization Portfolios based upon Maximizing Return
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Table 5-9 Portfolio Modeling with the Returns Maximizing Portfolio 

 

TABLE 9 PORTFOLIO VaR MODELING
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Table 5-9 Portfolio Modeling with the Returns Maximizing Portfolio (contd.) 

 
Portfolio PDF histogram shows it to have a negative skew with a long left tail 

and mass of the distribution concentrated on the right. Raw returns and squared returns 

show positive autocorrelations for short lags which decay to zero as the number of lags 

TABLE 9 PORTFOLIO VaR MODELING (continued)
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increases. Presence of heteroscedasticity in previous analysis indicates GARCH 

modeling is appropriate and model parameters are first estimated with the default 

GARCH (1,1) model shown in the table. Based upon the model fitting with GARCH, 

generated residuals (innovations) and conditional standard deviations (sigmas) are 

examined showing volatility clustering. Standardized innovations show existence of 

autocorrelations.  VaR Models examined include conditional VaR, Cornish-Fisher VaR, 

and EVT with observed findings shown in the table. Portfolio Cornish-Fisher VaR is 

found to be about 50% of the sum of individual funds VaRs.  

5.11 Summary, Limitations, and, Future Research 

Current empirical model risk management research was motivated by ambiguity 

in recent research between model risk, modeling method (such as VaR), and statistical 

inference methodology (such as Bayesian). The ambiguity results from confusing 

choosing one model over another (or, one inference methodology over another) ipso 

facto as elimination of model risks. Such ambiguity may have serious consequences in 

further escalating specification and estimation errors in risk modeling. Ambiguity 

becomes all the more confusing when it is proposed that replacing a modeling method 

(such as VaR) with an inference methodology (such as Bayesian) will minimize the 

problems of (model) risk management (Borison & Hamm, 2010). Consistently, the 

current chapter focused on resolving the Bayesian vs. VaR dilemma to minimize model 

specification and estimation errors in risk modeling (Boucher et al., 2014).  

 

The focus of the current chapter is Bayesian vs. VaR has two related objectives to 

enlighten concerns about model risk management. First, empirical demonstration of 

using VaR as one of multiple risk measures clearly highlights the empirical application of 

model risk management in using multiple models, simple and advanced, to cross-check 

the validity of VaR. In fact, the opening note at the beginning of the chapter by a top 

investment bank CFO about using VaR as “just one of many measures” is congruent 

with the empirical model risk management demonstration of the current chapter. 

Hence, if cyber insurance modelers and users are categorically positive that no systemic 

risks or tail risks (discussed in prior chapters) are ‘material’ (discussed in earlier 

chapter), then they can go ahead and use VaR while ensuring to cross-check its 

reliability and validity with other measures independent of VaR. In case, they know 
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that systemic risk and tail risks are of critical importance, they now know how to 

empirically apply coherent risk measures such as ES (also called as T-VAR, ETL, etc.).  

 

The second set of issues beyond model risk management of a model such as VaR 

is that of model risk of a methodology (such as NHST, or, Bayesian) as discussed earlier. 

This second concern about model risk management of classic statistical inference also 

known as frequentist or NHST methodology is alleviated by offering Bayesian as an 

alternative methodology for minimizing model risk. Related concern also resulted from 

observed ambiguity about some practitioners confusion about the model risk related to 

the model and the methodology. The specific example noted at the beginning of the 

current chapter is a case in point: a high visibility journal article recommending 

replacing VaR models with Bayesian models and suggesting that it will minimize model 

risk; VaR research survey that clearly established its practice in both non-Bayesian and 

Bayesian forms since its beginning; and, Bayesian statistical inference modeling survey 

that clearly established as critical a need (if not more) for model risk management than is 

necessary in VaR modeling. Most importantly, the current focus of financial regulators 

on model risk management in aftermath of the Global Financial Crisis signifies its 

critical real world import for risk modeling practice.  

 

The above contexts motivated our delineation of research and practice 

frameworks for both Bayesian inference as well as VaR modeling. Our primary focus on 

model risk management guided those delineations as well as related discussions. The 

same focus also guided the choice of our empirical context of demonstrating how model 

risk management can be applied in real practice for a top Wall Street investment bank 

without replacing ‘VaR with Bayesian.’ The choice of the frequentist methodology also 

underscores that it is neither easy nor inexpensive to do Bayesian right despite its many 

advantages over the frequentist methodology.  

 

Further, even if the extra effort and (computational) expense is invested in 

Bayesian, it still doesn’t do away with model risk management. In fact, based on the 

review of Bayesian VaR methodologies (Aussenegg & Miazhynskaia, 2006; Casarin et 

al., 2013; Danielsson et al., 2014; Hoogerheide & van Dijk, 2008; Meucci, 2009; 

Miazhynskaia et al., 2003; Osiewalski & Pajor, 2010), it is apparent that the need for 

model risk management is probably even more. This is not counterintuitive as often 
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parsimony and transparency of modeling methods and modeling inference 

methodologies are recommended and preferred for this very reason.    

 

This study has several limitations as choice of any quantitative statistical model or 

methodology entails model risk (Derman, 1996; Morini, 2011). Choosing frequentist 

inference methodology and VaR models – just like any other methodology and model – 

results in choosing to ‘live with’ (but not at all ignore) the limitations inherent in each 

such choice. Hence, use of multiple diverse modeling methods and methodologies at 

various levels of analysis can help cross-check for the various assumptions and 

boundaries that may not be within scope of one specific methodology or model 

(Danielsson et al., 2014). Having focused on the specific research for resolving the 

Bayesian vs. VaR dilemma and empirically demonstrating its application at a Wall Street 

bank, subsequent research plans to further address such methodological limitations.  

Such future research plans to focus on using VaR (and its various extensions including 

CVAR, ES, and EVT empirically demonstrated herein) as well as other models for 

analyzing market risk in portfolio construction and optimization. Further, given well-

known advantages of Bayesian over frequentist inference (Kruschke, 2011) as well as its 

growing feasibility with MCMC (Gelfand & Smith, 1990; Malhotra, 2014), such future 

research plans to advance on the Bayesian and VaR analytical frameworks proposed 

herein for empirical analysis of such models.  
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Appendix 5-1. Bayesian Inference: Probability Background 

How likely an event is, the likelihood of a specific outcome, is with respect to the 

sample space which is the set of all mutually exclusive (and) cumulatively exhaustive 

(MECE) possibilities. Specific parameter such as bias (i.e., probability of a specific outcome) 

of a process can be denoted as θ so that the degree of belief about that parameter value θ is 

p(θ). The possibilities sample space or outcome events sample space consists of all MECE 

possibilities or possible outcome events. The parameter sample space consists of all values 

that the specific parameter can have. If the parameter bias can vary from 0% to 100%, 

respective parameter sample space consists of all continuous data values between 0 and 

1. When a specific process is sampled, it is sampled from the parameter sample space. 

For the specific parameter sampled, the outcome events are then sampled from the 

outcome events sample space. For specific outcome events that can be observed, 

probability of occurrence of any specific event is its long-run relative frequency. Such long-

run relative frequency can be observed by actually sampling from the sample space and 

tracking counts of different outcomes. Sampling can be done using computerized 

simulation in which the computer generates the outcomes randomly. A long run, being a 

finite random sample, can only approximate the probability by long-run relative 

frequency. Or, it can be calculated with greater precision by deriving it mathematically 

based on known properties of the process. 

 

Probabilities are non-negative numbers assigned to the set of MECE possibilities. 

The probabilities should sum to 1.0 for all MECE possibilities. For two mutually 

exclusive, i.e., independent events, the probability that one or the other occurs equals 

the sum of respective individual probabilities. Probability distribution is the list of all 

possible MECE outcomes and their corresponding probabilities. The probability of 

discrete outcome value is called probability mass to distinguish it from the probability of 

continuous outcome value which is called probability density. If a continuous distribution 

is discretized then the amount of the probability in a specific interval is given by its 

probability mass. Probability density of an interval is the probability mass of that interval 

divided by the interval width. For a continuous distribution, since the probability of any 

specific discrete exact infinitesimal point is zero, probability is denoted as probability 

density which is the ratio of the probability to the respective interval width. Hence for a 

uniform scale that is divided into N intervals, the probability of any infinitesimal 

interval converges to zero in the limit as N grows to infinity. However, its probability 
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density which is the ratio of probability mass (1/N) to its width (1/N) always remains 1 

= ((1/N)/ (1/N)).  

 

Probability mass cannot exceed 1, however probability density being a ratio of 

probability mass to respective interval width can be lesser or greater than 1. If the 

uniform interval scale is changed from 0–1 to 0-0.5, then the amount of probability per 

unit interval width doubles, hence probability density becomes 2 everywhere (((1/N)/ 

(0.5/N))). In case of a logarithmic scale, every additional unit interval width contains 

lesser and lesser probability in a smaller interval width thus having exponentially 

smaller probability density. For instance a log-10 circular scale will contain 1 to 10 (100 

to 101) within the first half, i.e., 0.5 probability mass, and 10 to 100 (101 to 102) in the 

second half.  

 

Let continuous variable be denoted as x and interval width by ∆x. Let interval 

index be denoted as i, and the interval between xi and xi+∆x be denoted as [xi, xi+∆x]. 

Then, 

𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑚𝑎𝑠𝑠 of the ith interval:        𝑝([𝑥𝑖, 𝑥𝑖 + ∆𝑥])    and  

Sum of probability masses for all the intervals:  ∑ 𝑝([𝑥𝑖, 𝑥𝑖 + ∆𝑥])𝑖  = 1.0 

Dividing and multiplying by the interval width ∆x:  ∑  ∆𝑥   
𝑝([𝑥𝑖,𝑥𝑖+∆𝑥])

∆𝑥𝑖  = 1.0   

As   ∆𝑥 → 0, the above equation becomes:           ∫     𝑑𝑥           𝑝(𝑥)     = 1.0     where  𝑝(𝑥)   

is the probability density.  
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Appendix 5-2. Hedge Fund Risk-Adjusted Return Metrics 

Tracking Error, or Standard Deviation of Excess Return, is a statistical measure of 

dispersion measuring volatility of excess returns over a given period (J.P. Morgan, 2008). For 

each asset class modeled, tracking error was measured in terms of quadratic standard deviation 

(SD) and linear mean absolute deviations (MAD).  The tracking error measures how closely the 

fund follows the index to which it is benchmarked: lower the error, more closely the fund 

follows risk-and-return characteristics of the benchmark. While SD being the quadratic form 

may be more difficult to interpret, its linear alternative MAD seems more intuitive for hedge 

fund managers who may prefer seeing it in linear terms.  

Quadratic Tracking Error 

 

𝑆𝐷 =  √
1

𝑁 − 1
∑(𝑟𝑁−1,𝑁 −  𝑟𝑁−1,𝑁

𝑏𝑚 )2

𝑁

𝑖=1

 

 

Linear Tracking Error 

 

𝑀𝐴𝐷 =  
1

𝑁 − 1
∑ |𝑟𝑁−1,𝑁 −  𝑟𝑁−1,𝑁

𝑏𝑚 |

𝑁

𝑖=1

 

N = No. of sample data points, 𝑟𝑁−1,𝑁= Fund return, 𝑟𝑁−1,𝑁
𝑏𝑚  = Benchmark return 

 

Basic performance plots for each asset included historical performance of RoR%, VAMI, 

and, histogram of monthly returns. Tests for normality of each asset’s returns statistical 

distribution included charts of empirical versus normal distribution and normal Q-Q plots as 

well as the Jarque-Bera Normality Test which is a joint test of skewnesss and excess kurtosis. 

Descriptive statistics included the first four moments of distribution. The correlation matrix was 

computed to show relative strength of variability of returns of the asset classes with respect to 

each other. Mean-variance optimization (Markowitz, 1952) was used to compute the portfolio 

asset allocations for minimizing variance and for maximizing returns and then compared with 

the portfolio with equally weighted asset classes.  

Relative risk and returns behavior of different asset classes and robustness in 

consistency of their behavior was monitored in course of risk modeling using different models. 

Different risk measures based on varying risk estimation assumptions facilitated stress testing 

and sensitivity analysis. As risk and returns may not vary proportionally for all indexes or 

portfolios, their relative performance can be more accurately measured by using risk-adjusted 

return measures. Risk Adjusted Return is an ex-post risk measure in which the portfolio return is 
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adjusted by the standard deviation or beta of the portfolio (J.P. Morgan, 2008). Most commonly 

used risk-adjusted return measures in the hedge fund industry are based upon the ratio of risk 

free returns to risk: 

𝑅𝑖𝑠𝑘 𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑 𝑟𝑒𝑡𝑢𝑟𝑛𝑠 =  
𝑅𝑃 − 𝑅𝐹

𝑅𝑖𝑠𝑘
 . 

The risk-adjusted return measures help assess the true performance of the hedge fund 

managers delivering real alpha (reflecting real skill) compared to others delivering 

sophisticated alternative beta (available at a lower cost) or traditional market beta (available 

free).  Alpha is a measure of performance on a risk-adjusted basis as it takes into consideration 

the risk-free rate. In current context, it refers to the excess return of the portfolio relative to the 

return of the benchmark. Beta is a measure of the volatility, or systematic risk, of a fund or 

portfolio in relation to the overall market. Beta of 1 indicates moment in same direction and by 

same percentage as the overall market. Beta greater (lesser) than 1 indicates that the fund is 

expected to move more (less) than the market and hence is more (less) risky. Portfolio Beta is 

the weighted average of the Betas of the various assets held in the portfolio. 

The ratio of annualized first and second moments of distributions is another such measure:  

     𝑀1/𝑀2 =  
𝑅𝑒𝑡𝑢𝑟𝑛

𝑉𝑜𝑙𝑎𝑡𝑖𝑙𝑖𝑡𝑦
 . 

In the above computation, 𝑅𝑃 is the annualized return while 𝑅𝐹 is the annualized risk-

free rate (such as for a US treasury bill). Sharpe ratio (Sharpe, 1994) uses the volatility of returns 

𝜎𝑃 as the measure of risk: 

𝑆ℎ𝑎𝑟𝑝𝑒 𝑅𝑎𝑡𝑖𝑜 =  
𝑅𝑃 − 𝑅𝐹

𝜎𝑃
=

𝑅𝑒𝑡𝑢𝑟𝑛 − 𝑅𝑖𝑠𝑘 𝐹𝑟𝑒𝑒 𝑅𝑒𝑡𝑢𝑟𝑛

𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 𝑂𝑓 𝑅𝑒𝑡𝑢𝑟𝑛𝑠  
 . 

Also known as the “reward to variability ratio, it relates the reward to the portfolio’s 

risk, as measured by the portfolio’s standard deviation (J.P. Morgan, 2008). By using the 

standard deviation, Sharpe Ratio measures the total risk of the portfolio, not just risk in relation 

to the market. As compared with prior measure M1/M2, Sharpe Ratio introduces a static 

benchmark to the numerator by subtracting the risk-free rate from the return. Sharpe ratio thus 

penalizes the fund manager whose return is lower than risk-free rate and shows negative 

Sharpe ratio for managers delivering returns lower than the risk-free rate.  

The Modified Sharpe Ratio introduced earlier in the discussion on MVaR accounts for the third 

and fourth moments of the returns (and P&L) distribution, skewnes and excess kurtosis, and is 

given by:  

MSR =  
𝑅𝑃 − 𝑅𝐹

MVaR1 – α
=

𝑅𝑒𝑡𝑢𝑟𝑛 − 𝑅𝑖𝑠𝑘 𝐹𝑟𝑒𝑒 𝑅𝑒𝑡𝑢𝑟𝑛

𝑀𝑜𝑑𝑖𝑓𝑖𝑒𝑑 𝑉𝑎𝑅  
 . 
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The Sortino Ratio (Sortino & Forsey, 1996) modifies Sharpe Ratio so that the fund 

manager is penalized only for downside risk (volatitlity) but not for upside volatility which 

enhances returns. It uses the concept of the minimum acceptable return (MAR). It divides the 

returns into those that are greater than MAR and those that are less than MAR. Higher Sortino 

ratio implies that the manager is better at controlling downside risk and is not penalized for 

producing high upside returns. 

𝑆𝑜𝑟𝑡𝑖𝑛𝑜 𝑅𝑎𝑡𝑖𝑜 =  
𝑅𝑃 − 𝑀𝐴𝑅

√1
𝑇

 ∑ (𝑅𝑃,𝑡 − 𝑀𝐴𝑅)
2𝑇

𝑡,𝑅𝑃<𝑀𝐴𝑅  

 =
𝑅𝑒𝑡𝑢𝑟𝑛 − 𝑅𝑖𝑠𝑘 𝐹𝑟𝑒𝑒 𝑅𝑒𝑡𝑢𝑟𝑛

𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑆𝑒𝑚𝑖 − 𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑅𝑒𝑡𝑢𝑟𝑛𝑠 
. 

The Drawdown Ratio, another variant of Sharpe Ratio, uses maximum historical 

drawdown as the risk measure.  

𝐷𝐷 𝑅𝑎𝑡𝑖𝑜 =  
𝑅𝑃 − 𝑅𝐹

| max 𝐷𝐷|
 . 

Maximum drawdown is defined as maximum loss in VAMI or NAV terms from the 

preceding highest high to the lowest low during the period that the fund has not recovered its 

value to the last highest high. Variants of Drawdown Ratio include the Sterling Ratio which uses 

an average of the most significant drawdowns and the Burke Ratio which uses the square root of 

the sum of the squares of each drawdown. The key idea in both the variations is about 

penalizing significant long-term drawdowns relative to several milder drawdowns.  

The Information Ratio (Goodwin, 1998) measures a portfolio’s performance against risk 

and return relative to a benchmark or alternative measure. The higher the Information Ratio, 

the greater the added value for a given level of risk, relative to the benchmark. Information 

Ratio uses a market reference benchmark instead of the risk-free rate. Thus, greater added value 

for a given level of risk, relative to the benchmark, i.e. excess returns on a benchmark portfolio B 

in period t, can be described as:  

∆𝑡=  𝑅𝑃,𝑡 −  𝑅𝐵,𝑡    and their arithmetic average from t = 1 to T is given by:    ∆ ̅= 
1

𝑇
 ∑ ∆𝑡

𝑇
𝑡=1  . Then, 

standard deviation of the excess returns from the benchmark is given by 𝜎∆ =√
1

𝑇
 ∑ (∆𝑡 −  ∆ ̅)2𝑇

𝑡=1  .  

Then,           

Information Ratio = 
∆ ̅

 𝜎∆
 = 

𝐸𝑥𝑐𝑒𝑠𝑠 𝑅𝑒𝑡𝑢𝑟𝑛

𝑆𝑡𝑑.  𝐷𝑒𝑣𝑛.  𝑜𝑓 𝑇𝑟𝑎𝑐𝑘𝑖𝑛𝑔 𝐸𝑟𝑟𝑜𝑟
  . 

The M-Squared Metric helps see how the hedge fund outperforms the benchmark return 

to which it has had its risk profile matched. It does so by interpreting the fund’s return as the 
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return that would have been produced had the fund’s volatility been equal to that of the market 

benchmark.  

𝑀2 =  
𝜎𝑀

𝜎𝑃
 (𝑅𝑃 − 𝑅𝐹) −  𝑅𝐹  . 

The Treynor Ratio, also known as the “reward to volatility ratio,” measures the excess 

return achieved by a fund manager per unit of risk incurred (J.P. Morgan, 2008). Based on 

systematic risk, it uses the beta of the fund relative to a benchmark as the risk measure in the 

denominator: 

𝑇𝑟𝑒𝑦𝑛𝑜𝑟 𝑅𝑎𝑡𝑖𝑜 =  
𝑅𝑃 − 𝑅𝐹

𝛽𝑃
 . 

Treynor Ratio, just like Information Ratio, is more commonly used for active traditional equity 

portfolios.  

Jensen’s Alpha (Jensen, 1967) is used to determine the Excess Return over the required 

rate of return as predicted by the Capital Asset Pricing Model (CAPM) given the portfolio’s beta 

and the average market return (J.P. Morgan, 2008). It is the sum of risk-free rate and beta 

adjusted market excess returns subtracted from fund’s net return: 

  𝛼𝑃 = 𝑅𝑃 − [𝑅𝐹 +  𝛽𝑃 (𝑅𝑀 − 𝑅𝐹)]          based upon           CAPM:   (𝑅𝑃 − 𝑅𝐹) =   𝛼𝑃 +  𝛽𝑃 (𝑅𝑀 − 𝑅𝐹) 

. 

The above expression highlights the three parts that make up a hedge fund return: alpha 

(measurable skill), beta continuum (from skill to no skill) (Anson 2008) and the risk-free rate (no 

skill).  

Jensen’s Alpha Ratio (J.P. Morgan, 2008) is a risk-adjusted performance measure that 

represents the average return on a portfolio over and above that predicted by the Capital Asset 

Pricing Model (CAPM), given the portfolio's beta and the average market return (Jensen’s 

Alpha). 

Jensen’s Alpha Ratio = 
𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝐽𝑒𝑛𝑠𝑒𝑛’𝑠 𝐴𝑙𝑝ℎ𝑎

𝑆𝑡𝑑.  𝐷𝑒𝑣𝑛.  𝑜𝑓 𝐽𝑒𝑛𝑠𝑒𝑛’𝑠 𝐴𝑙𝑝ℎ𝑎
  . 
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Appendix 5-3. Value Added Monthly Index (VAMI) Method 

The VAMI method generally assumes an initial investment of $100 or $1,000 and shows 

how such an investment would have fared over a certain period of time. In order to calculate 

annual ROR using VAMI, first calculate value of the investment at end of each subperiod or 

month. The following example from National Futures Association ( 2013) assumes initial 

investment of $1,000. 

Annual and Year-to-Date Rates of Return 

In first month of the period: VAMI for month = (1 + ROR for month) x 1000 For all subsequent 

months: VAMI for month = (1 + ROR for month) x VAMI for prior month 

Annual ROR calculated as follows: 

Annual ROR = (year-end VAMI - $1,000) divided by $1,000. When calculating the annual RORs 

for subsequent years, the value of the initial investment should be the prior year-end VAMI. 

Computing Monthly and Peak-to-Valley Draw-Downs 

Draw-down means losses experienced by a pool or trading program over a specified period. 

Worst monthly draw-down is the program’s worst monthly percentage ROR. 

Worst peak-to-valley draw-down is the largest cumulative percentage decline in month-end net 

asset value (NAV) due to losses sustained by the accounts during any period in which the initial 

month-end NAV is not equaled or exceeded by a subsequent month-end NAV. To calculate this 

amount, calculate a continuous VAMI for the time period presented. Using this method, 

determine the first month in which the VAMI is not followed by a VAMI that is greater than or 

equal to that month's VAMI. This would be seen as the first peak. The next peak is seen for the 

next month in which VAMI is greater than the previous peak's VAMI and followed by a lower 

VAMI. Once all the peaks are identified, determine all months having the lowest VAMIs during 

a period between two peaks which would be the valleys. Determine the percentage change 

between each peak and valley as follows: 

(Valley VAMI – Peak VAMI) divided by Peak VAMI 

The worst peak-to-valley draw-down is the largest percentage change from a peak to a valley. 

The peak month and the valley month should be reported.  
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Chapter 6.  

Markov Chain Monte Carlo for Bayesian 

"[T]he development of this methodology has not only changed our solutions to 

problems, but has changed the way we think about problems." 

-- Robert & Cassella, A Short History of Markov Chain Monte Carlo, Statistical 

Science, 26(1), 2011. 

 

6.1 Markov Chain Monte Carlo Models, Gibbs Sampling 

and Metropolis-Hastings Statistical Computing Algorithms 

In this chapter, we develop an analysis of the Markov Chain Monte Carlo 

Models, Gibbs Sampling and Metropolis-Hastings statistical computing algorithms for 

enabling Bayesian statistical inference methodologies to minimize model risk in cyber 

risk and cyber Insurance modeling for the specific context of cybersecurity. 

 

Markov chain Monte Carlo (MCMC) methods have an important role in solving 

high-dimensionality stochastic problems characterized by computational complexity. 

Given their critical importance, there is need for network and security risk management 

research to relate the MCMC quantitative methodological concerns with network and 

security risk applications. This article contributes to that research stream. The core 

quantitative methodological focus of the article is on Monte Carlo Models and MCMC 

Algorithms, Gibbs Sampling and Metropolis-Hastings Algorithm. Network and 

security risk management application focus is on how MCMC methods help solve 

previously unsolvable problems in computational statistical modeling of cryptography, 

cryptanalytics, and penetration testing; intrusion detection & prevention and anomaly 

detection; and, privacy in anonymity systems and social networks. Future quantitative 

methods applied research and development in MCMC and computational statistical 

computing to address systemic risk and model risk management is recommended. 

6.2 Markov chain Monte Carlo (MCMC) Methods 

Markov chain Monte Carlo (MCMC) is widely used for solving complex 

problems related to probability distribution integration and combinatorial optimization 
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(Beichl & Sullivan 2000). It is perhaps the only known general quantitative method that 

can find approximate solutions to complex problems in polynomial time in some 

contexts (Jerrum & Sinclair 1996). MCMC methods such as Gibbs sampling (Geman & 

Geman 1984) and Metropolis-Hastings algorithm (Metropolis et al. 1953, Hastings 1970) 

have influenced multiple fields of research and practice including computer science, 

physics, statistics, finance, economics, and engineering (Beichl & Sullivan 2000, Eraker 

2001, Gilks et al. 1996). Beichl and Sullivan (2000) describe Metropolis-Hastings 

algorithm of which Gibbs Sampling is a special case as one of ‘top 10 algorithms’ in 

computing and ‘the most successful and influential of Monte Carlo method’: “Today, 

topics related to this algorithm constitute an entire field of computational science 

supported by a deep theory and having applications ranging from physical simulations 

to the foundations of computational complexity.”  

MCMC algorithms have an increasingly important and growing role in network 

and computer security and cybersecurity, analysis of adversary attacks, penetration 

testing, and information assurance research and practices. Our review of research 

establishes increasing relevance of MCMC, Gibbs Sampling, and Metropolis Algorithm 

in network and computer security contexts spanning cryptography and cryptanalytic 

password attacks and authentication analysis (e.g. Chen & Rosenthal 2012, Diaconis 

2009, Hanawal & Sundaresan 2010, Muramatsu et al. 2006, Furon et al. 2012, Matsui et 

al. 2004), signature and anomaly based network intrusion detection and prevention 

systems (e.g. Scott 1999, 2001, 2004; Zhao & Nygard 2010, Ihler et al. 2006, Jyothsna et al. 

2011, Shi & Mei-Feng 2012), and analyzing potential vulnerabilities in anonymity based 

systems such as Tor network based on onion-routing protocol and other ‘social 

networks’ (e.g. Danezis and Troncoso 2009, Troncoso and Danezis 2009).  

There also seems growing interest among the broader network and computing 

security researcher and practitioner communities to develop better grasp of 

sophisticated quantitative methods such as Bayesian inference and MCMC methods. An 

example of such interest is evident in the community dialog on cryptography and 

encryption: ‘Schneier on Security’ blog on the topic ‘TSA Uses Monte Carlo Simulations 

to Weigh Airplane Risks’.151 In response to a debate among the readers on his blog 

about Monte Carlo methods, the renowned cryptography and encryption expert Bruce 

Schneier acknowledged his own interest in knowing more about Monte Carlo methods.  

                                                           
151 https://www.schneier.com/blog/archives/2007/06/tsa_uses_monte.html 
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Despite tomes of research published on the topic over last 60 or so years, palpable 

interest among mainstream researchers and practitioners is understandable. Most 

research published on Monte Carlo and MCMC methods has grown out of 

mathematical physicists’, mathematicians’, and statisticians’ academic research 

characterized by understandable disciplinary formalism and diverse notational styles. 

Hence, there seems to be a critical need for research to bridge theory and practice by 

spanning disciplinary formalism of mathematicians and statisticians with applied 

concerns of network and computer security researchers. The current chapter with 

quantitative methods focus in the context of network and computer security contributes 

to that research stream aiming to further advance research and practice in MCMC 

methods. 

After the above introduction outlining increasingly important role of MCMC in 

network and computer security, the remaining sections of the discussion proceed as 

follows. Next section provides an overview of how these sophisticated quantitative 

methods came to be known as a ‘revolution’ and ‘quantum leap’ in statistical 

computing.  Subsection section on Markov chain Monte Carlo Models and MCMC 

Algorithms forms the core focus of this article with its quantitative methods focus for 

readers new to these methods. It develops a technical introduction to Markov chain 

Monte Carlo Models and MCMC Algorithms, Gibbs Sampling and Metropolis-Hastings 

Algorithm based upon analysis and synthesis of research. Section thereafter on 

applications of MCMC methods in network and computer security provides an 

overview of examples from network and computer security research. Readers interested 

in MCMC methods can relate to specific instances from their own research or practice 

and may consider applying those methods in their own work. The final section 

concludes with a discussion of key benefits of MCMC methods and algorithms in 

network and computer security and underscores the need for future research on 

systemic risk management issues including model risk management.  
 

6.3 MCMC: A Revolutionary Leap in Statistical Computing 

A paper on the history of MCMC interestingly observes about MCMC that 

(Robert & Cassella 2011a, 2011b emphasis added): “the development of this 

methodology has not only changed our solutions to problems, but has changed the way we 

think about problems.” The MCMC methods originally conceptualized in 1940s at the Los 
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Alamos National Lab during World War II led to the Metropolis algorithm, the first key 

MCMC algorithm in the early 1950s (Metropolis et al. 1953). The MCMC was the result 

of research by the same group of research scientists as those working on the atomic 

bomb including Stanislaw Ulam and John von Neumann at Los Alamos who around 

the same time had also created Monte Carlo (MC) methods (Eckhardt 1987). John von 

Neumann was using MC to study thermonuclear and fission problems in the late 1940s 

after the first computer, ENIAC, was developed. For high-dimensionality numerical 

problems, MC methods, though more efficient than conventional numerical methods, 

may require sampling from high-dimensionality probability distributions often making 

them infeasible and inefficient in practice given computational complexity (Hastings 

1970). Affected problems in combinatorics, data mining, machine learning, numerical 

analysis, and sampling show exponential increase in multi-dimensional space with 

increased high-dimensionality. Resulting sparseness of data is problematic as data 

needs grow exponentially with increased dimensionality for doing tests of statistical 

significance. To solve such problems, Hastings (1970), followed by Peskun (1973, 1981), 

generalized the Metropolis algorithm as a statistical simulation method for overcoming 

the ‘curse of dimensionality’. In particular, as Bayesian inference based on posterior 

distributions with many parameters compounds the curse of dimensionality, MCMC 

has a particularly important role in advancing simulation-based Bayesian inference. 

MCMC represents a ‘quantum leap’ in computational statistics (Robert & 

Cassella 2011) that shifts the emphasis from “closed form” solutions to improved 

numerical algorithms for solving “real” applied problems where “exact” now means 

“simulated.” Since late 1980’s, MCMC has become an all-pervasive method in statistical 

computation especially for Bayesian inference and for analyzing complex stochastic 

systems (Green 2014). The power of MCMC particularly in the context of Bayesian 

inference, besides other areas of computational statistics, results from two key 

flexibilities it affords for modeling and inference. First, MCMC allows the analyst to be 

closer to the reality of the process generating the data in terms of analysis as being well-

suited for models based upon sparse data.  It thus liberates the modeling process from 

constraints related to the curse of dimensionality. Second, on a related note, it also 

liberates the modeling process from dimensionality related constraints that earlier 

limited features of the target distribution to be modeled. The ‘revolutionary’ Gelfand 

and Smith paper (1990), one of top-three most cited papers in mathematics in last 20 

years (Holmes 2008), is considered as “the genuine starting point for an intensive use of 
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MCMC methods by the mainstream statistical community.” Given necessary computing 

power and statistical computing algorithms such as the Gibbs sampler and the 

Metropolis–Hastings algorithm, it represented a ‘paradigm shift’ of interest in Bayesian 

methods, statistical computing, algorithms and stochastic processes (Robert & Cassella 

2011). MCMC is an instance of revolutionary statistical computing methods enabled by 

computing advances that dramatically increase our ability to solve highly complex 

problems using statistical inference across multiple domains. MCMC models enable us 

to make statistical inferences that were infeasible just a few years ago (Tsay 2010). 

The above introductory overview of MCMC developed a perspective of how and 

why MCMC methods and algorithms came to be known as a ‘revolution’ and ‘quantum 

leap’ in statistical computing.  The following section develops a technical introduction 

to the Markov chain Monte Carlo Models and the MCMC Algorithms, Gibbs Sampling 

and Metropolis-Hastings Algorithm based upon analysis and synthesis of prior 

research. 

6.4 Markov chain Monte Carlo Models and Algorithms 

Markov Process, Monte Carlo, and Markov chain Monte Carlo Models 

The Metropolis algorithm is an example of a MCMC process (Kruschke 2010). To 

understand MCMC, we need to recognize what is a Markov chain as well as what is a 

Monte Carlo process. Random walk is a mathematical formalization of a succession of 

random steps as in steps taken by the proverbial drunk which have equal probability of 

going to each of the available next steps. For a given step or position, the probabilities of 

transition or transition probabilities to any next step depend only on the current step and 

next steps and are independent of prior events and steps.  

A Markov chain is a succession of random steps (from one state to another) 

characterized by the Markov property of being ‘memory-less.’ It is memory-less in the 

sense that each next random step has no memory of, i.e., is totally independent of, all 

prior states (as well as prior sequence of steps and events) except for the current state 

from which it moves to the next state. Such a process characterized by the Markov 

property is called a Markov process.  

Monte Carlo simulation is a simulation based upon repeated sampling of a lot of 

random input values from a distribution of inputs to assess the properties of the target 

outputs distribution by generating representative random values. Hence, it is a 

quantitative method of translating uncertainties in input variables as represented by 
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their probability distributions to uncertainties of outcome variables represented by their 

probability distributions. Resulting quantified probabilities of specific outcomes form a 

probability distribution of predicted outcomes resulting from propagation or 

translation of input uncertainties into outcome uncertainties (GoldSim 2014). The 

Metropolis algorithm is a specific type of a Monte Carlo process (Kruschke 2010).  

Bayesian forecasting with MCMC methods is a natural way to consider 

parameter and model uncertainty in forecasting (Tsay 2010). Considering above 

concepts, in statistical terms, it is useful to think of a stochastic process {Xt} where each 

observed data Xt assumes a value in the parameter space Θ (Tsay 2005, 2010). The 

Markov process {Xt} with memory-less property is one for which given value of Xt, values 

of Xh, h > t, do not depend on values of Xs, s < t. Such a Markov process {Xt} has the 

following conditional distribution function (Tsay 2005, 2010): 

P(Xh | Xs, s ≤ t) = P( Xh | Xt), h > t     

For a discrete time stochastic process {Xt}, the above property will become: 

P(Xh | Xt, Xt-1,…) = P( Xh | Xt), h > t    

Expressed differently, the stochastic process X = {X0, X1, X2,… XT} is a Markov process 

because for all t = 0, 1,…, T – 1,    𝑓(Xt + 1 | xt, xt-1,…, x0) = 𝑓(Xt + 1 | xt),  i.e., a sequence X0, 

X1,… of random elements of some set is a Markov chain if the conditional distribution of 

Xt + 1 given xt, xt-1,…, x0 depends on xt only. The set in which Xt assumes values is called 

the state space of the Markov chain (Geyer 2011). Further, a stochastic process X is a 

random variable X (t, ω), a function of both time t and state ω, for any ω ∈ Ω. For 

stochastic process X = {X0, X1, X2,… XT}, if the change process of X is given by: C1 = X1 – 

X0, C2 = X2 – X1,…, CT = XT – XT-1, then the stochastic process X is called a martingale if E 

(Ct+1 | xt, xt-1,…, x0) = 0, or equivalently, 

E (Xt + 1 | xt, xt-1,…, x0) = xt for all t = 0, 1,…, T – 1. The stochastic process X with the same 

change process is called a random walk if C1, C2,…, CT are independent and identically 

distributed (i.i.d.) with E (|Ct|) < ∞ for all t = 0, 1,…, T. 

Following from (1) and (2) above, if A is a subset of parameter space Θ, the transition 

probability function of the above Markov process will be expressed as follows to connote 

the transition of Xi from time t to time h (Tsay 2005, 2010). 

 Pt (θ, h, A) = P (Xh ∈ A | Xt = θ), h > t 

The above Markov process is said to have a stationary distribution if the transition 

probability depends upon incremental change in time, h – t, but not on specific time t. 
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Hence, a Markov chain has stationary transition probabilities if the conditional 

distribution of Xt + 1 given xt does not depend on t: this is the primary type of Markov 

chain of interest for MCMC models (Geyer 2011). A Markov model whose elements 

follow a Markov chain with stationary transition matrix is called a Hidden Markov Model 

(HMM). HMM, a mixture model with mixing distribution as a finite state Markov chain, 

assumes that the distribution of an observed data point depends upon an unobservable 

or hidden state.   

To make statistical inference for a parameter vector θ and data X, where θ ∈ Θ, 

the distribution P(θ|X) needs to be determined. To use Markov chain simulation for 

doing so, we need to simulate a Markov process on parameter space Θ, which 

converges to a stationary distribution P(θ|X). The key to finding such convergence is to 

use a Markov chain with stationary distribution pre-specified as P(θ|X) and run it until 

it results in approximate convergence of distribution of current values with the 

stationary transition distribution (Tsay 2005, 2010). For some transition probability 

distribution, the initial distribution is said to be stationary or equilibrium if the Markov 

chain specified by it and the transition probability distribution is stationary. This can be 

re-stated as (Geyer 2011): ‘the transition probability distribution preserves the initial 

distribution’. The result will be the determination of many Markov chains that have the 

desired property noted above. Such Markov chain simulation methods used for 

determining the stationary distribution P(θ|X) are known as MCMC methods as they 

make combined use of Markov chain processes and Monte Carlo simulations.  

Monte Carlo approach developed at Los Alamos prior to MCMC was devised as a 

method for using random number generation for computing complex integrals (Walsh 

2004). A complex integral such as ∫ ℎ(𝑥)𝑑𝑥
𝑏

𝑎
 is expressed as product of function 𝑓(𝑥) and 

probability density function p(𝑥) is: ∫ 𝑓(𝑥) 𝑝(𝑥)𝑑𝑥
𝑏

𝑎
. That product expressed as the 

expectation of 𝑓(𝑥) over density p(𝑥), 𝐸𝑝(𝑥) [𝑓(𝑥)], can be approximated as the average 

of the summation of function 𝑓(𝑥) over a large number of random variables 𝑥1,…, 𝑥n 

from density p(𝑥). Mathematically,  

∫ ℎ(𝑥)𝑑𝑥
𝑏

𝑎
 = ∫ 𝑓(𝑥) 𝑝(𝑥)𝑑𝑥

𝑏

𝑎
 = 𝐸𝑝(𝑥) [𝑓(𝑥)] ≈  

1

𝑛
 ∑ 𝑓(𝑥𝑖)𝑛

𝑖=1  

The above method known as Monte Carlo integration is used in Bayesian inference 

to approximate posterior or marginal posterior distributions. Extending above 

computation to a conditional function such as 𝑓(𝑦|𝑥) results in an analogous 

simplification of the integral expression in the context of Bayesian inference: 
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𝐼(𝑦) =  ∫ 𝑓(𝑦|𝑥)𝑝(𝑥)𝑑𝑥 ≈  
1

𝑛
 ∑ 𝑓(𝑦|𝑥𝑖)

𝑛
𝑖=1  

6.5 Gibbs Sampling Algorithm 

Influenced by the ‘landmark paper’ (Robert & Cassella 2011a, 2011b) of Geman 

and Geman (1984) that developed Gibbs Sampling, Gelfand and Smith (1990) advanced 

Gibbs Sampling into perhaps the most popular MCMC method (Tsay 2010). Gibbs 

sampler is the MCMC technique used for generating random variables from a marginal 

distribution indirectly without the need for calculating the distribution density (Casella  

& George, 1992). The key advantage of Gibbs sampling is in decomposing high-

dimensional estimation problems such as in complex stochastic models into lower-

dimensional simpler and more manageable form problems using full conditional 

distributions of the parameters (Scollink 1996). An extreme example of its use is in the 

solution of a complex multivariate stochastic model with N parameters (i.e., N-

dimensions) using N univariate (i.e., one-dimensional) conditional distributions. When 

parameters are highly correlated, it may be advisable to use joint draws as it may not be 

efficient to reduce Gibbs draws into univariate problems (Kruschke 2010, Tsay 2010). 

Consistent with Walsh (2004), Tsay (2010) explains Gibbs sampling in the context 

of estimation of parameters so that the fitted model can be used for making inference. 

Consider three parameters θ1, θ2, and θ3 for a collection of observed data X and M as the 

contemplated model to be fitted. Here the word parameter is used very generally. For 

instance, in MCMC framework, a parameter may denote a missing data point or an 

unobservable latent or “true” variable underlying the observed variable. Following 

Casella & George (1992) and Scollink (1996), assume that the three conditional 

distributions of any parameter θi given the others are available for θ1, θ2, and θ3 but the 

likelihood function of the model cannot be analytically or numerically computed. (In 

statistics, likelihood function (or likelihood) of a set of parameter values θi, given 

observed data Xi, is the probability of those observed variables given the respective 

parameter values, i.e., L(θ|X) = P(X|θ).) Statistically,     f1 (θ1|θ2, θ3, X, M),   f2 (θ2|θ3, θ1, 

X, M),   f3 (θ3|θ1, θ2, X, M) denote the three conditional distributions for θ1, θ2, and θ3. 

Generally, fi (θi|θj≠i, X, M) represents the conditional distribution of parameter θi given 

the other two parameters θj and θk, the data X, and the model M. In practice, the exact 

form of the conditional probability distribution function doesn’t need to be known; we 
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should be however able to draw a random number from each of the relevant 

conditional distributions. 

Assume notation θa,b wherein a= probability distribution, and, b = specific 

numeric order or sequence of the draw from that distribution. Then, the computational 

logic of one iteration of the Gibbs sampling algorithm given arbitrary initial values for 

θ2 and θ3 being θ2,0 and θ3,0 is listed below (Tsay 2010). 

a. Draw a random sample from f1 (θ1| θ2,0, θ3,0, X, M) denoting random draw as θ1,1. 

b. Draw a random sample from f2 (θ2| θ3,0, θ1,1, X, M) denoting random draw as θ2,1. 

c. Draw a random sample from f3 (θ3| θ1,1, θ2,1, X, M) denoting random draw as θ3,1. 

 

At end of the first iteration of draws from each distribution, the parameters θ1,0, θ2,0, 

and θ3,0 become θ1,1, θ2,1, and θ3,1. Using the updated parameters as input, the second 

iteration results in updated parameters as θ1,2, θ2,2, and θ3,2. Repetition of the iteration m 

times will yield the following sequence of random draws: (θ1,1, θ2,1, θ3,1), …, (θ1,m, θ2,m, 

θ3,m). By taking large enough m, i.e., simulating a large enough sample, the mth draw, 

(θ1,m, θ2,m, θ3,m) (under some weak regularity conditions requiring prior Gibbs iteration’s 

traversal of full parameter space (Tsay 2010)) is approximately equivalent to a random 

draw from the joint probability distribution of the three parameters, f (θ1, θ2, θ3| X, M). 

For real application, Tsay (2010) recommends using sufficiently large n and dropping 

first m random draws (called burn-in sample) from the Gibbs iterations yielding the final 

Gibbs sample: (θ1,m+1, θ2,m+1, θ3,m+1), …, (θ1,n, θ2,n, θ3,n). Prior m random draws are dropped 

to ensure that the final residual sample converges as close as possible to a random 

sample from the joint distribution f (θ1, θ2, θ3| X, M). The final Gibbs sample being close 

enough to the random sample from the joint distribution can then be used for 

computation, for example, of point estimate and variance (Tsay 2010, Walsh 2004). 

Metropolis Algorithm 

Originally, attempts to integrate very complex functions using random sampling 

by mathematical physicists’ such as Metropolis & Ulam (1949), Metropolis et al. (1953), 

and, Hastings (1970) led to development of MCMC methods and Metropolis-Hastings 

algorithm. Those attempts were aimed at resolving the problems inherent in obtaining 

samples from complex probability distributions while applying Monte Carlo 

integration. 

 Consistent with Walsh (2004), Tsay (2010) considers the case of the conditional 

probability distribution p (θ|X) = f (θ|X)/K (where K is the normalizing constant) for 

which it is infeasible or very time intensive to compute the normalization constant or 
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for which random draws are unavailable. Given an approximation of that distribution 

for which random draws are feasible, the Metropolis algorithm (Metropolis & Ulam 

1949, Metropolis et al. 1953) generates a sequence of random draws from it whose 

distributions converge to f (θ|X) as follows (Walsh 2004, Tsay 2010, Kruschke 2010).  

a. Start with a random draw of some initial value θo: f (θo|X) > 0. 

b. Given previous draw θt-1 for the tth iteration, draw a candidate sample θ∗ from a 

known distribution and call it jumping distribution Jt(θt|θt-1), also known as proposal 

distribution or candidate-generating distribution (Gelman et al. 2003). The jumping 

distribution denoting the probability of returning value of θt given previous value of 

θt-1 must be symmetric, i.e., Jt(θi|θj) = Jt(θj|θi) for all θi, θj, and t.  

c. Given candidate sample θ∗, calculate the ratio r of the density at the candidate point 

θ∗ and at the current point θt-1:   r = p (θ∗|X) / p (θt-1|X) = f (θ∗|X) / f (θt-1|X). As the 

ratio f (θi|X) is being computed for the same probability distribution with two 

different i-values, the normalization constant K cancels out in both the numerator 

and the denominator. That is how MCMC Metropolis algorithm resolves the original 

problem of computing the normalization constant that motivated the discussion.  

d. If the jump from θt-1 to θ∗ increases the conditional posterior density, i.e., r > 1, accept 

the candidate point θ∗ as θt, i.e., set θt = θ∗ and return to step b.  If the jump decreases 

the conditional posterior density, i.e., r < 1, accept the candidate and set θt = θ∗ with 

probability r; else reject it, i.e. set θt = θt-1, and return to step b.  

 

As per Walsh (2004), the Metropolis algorithm can be summarized in terms of first 

computing the acceptance probability of candidate as     r = min [f (θ∗|X) / f (θt-1|X), 1]     

and then accepting a candidate point with probability r called the probability of the move 

to the proposed position, pmove =  min [P(θproposed) / P(θcurrent), 1] (Kruschke 2010). This 

generates a Markov chain (θ0, θ1,…, θk, …), as the transition probabilities from θt to θt+1 

depend only on θt and not on (θ0, …, θt-1). Following a sufficient burn-in period of say 

prior m of n steps, the chain approaches its stationary distribution, and then the samples 

from the vector   (θm+1,…, θn)    are the samples from p (θ|X). 

6.6 Metropolis-Hastings Algorithm 

Hastings algorithm (Hastings 1970, Tsay 2010) based upon generalization of the 

Metropolis algorithm uses an arbitrary transition probability function Jt(θi|θj) = 

Pr(θi→θj). Correspondingly, it calculates the ratio r of the density at the candidate point 

θ∗ and at the current point θt-1:   r = ( f (θ∗|X) / Jt(θ∗|θt-1) ) / ( f (θt-1|X) / Jt(θt-1|θ∗) ) 

          = ( f (θ∗|X)   Jt(θt-1|θ∗) )  / ( f (θt-1|X)    Jt(θ∗|θt-1) ) 
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It also sets acceptance probability of the candidate point (Hastings 1970, Walsh 2004):    

r = min [( f (θ∗|X) / Jt(θ∗|θt-1) ) / ( f (θt-1|X) / Jt(θt-1|θ∗)), 1] 

   = min [( f (θ∗|X) Jt(θt-1|θ∗)) / ( f (θt-1|X) Jt(θ∗|θt-1)), 1]    

As apparent, the Hastings algorithm represents a more general case of the 

Metropolis algorithm: when jump density is symmetric, i.e., Jt(θi|θj) = Jt(θj|θi), it reduces 

to the original Metropolis algorithm. The modified algorithm is known as the 

Metropolis-Hastings algorithm which is very general and broadly applicable. A caveat 

about the Metropolis-Hastings algorithm is that the algorithm’s convergence to a 

solution is contingent upon the availability of a fine-tuned proposal distribution. 

Otherwise, if the proposal distribution is too narrow or too broad, greater proportion of 

the proposed jumps will be rejected or the move will be restricted to a narrow localized 

parameter space. Gibbs sampling, in contrast, is more forgiving as it does not require 

‘artful tuning’ of a proposal distribution (Kruschke 2010).  

The above discussion on Monte Carlo Models and MCMC Algorithms, Gibbs 

Sampling and Metropolis-Hastings Algorithm developed the core quantitative 

methodological focus of this article. Next section develops an understanding of how 

network and computer security research and practice represent increasingly important 

domains for application of above research methods based upon MCMC algorithms and 

Bayesian inference. The following discussion also provides specific examples from three 

key domains of network and computer security research wherein solutions to complex 

high-dimensional stochastic problems relied upon creative applications of MCMC. 

6.7 MCMC Models in Computer & Network Security  

The following review of research establishes increasing importance of MCMC, 

Gibbs Sampling, and Metropolis Algorithm in three key contexts of network and 

computer security research and practice. Related discussion on application of MCMC 

methods in network and computer security highlights selective examples from network 

and computer security research. The discussion is illustrative given the methodological 

focus of the article. Focus is on demonstrating through specific examples how MCMC 

methods and MCMC algorithms are applied in practice in the given contexts. The three 

specific contexts of network and computer security research that are the focus of the 

following research methods discussion on MCMC are listed below.  

(1) Cryptography, Cryptanalytics & Penetration Testing  
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(e.g. Chen & Rosenthal 2012, Diaconis 2009, Hanawal & Sundaresan 2010, 

Muramatsu et al. 2006, Furon et al. 2012, Matsui et al. 2004),  

(2) Intrusion Detection & Prevention and Anomaly Detection  

(e.g. Scott 1999, 2001, 2004; Zhao & Nygard 2010, Ihler et al. 2006, Jyothsna et al. 

2011, Shi & Mei-Feng 2012), and,  

(3) Privacy in Anonymity Systems and Social Networks  

(e.g. Danezis and Troncoso 2009, Troncoso and Danezis 2009).  

6.7.1 Cryptography, Cryptanalytics & Penetration Testing 

Author’s interest in MCMC for network and computing security was motivated 

in course of applied R&D on quantitative risk management models for global banking 

and finance model risk, market risk and operational risk management (Malhotra 2014a, 

2014b, 2014c, 2014d, 2014e). His prior research focused on analyzing vulnerabilities in 

the mainstream global encryption standards and cryptographic protocols based on 

mathematical and algebraic analysis of cryptanalytic algorithms such as algebraic 

number sieves (Malhotra 2013a, 2013b, 2013c, 2013d). While analyzing the mathematical 

and statistical foundations of computing and network encryption schemes, his interest 

focused on computational and statistical foundations of cryptography and cryptanalysis 

using cryptanalytic tools. In that process he found some very interesting research in 

MCMC methods by statisticians and mathematicians advancing quantitative methods 

research on cryptography and cryptanalysis. Three such examples of cryptography and 

cryptanalysis-related MCMC research are outlined below. 

 An interesting research stream in this applied area is focused on decrypting and 

attacking ciphers underlying network and computing encryption mechanisms (Chen & 

Rosenthal 2010, Diaconis 2009). Research pioneering integrated use of cryptography 

and MCMC algorithms by Chen & Rosenthal (2010) advances MCMC for decryption of 

substitution ciphers, transposition ciphers, and substitution-plus-transposition ciphers. 

Based on the frequency analysis of combinations of characters such as bi-grams and tri-

grams, their research has delved into in-depth statistical analysis for optimization of 

such decryption attacks. They analyzed the transitions of consecutive text symbols in bi-

grams to develop a matrix of such transitions then used it for computing the probability 

of the respective transitions. MCMC algorithms were used for searching the probability 

maximizing functions given the high-dimensionality of the search space of such 

functions. Their analysis has examined diverse combinations of variables such as 
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MCMC iterations, scaling parameter, cipher text amount, number of repetitions, and, 

swap vs. slide vs. block-slide moves. They report success rates of up to 70% and above 

with transposition key lengths up to 40.  

Diaconis (2009) motivates MCMC application in the context of cryptography and 

cryptanalysis and provides an analytical treatment of the Metropolis algorithm and 

related theorems. Advancing upon Diaconis (2009), Hanawal and Sundaresan (2010) 

develop an empirical study in which they generate randomized passwords using 

MCMC and the Metropolis algorithm. They show how a high-dimensional problem 

characterized by a distribution with difficult to compute normalizing constant can be 

reframed using the Metropolis algorithm after which the solution is no longer hindered 

by the need for the normalizing constant. Related MCMC enabled credential 

authentication and decoding research includes examples such as dynamic signature 

verification (Muramatsu et al. 2006), decoding fingerprints (Furon et al. 2012), and face 

recognition (Matsui et al. 2004). Above examples illustrate use of MCMC methods such 

as Metropolis algorithm in solving difficult to compute or otherwise infeasible high-

dimensionality problems in cryptography, cryptanalysis, and penetration testing.  

6.7.2 Intrusion Detection & Prevention and Anomaly Detection 

Intrusion detection and intrusion prevention is another network and computer 

security research and practice area that has benefited from applications of MCMC 

methods and algorithms (e.g. Scott 1999, 2001, 2004; Zhao & Nygard 2010, Ihler et al. 

2006). Many such models depend upon anomaly detection wherein behavior of traffic 

generated by the customers is distinguished from that of the attackers based upon 

distinct probability distributions. Scott (1999, 2001) distinguished customers’ traffic as a 

Poisson process from the traffic from the two-state continuous time Markov process 

generated by attackers breaking into and exiting the accounts. The presence of the 

attacker also generates additional traffic as an independent second Poisson process. 

Given all processes as homogeneous, account traffic data is represented as discrete time 

Hidden Markov Models in which case the hidden state indicates intrusion or attack 

status and presence of absence of the attacker (Scott 2001, 2004).  

The above studies used the MCMC algorithm Gibbs sampler for sampling each 

state in the hidden Markov chain given most recent draws of nearest neighbors. MCMC 

is critical for solution of such high-dimensionality problems as the likelihood function 

for the HMM quickly becomes infeasible to compute even for small values of hidden 
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chain’s size of the state space. Using a Bayesian approach to learning and inference for 

time series data, Ihler et al. (2006) use a similar Hidden Markov-Poisson model for an 

adaptive anomaly detection algorithm. Their study determined the time complexity of 

each MCMC iteration as O(T), linear in the length of the time series, and the series 

shows rapid convergence. Given the high false-positive rate of anomaly detection 

intrusion systems, Shi & Mei-Feng (2012) show how several research studies using 

HMM benefited from MCMC and related methods for analyzing intrusion detection 

systems. Their study uses HMM given high-dimensionality resulting from number of 

states, the classic problem for which MCMC was devised as a solution as discussed 

earlier.  

Similarly, Zhao & Nygard (2010) use the Metropolis-Hastings algorithm to infer 

the distribution of intruders in a wireless network from limited local information used 

by a fuzzy logic algorithm to assess the impact of the intruders on a monitored point. A 

comprehensive review of MCMC and other related Bayesian inference and machine 

learning models for anomaly based intrusion detection and prevention systems is 

available in Jyothsna et al. (2011). They review key distinctions between statistical 

models (such as: threshold model, Markov process model, statistical moments model, 

multivariate model, time series model), cognition models (such as finite state machine, 

description scripts, and adept systems), cognition based techniques (such as boosted 

decision tree, support vector machine, artificial neural network), machine learning 

based detection techniques, kernel based online anomaly detection, and detection 

models based on computer immunology and models based on user intention. Use of 

MCMC also optimizes use of computational processing power needed by the wireless 

base station which then only needs to query and process network packets to the specific 

nodes identified by the conditional distribution. Above examples illustrate the use of 

MCMC methods such as Gibbs sampling and Metropolis-Hastings algorithm in solving 

difficult to compute or otherwise infeasible high-dimensionality problems in intrusion 

detection and prevention and anomaly detection such as for telecom networks. 

6.7.3 Privacy in Anonymity Systems and Social Networks 

Anonymity systems such as Tor network based on onion-routing allow two 

parties to exchange information without disclosing their network identifiers to each 

other or to any other third party. The engineering principle underlying such 

communications is that the messages entering and leaving the network should be 
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cryptographically unlinkable (Danezis and Troncoso 2009, Troncoso and Danezis 2009). 

Privacy of such networks which ensure that anonymity is safeguarded is prized across 

commercial, social, and government and military communications. The application of 

MCMC algorithms in case of such anonymity systems is to make it statistically and 

computationally feasible to infer who is talking with who based upon network traffic 

patterns of messages.  

 Anonymity is measured as the uncertainty that the adversary has about who is 

conversing with who by using information theoretic measures of entropy (Danezis and 

Troncoso 2009). The key limitations of those measures include measuring anonymity of 

a single message and not the systems as a whole, and, most seriously, statistical 

infeasibility of computing relevant probability distributions. Contribution of the 

Danezis and Troncoso (2009) at Microsoft Research is to address the ‘hard problem’ of 

calculating the probability distributions over senders or receivers of messages. To solve 

the above statistical computational problems, they demonstrate the use of probabilistic 

modeling and Bayesian inference, which despite their power, are handicapped by 

considerable computational complexity that often makes it not possible to compute the 

probability distributions. It is in this specific context that MCMC sampling algorithms, 

including Metropolis-Hastings (MH) algorithm and Gibbs sampler, come to the rescue 

for extracting samples that provide approximations of relevant probability distributions 

from observations of ‘rather complex systems’ (Danezis and Troncoso 2009).  

Above review of MCMC methods and algorithms advancing research and 

practice in network and computer security and cybersecurity, analysis of adversary 

attacks, penetration testing, and information assurance establishes their increasingly 

important and growing role. Given the methodological scope and focus of the 

discussion, only specific examples and contexts within network and computer security 

research could be addressed. The concluding discussion further highlights some of the 

broader implications of this stream of research with both methodological and applied 

recommendations. 

6.8 Summary and Future Research 

Markov chain Monte Carlo (MCMC) may be described as a widely used set of 

general quantitative methods to find approximate solutions to complex problems in 

polynomial time. Recognized as one of top-10 computing algorithms with underlying 

research among top-3 mathematics papers, its impact across diverse fields including 
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computer science, physics, statistics, finance, economics, and engineering is evident. 

The article focuses on highlighting the increasingly important and critical role of 

MCMC algorithms in network and computer security research and practice. The 

greatest impact of MCMC methods and algorithms is probably in case of problems 

where outputs lack interpretability because of high-dimensionality and complex 

interactions in inputs. Several of the network and computer security contexts 

highlighted in the discussion reviewed such problems and their resolution using 

MCMC. Our review established increasing importance of MCMC, Gibbs Sampling, and 

Metropolis Algorithm in modeling cryptography and cryptanalytic password attacks 

and authentication analysis; signature and anomaly based network intrusion detection 

and prevention systems; and analyzing potential vulnerabilities in anonymity based 

systems such as Tor network based on onion-routing protocol and other ‘social 

networks’. 

 Beyond the focus of the current discussion, there are two key important issues to 

focus on for future research and development. First is the development of quantitative 

methods and algorithms for addressing high-dimensional computationally complex 

problems relevant to emerging paradigms such as big data analysis and quantum 

computing. We need to recognize that modern statistical paradigms such as Bayesian 

inference are themselves reliant on computational statistical methods such as MCMC 

for their prowess. Second is increasing and critical need for recognition and resolution 

of problems at general systems level where they are sometimes called systemic 

problems. Some of our methodological and applications discussion explicitly or 

implicitly recognized this systemic concern. Particularly, in the case of computer and 

network security, the problems across most domains being addressed relate to the 

broader focus on risk management as well.  

Relating above methodological and applied concerns together, one focus of 

future research needs to be on model risk management. Solving complex high-

dimensional problems with inaccurate models is often punished in any domain, 

whether it is computing or (say) investment banking. Model risk management has 

gained currency in investment banking but is equally important for any domain reliant 

upon high-dimensional and computationally complex problems such as network and 

computer security. ‘Model  risk  arises  from  the  potential  adverse  consequences  of  

making  decisions  based  on incorrect or misused model outputs and reports.’ Knowing 

history of applications of MCMC ranging from chemical-physics to network computing, 
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most readers can perhaps relate to the above concern about model risk. Few may, 

however, recognize that the above statement is from a top investment bank strategy 

document.   

Whether it is quantum computing or quantitative finance, regardless, it is 

imperative to ensure that models perform as specified and intended; models are 

conceptually sound and used appropriately and that  model  users  are  aware  of  the  

models’  strengths  and  limitations  and  how  these  can  impact  their decisions. That is 

essentially model risk management. Advancing beyond network computing to 

investment banking, one may possibly discern that the computational statistical 

methods and models related concerns impact both fields (and others) as well. Following 

prior discussion, one may even speculate that Wall Street and Pentagon (among others) 

may be probably grappling with similar model risk management concerns; albeit 

probably oblivious of the commonality of systemic problems they may share. 

In any case, the approaches to mitigate operating risk associated with the use of 

models needs to evolve to reflect recent trends in practice. In particular, there are a 

number of new areas where it is not possible for the “human eye” to necessarily detect 

material flaws: in the case of models operating  over  very  small  time  scales,  or  where  

outputs  lack  interpretability  due  to  high-dimensionality  and  complex interactions in 

inputs, the periodic inspection of predicted versus realized outcomes is unlikely to be 

an effective risk mitigate. These situations require a holistic validation framework of the 

system focused on identifying  and  mitigating  potential  failures,  taking  into  account  

the  models’  objectives,  their implementation including the joint interaction of software 

and hardware, their response to potential input shocks in real time and the fail-safe 

mechanisms. The above quote is attributed to a top investment bank as well.  
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Chapter 7.  

VaR and Beyond VaR for Cyber Insurance 

"Normality has been an accepted wisdom in economics and finance for a century 

or more. Yet in real-world systems, nothing could be less normal than normality. 

Tails should not be unexpected, for they are the rule. As the world becomes 

increasingly integrated – financially, economically, socially – interactions among 

the moving parts may make for potentially fatter tails. Catastrophe risk may be 

on the rise." 

-- Andrew G Haldane, Executive Director, Financial Stability and member of the 

Financial Policy Committee and Benjamin Nelson, Economist, Financial Stability, 

Bank of England, in 'Tails of the unexpected' speech at “The Credit Crisis Five 

Years On: Unpacking the Crisis”, 8 June 2012. 

7.1 Portfolio Theory based Framework for Cyber Insurance 

In the current chapter, we develop the first known portfolio theory based 

framework for cyber insurance modeling with guidance to minimize model risks, tail 

risks, and systemic risks inherent in models in commercial cyber insurance modeling. 

The fundamental basis of risk measurement underlying the VaR model lies in the 

portfolio theory, also known as modern portfolio theory (MPT) (Markowitz, 1952). Mean 

variance optimization (MVO) in the context of portfolio theory aims to achieve a 

desired level of portfolio return (given by mean) for a degree of portfolio risk (given by 

standard deviation). MVO is expected to maximize expected return of the portfolio for 

any given portfolio standard deviation, or, alternatively minimize standard deviation of 

the portfolio for any given expected return. A key insight of the portfolio theory is that 

it is not the riskiness (i.e., standard deviation w.r.t. to its mean return) of any specific 

asset that matters, but, the correlation or covariance of its return with the returns to the other 

assets in the portfolio that matters. The lower the correlation, other things being equal, the 

less the asset contributes to overall risk. If the correlation is sufficiently negative, it will offset 

existing risks and lower the portfolio risk (standard deviation). Following discussion 

describes the finance portfolio theory underlying VaR relating it to the cyber domain for 

cyber insurance modeling.  
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7.2 Portfolio Theory Mapped to Cyber Insurance Modeling 

 Mapping from the finance domain to the cyber domain, it follows that the 

riskiness of an individual cyber risk is not which really matters. Rather, what matters is 

how it correlates with other cyber risks, which determines the overall risk of the 

‘portfolio’ of cyber risks. The lower the correlation of the cyber risk with other cyber risks, the 

lower the overall risk of the portfolio of cyber risks. More importantly, conversely, the higher the 

correlation of the cyber risk with other cyber risks, the higher the overall risk of the portfolio of 

cyber risks. Given the extremely high correlations between cyber risks as discussed in the 

prior analyses, the above observation further reaffirms the support for our prior 

hypotheses. Specifically, as cyber risks are highly correlated to each other given their intrinsic 

nature (as compared with financial risks), cyber risks are much more risky as compared with 

financial risks. Secondly, assets in a financial portfolio typically may offset their 

individual riskiness given low correlations or negative correlations with other assets. 

However, given high positive correlations among cyber risks, most cyber risks will be 

positively and highly correlated and thus contribute to very high riskiness of the portfolio of 

cyber risks. Such portfolio of risks could be considered at the intra-firm level or at 

(systemic) inter-firm level, in either case, the unique character of cyber risks is expected to 

result in ‘portfolios’ of extremely highly interdependent and highly correlated cyber risks.   

 VaR, typically expressed as a percent of capital, is the statistical measure of the 

amount of loss not to be exceeded in a given time frame with a certain probability. It is the 

maximum amount of money likely to be lost over a specific time period, at a specific confidence 

level. In the context of portfolio theory, VaR was developed as a system to measure risks 

across different trading positions, across the whole institution, and also aggregate these 

risks into a single risk measure. VaR was estimated from a system based on standard 

portfolio theory, using estimates of the standard deviations and correlations between 

the returns for different assets in the portfolio. The theoretical basis of VaR is the 

portfolio theory while other approaches such as historical simulation and Monte Carlo 

simulation do not completely rely upon the actual risk return data. Many finance 

experts question the validity of relying upon the statistical assumptions underlying VaR 

which are based upon physical sciences such as Physics for application in the 



 

133 
 

sociotechnical world of social systems such as financial markets (Heires,2012152; Lohr, 

2008153; Derman & Wilmott154). Our related point underscored in the prior analysis 

about social engineering being a key determinant of cyber risks in contrast to the finance 

domain is most relevant in the above context155. 

7.3 Mean Variance Framework for Cyber Risk of Loss 

In portfolio modeling, financial risk is modeled using the Mean-Variance 

framework in terms of mean and variance of asset returns assumed normally 

distributed. This framework considers a random variable (r.v.) X representing normally 

distributed daily returns with mean 𝜇 and variance 𝜎2 (i.e., standard deviation 𝜎) where 

the probability f(x) that r.v. X = x is given by the probability density function (pdf): 

 

s.t.     X: -∞ < x < ∞. A normal pdf with 𝜇 = 0 and 𝜎 = 1 known as a standard normal 

(corresponding to 𝑓(𝑥) =
1

√2𝜋
 𝑒−

1

2
𝑥2

) is shown in the left panel of Fig. 7-1.  

 

Fig. 7-1. Normal PDF and Normal Quantiles and Probabilities 

                                                           
152 http://www.rmmagazine.com/2012/08/29/finance-isnt-science-why-wall-streets-models-will-always-have-
limitations/ 
153 http://www.nytimes.com/2008/11/05/business/05risk.html 
154 http://www.businessweek.com/stories/2008-12-30/financial-models-must-be-clean-and-simple 
155 http://blog.trendmicro.com/employees-may-companys-biggest-cybersecurity-risk-threat-social-engineering/ 
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The right panel of Fig. 7-1 shows the probability of the portfolio returns less than -1.645 

(i.e., loss greater than 1.645) as shown by the area under the left hand tail which is equal 

to 0.05, or 5%.  

Hence, there is 5% probability that the portfolio returns will be less than -1.645 

(i.e., loss will be greater than 1.645). Conversely, at the 95% confidence level, the maximum 

likely portfolio loss can’t exceed 1.645, i.e., portfolio VaR = 1.645. Hence, the cumulative 

probability is given by the cumulative density function which gives the normal 

probability of x ≤ 𝑋 as follows: 

 

Corresponding quantile or x-value is given by:  where cl=confidence 

level such as 95% in the above case, and 𝛼𝑐𝑙  is the standard normal variate 𝛼𝑐𝑙 =
𝑋𝑐𝑙− 𝜇

𝜎
 

corresponding to the cl such as 1.645 in the above case (𝛼0.95 = −1.645).  

 Tail risks can be recognized from analysis of higher (third and fourth) moments 

of distribution. The third and fourth moments of distribution called skewness and 

kurtosis seen in Fig. 7-2 characterize long tails and fat tails respectively in a distribution 

(Dowd, 2007). 

  

  

Fig. 7-2. Skewness and Kurtosis Denote ‘Tail Risks’ in Non-Normal Distributions 
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Skew parameter is 0 for a (symmetric) normal distribution. Positive skew results 

in a left short tail and right long tail, whereas a negative skew results in a left long tail 

and right short tail. Therefore, negative skew with a left long tail indicating greater 

concentration of risk of loss (i.e., ‘negative profit’) is particularly relevant for modeling of 

cyber risk related losses and cyber insurance modeling. Kurtosis characterizes flatness 

of the tails resulting in corresponding concentration of risks in the tails. Kurtosis 

parameter is equal to 3 for a normal distribution. Relative to the normal distribution, 

fat-tailed distributions with kurtosis greater than 3, and, thin-tailed distributions with 

kurtosis less than 3 are characterized. As compared with normal, for cyber risk loss 

estimates, left fat tail indicating extreme events being more likely and inflicting large 

losses are particularly relevant. Therefore, if the actual cyber risk loss distribution is non-

normal, assumption of normality can result in significant underestimation of cyber risk. Our 

prior analysis established that cyber risks are highly correlated and highly interdependent. 

Hence, the assumption of normality can cause significant underestimation of cyber risk 

when using portfolio theory based models such as VaR. 

 Using the portfolio theory underlying VaR to model cyber risk entails critical 

assumptions of normality. We need to assume that cyber risk losses are multivariate 

normally distributed. Or, less restrictively, we need to assume that our cyber risk 

portfolio has normally distributed losses. In either case, we need to rely upon the key 

assumption of the portfolio of cyber risk losses being normally distributed (Dowd, 

2007).  Consequently, we rely upon a framework that isn’t as reliable for cyber 

insurance modeling when normality assumptions are violated. That happens in 

presence of long tails and fat tails. In particular, we need to be concerned about the long 

tail and fat tail of the distribution on the left side which imply extreme losses. 

7.4 Value-at-Risk (VaR) for Cyber Risk Insurance Modeling 

 Advancing from portfolio theory to VaR allows lesser restrictions on the returns 

distribution but focuses on the tails of the distribution. VaR is the maximum likely loss over 

some target period at a specified probability level. It is the maximum amount of loss not to be 

exceeded with a certain probability or level of confidence in a given time frame. VaR 

provides a common risk measure for different types of positions and risk factors. It also 

takes into account correlations between risk factors to help measure risk in a statistically 

meaningful manner. Broadly speaking, VaR can be applied in various ways: (a) as a 
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point estimate measure of maximum probabilistic loss, (b) as an estimation procedure, (c) as 

a methodology that can estimate other risks as well, and, (d) as an approach to risk 

management for strategic decision-making (Dowd, 2007). Our primary focus on VaR in 

the current discussion on cyber risk assessment and cyber insurance modeling is related 

to (a), (b), and (c). In that context, tail risks are even more critical as compared with 

finance. 

 VaR is based upon two parameters: holding period of time over which portfolio 

profit or loss are measured and confidence level denoting probability of loss. Holding 

period could specify any duration such as daily, weekly, monthly, or annual. 

Confidence level (cl) could be any percentage of probability between 0 and 1 such as 

95% and 99%. Assuming holding period as daily, daily VaR for those two confidence 

levels is shown in the left and right panels of Fig. 7-3. Both schematics show probability 

of loss on the y-axis and monetary profit (+) or loss (-) of the portfolio on the x-axis. 

Since cyber risks are different from financial risks in that there is no upside or profit 

involved, there is only downside or risk of loss. Hence, creativity is needed for mapping 

the notions of financial portfolio returns to cyber risk modeling. For instance, negative 

and positive returns describing ‘losses’ and ‘profits’ in finance may be mapped to cyber 

risk related ‘losses’ and ‘losses averted’.  

  

Fig. 7-3. How Tail Risks Vary for Different Point Estimates of Normal VaR 
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Comparing the two panels in Fig. 7-3 (Dowd, 2007), we can see that at 95% 

confidence level, the critical value is -1.645. It denotes that 95% of the time the maximum 

loss is not expected to exceed 1.645σ. However at the same confidence level, 5% of the 

time, the maximum loss can exceed 1.645 σ. Similarly, at 99% confidence level, the 

critical value is -2.326. It denotes that 99% of the time the maximum loss is not expected 

to exceed 2.326σ. However, 1% of the time, the maximum loss can exceed 2.326 σ.  

Hence, VaR measure can help us assert that: “We are X percent certain that we 

will not lose more than V dollars in time T” (Hull, 2012). For the 1-day holding period, 

we can therefore conclude that we are 95% certain that we will not lose more than 1.645

σ dollars in the next trading day. We can similarly conclude that we are 99% certain that 

we will not lose more than 2.326σ dollars in the next trading day. Of course, the above 

conclusions are based on the assumption of normality of portfolio returns. As the 

confidence level increases (such as from 95% to 99%), the tail percentage probability of 

loss decreases (correspondingly from 5% to 1%), and, VaR value increases (1.645σ to 

2.326σ). Hence, at higher confidence intervals (i.e., with increasing confidence), other thing 

remaining same, the maximum expected loss that will not be exceeded typically grows at 

increasing rate as seen in the left panel of Fig. 7-4 (Dowd, 2007).  

 
Fig. 7-4. How Normal VaR Measure Varies with Change in its Two Parameters 
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Similarly, as the holding period increases, VaR tends to increase. That implies 

that other thing remaining same, for increasing holding periods, the maximum expected loss 

that will not be exceeded typically increases but at a decreasing rate as seen. It should be 

noted that the behaviors of VaR shown above are commonly noted, even though other 

behaviors are possible. Dowd (2007) suggests varying both parameters, confidence level 

and holding period, together to ‘form a more complete picture’ of VaR Surface as 

shown in Figure 7-5 below (Dowd, 2007). 

 

Fig. 7-5. Varying both Parameters Shows a More Complete Picture of Normal VaR 

The VaR surface provides a much better view of the extreme risks corresponding 

to very severe possible losses as both parameters approach their extreme values. It is 

evident in the spike corresponding to a maximum possible loss approaching 25σ 

dollars! Of course the above picture presented is of normally distributed portfolio 

returns. For example, we do not see any regime shifts over the time duration. Regime 

shifts denote abrupt and persistent structural breaks impacting dramatic changes in the 

behavior of financial time series data. Such regime shifts typically coincide with 

economic and financial crises. As illustrated in Fig. 7-6, compared with normal 

distribution, the real world of power-law distributions is characterized by much greater 
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tail risks (Mandelbrot & Taleb, 2006156; Mandelbrot & Taleb, 2005157; Sexauer & Siegel, 

2012158). Such tail risks involve both higher frequency of occurrence and much greater 

magnitude of extreme losses than predicted based on assumptions of normality. 

 

Fig. 7-6. Most of Sociotechnical World is Non-Normal and Governed by Power Laws 

7.5 Fundamental VaR Risks in Cyber Insurance Modeling 

An example from the world of finance can help given that the cyber insurance 

modelers are enamored about using VaR ‘because finance uses VaR’159. The simplicity of 

VaR in terms of ease-of-application and understanding has made it popular as a 

worldwide risk model in finance. However, as most portfolio managers assert: ‘risk is in 

the tails’, and it is on that most critical point where VaR is not only silent but may in fact 

mislead if relied upon for the wrong reasons by naïve modelers and users. Haldane and 

Nelson (2012) note that: “VaR suffers a fatal flaw as a risk management and regulatory 

measure: it is essentially silent about risks in the tail beyond the confidence interval. For 

example, even if a trader’s 99% VaR-based limit is $10 million, there is nothing to stop 

them constructing a portfolio which delivers a 1% chance of a $1 billion loss. VaR would 

be blind to that risk and regulatory capital requirements seriously understated. Worse 

still, the fatter the tails of the risk distribution, the more misleading VaR-based risk 

measures will be. Consider holding a portfolio of world equities and, based on data 

                                                           
156 http://www.ft.com/cms/s/2/5372968a-ba82-11da-980d-0000779e2340.html 
157 http://money.cnn.com/sales/major_moments/moneymanage/risk.html 
158 http://us.allianzgi.com/MarketingPrograms/External%20Documents/Managing_Tail_Risk.pdf 
159 http://www.cert.org/flocon/2013/presentations/ulrich-james-cybervar.pdf 



 

140 
 

from 1693 to 2011, calculate the VaR. The 99% VaR assuming the data are normal gives 

a loss of $6 trillion at today’s prices. Using the actual data raises the estimated VaR by 

one third to $7.8 trillion.  Finally, calculating the risk conditional on being in the 1% tail 

of the distribution gives a loss of $18.4 trillion. Simple VaR underestimates risk by a 

factor of 1.5 and 3.” 160 

Our prior analysis of extant quantitative models in predominant use for cyber 

risk and cyber insurance modeling indicated primary reliance of most commercial 

providers on VaR. Current analysis facilitates understanding of VaR so that such 

providers can make informed choices about (not) using VaR while being aware of its 

strengths as well as its limitations. Recent history of VaR modeling in finance is 

characterized by headlines related to major firm level and systemic crises. Hence, it is 

all the more critical to know the boundaries and assumptions of VaR to preempt and 

prevent similar mishaps in cyber risk and cyber insurance modeling. Prior analysis 

demonstrated keen interest of the cyber risk modeling commercial providers in 

mapping risk modeling using VaR from finance to cyber insurance modeling. In 

response, our finance empirical study in a prior chapter helped the cyber insurance 

modelers understand both the content and the context of VaR’s native application 

(Malhotra, 2014)161.  

More importantly, given key focus on model risk management related to VaR, 

that empirical study also demonstrated how to manage the model risk associated with 

use of VaR. Specifically, it used multiple models to cross-check the reliability of the VaR 

models. Such approach for managing the risk of any specific model by cross-validating 

the findings by using multiple independent models and methods is a key model risk 

management strategy (Morini, 2011). Such methods included basic quantitative models 

that compared VaR findings by taking into consideration third and fourth moments of 

the distribution. Such methods also included advanced quantitative finance analytics 

methods such as expected shortfall (also known as expected tail loss), extreme value 

theory, and Cornish-Fisher approximations.  

Prior analysis clearly established that cyber risks entail much higher 

interdependence and correlations than do financial risks typically modeled using VaR. 

                                                           
160 http://www.bankofengland.co.uk/publications/Documents/speeches/2012/speech582.pdf 
161 http://papers.ssrn.com/sol3/papers.cfm?abstract_id=2538401 
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Key limitations of VaR models given their inability in dealing with such 

interdependencies and correlations has also made it the subject of very strong criticism 

in finance (Malhotra, 2012)162. Given such known limitations of VaR, in our prior analysis 

we concluded that continued use of VaR in for cyber risk modeling is expected to result 

in extreme model risks, tail risks, and, systemic risks. Following discussion helps further 

understand how to manage model risks arising from reliance upon VaR for cyber 

insurance modeling.  

As discussed before, being a point-estimate, VaR is not a reliable estimator of 

maximum expected loss as it is not designed to measure the tail risks. Following upon that 

discussion, VaR underestimates risks particularly when those risks are concentrated in 

the tails, specifically left tails in the case of cyber risks. That observation is depicted in 

the illustration in Fig. 7-7 which shows that the left panel and the right panel both have 

the exact same VaR (Hull, 2012). However, the right panel shows non-normality in which 

the probability of risk is concentrated in the left tail, a fat tail resulting from kurtosis.  

  

Fig. 7-7. VaR is an unreliable estimate of Tail Risk. 

As evident from the above analysis, VaR can be a misleading risk measure when 

the returns are not normally distributed. Also, as it is a point estimate measure of risk at 

a particular point in the distribution, it measures neither the distribution nor the extent 

of risk in the tail (Hull, 2012).  

Consistently, if VaR is applied to cyber risk modeling based upon the 

assumption of normality, it can be an inherently incorrect assumption as our prior 

analysis established cyber risks as being highly interdependent and correlated. This 
                                                           
162 http://www.yogeshmalhotra.com/BeyondVaR_YogeshMalhotra.pdf 
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specific problem will lead to significant underestimation of risk if normality is assumed. 

Hence, model risk management is most crucial if VaR is applied in cyber risk modeling. 

Also, to accurately model cyber risks for cyber insurance, we need to advance beyond VaR to 

other models that can account for non-normality including the third and fourth moments.  

 VaR also treats risk as exogenous. Our prior analysis, however, established that 

cyber risks are not only highly interdependent and correlated, but can be also be 

endogenous in nature.  Specifically, ‘spikes’ in cyberattacks are determined in a large part 

by the behaviors as well as interaction between the various interacting entities. Hence, 

cyber risks can be endogenous in nature. For example, the Sandia National Labs report 

‘Mathematical Challenges in Cybersecurity’ notes that (Dunlavy, et al., 2009)163: “Many 

cyberattacks work by spreading malware to a large number of vulnerable machines. 

While the details may vary (e.g., whether a human needs to be tricked into making a 

mistake, or the propagation happens automatically), this style of attack expands along 

linkages in a social or technological network, infecting some fraction of nodes as it goes. 

For these kinds of broad-target attacks, rapid propagation is important since cyber 

defenders are likely to add protections once the malware is detected and characterized.” 

Rapid propagation of resulting from homogenous vulnerabilities and homogenous 

countermeasures can further escalate endogeneity of cyber risks. Resulting iterative 

process can built up into systemic risks such as those discussed earlier.   

 Another critical problem with using VaR for modeling cyber risk assessment and 

cyber insurance modeling is that it is not sub-additive. Sub-additivity of risk 

measure 𝜌(. ) implies that estimated loss from combination of risk A (e.g. spear phishing) 

and risk B (e.g. malware dropping) is less than or equal to the sum of potential losses 

from each of A and B considered separately on their own: 

 

The above two specific cyber risks are the two most frequent cyber risks for financial 

institutions as reported in the May 2014 ‘Report on Cyber Security in the Banking 

Sector’ by the New York State Department of Financial Services. Also, “The larger the 

institution, the more likely it appeared to experience malware and phishing attempts.164” 

                                                           
163 http://www.cs.sandia.gov/~dmdunla/publications/SAND2009-0805.pdf 
164 http://www.dfs.ny.gov/about/press2014/pr140505_cyber_security.pdf 
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Based on the contagion like results from such cyber risks, recent history of enterprise 

level attacks suggests that risks from such combinations is much greater than respective 

risks in isolation. If cyber risks were sub-additive, adding those risks together (𝜌(𝐴) +

  𝜌(𝐵)) would give us an overestimate of combined risk (𝜌(𝐴 + 𝐵)). Hence sum of the 

two risks could be used as a higher and thus conservative estimate of combined risk. As 

discussed above, that is however not the case. Additionally, given most primary barrier 

to sustaining cyber security as reported by 73% financial firms as being increasing 

sophistication of threats, we can expect more advanced and complex combinations in 

future. Thus VaR can severely underestimate potential losses in terms of severity and 

impact of cyber risks which in combination can cause much greater potential loss. 

7.6 Improved Alternatives to VaR, Coherent Risk Measures 

 Some of the critical problems with VaR such as concerns related to non-

normality, model risks, tail risks, and systemic risks can be minimized by use of other 

risks models. Given interest of cyber insurance modeling commercial providers in 

mapping risk modeling from finance, they would find it helpful to know what makes a 

better risk measure. The guiding thesis for selection of the risk measures in finance is 

the concept of a coherent risk measures. One aspect of such ‘coherence’ discussed above 

was the notion of sub-additivity. Including sub-additivity, there are four key aspects 

that characterize a coherent risk measure according to the theory of coherent risk 

measures developed by Artzner et al. (1997, 1999). If X and Y are the future expected 

‘values’ of two risky portfolio positions, a risk measure 𝜌(. ) is coherent if it satisfies the 

following four postulates: 

 

Homogeneity means that if the size of the portfolio as a unit is changed by a factor t, then 

the risk also is changed by the same factor t. Monotonicity means that if future value is 

lower, then risk is higher. The risk-free condition implies that if cash amount of n is 

added to a portfolio, its commensurate risk reduction should be n. Sub-additivity was 

defined earlier. 
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 The notion of future ‘values’ in the above postulates of coherent risk measure 

requires further thoughtful consideration when used in cyber risk modeling. This is 

necessary given that unlike financial risk management there are no ‘positive’ returns in 

cyber risk management. Therefore, future ‘values’ may be considered as potential losses 

averted based on specific countermeasures. Or, they may be considered in terms such as 

the difference between cybersecurity investments and potential losses averted. Such 

investments may be further distinguished in risk management terms such as risk 

acceptance, risk avoidance, risk control, risk transfer, and risk monitoring165.  Future 

research is recommended on finding more comparable analogs to cyber risks in the 

financial domain. It may be possible to conceptualize synthetic derivatives whose 

expected outcome can be only zero or negative where the objective is to minimize any 

change from zero. If financial derivatives are used, one may need to however contend 

with their non-linear behavior. Such adaptations may need further care if power law 

distributions are used to emulate real world scenarios instead of Gaussian distributions. 

7.7 Expected Tail Loss (aka T-VaR) Coherent Risk Measure 

 Based upon the discussion on coherent risk measures, the focus of this section is 

on one such measure called Expected Tail Loss (ETL). It is also called Tail-VaR (T-

VaR) or Expected Shortfall (ES)166. In the context of cyber insurance, it may be of 

interest to note that the ETL risk measure is quite similar to conditional average claim 

size used by casualty insurers. Insurers use another name for ETL calling it instead 

Conditional Tail Expectation (CTE) in the ‘insurance industry’167. In aftermath of the 

Financial Crisis which raised questions about reliability of VaR given it is not a coherent 

risk measure, ETL has become the risk measure of choice168,169. The empirical study on 

Bayesian vs. VaR modeling in a prior chapter discussed the properties of Expected 

Shortfall as a coherent risk measure170. It also demonstrated empirical modeling of 

Expected Shortfall besides Historical Simulation, Parametric Method, and, Monte Carlo 

Simulation models of VaR. In finance, portfolio risk managers underscore that risk is in 

                                                           
165 http://www.mitre.org/publications/systems-engineering-guide/acquisition-systems-engineering/risk-
management/risk-mitigation-planning-implementation-and-progress-monitoring 
166 http://arxiv.org/pdf/cond-mat/0105191.pdf 
167 https://www.soa.org/library/newsletters/risk-management-newsletter/2004/july/rm-2004-iss02-ingram-b.aspx 
168 http://www.bis.org/publ/bcbs219.htm 
169 http://www.bis.org/publ/bcbs219.pdf 
170 http://papers.ssrn.com/sol3/Delivery.cfm/SSRN_ID2538401_code2338267.pdf?abstractid=2538401&mirid=1 
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the tails. Managing tail risk therefore is important for those who want to control the 

downside risk. In cyber risk modeling, as all the risk is downside risk, ETL seems to make 

all the more sense as a measure of risk as compared with VaR. 

  

Fig. 7-8. VaR tells Loss If ‘Tail’ Doesn’t Occur, ETL tells Loss if ‘Tail‘ Does Occur. 

As shown in Fig. 7-8 (Dowd, 2007), VaR measures the maximum expected loss if 

an extreme event i.e., ‘tail,’ does not occur, and the ETL measures expected loss on average 

if an extreme event i.e., ‘tail,’ does occur. If VaR is exceeded, ETL is the loss that can be 

expected on average. VaR estimates are needed for estimation of ETL, and if we can 

estimate VaR given the quantile threshold, we can also estimate ETL using the quantile 

average171. ETL is the conditional expectation of loss conditional on its value exceeding 

VaRcl. It can be described as: 𝐸𝑇𝐿1−𝛼 = 𝐸[𝐿|𝐿 > 𝑉𝑎𝑅1−𝛼 ] where 𝐸𝑇𝐿1−𝛼 is estimated ETL 

at confidence level cl for a loss distribution continuous in 𝛼. ETL is the average loss in 

the distribution area beyond VaR in the extreme left-tail i.e. average of all VaRs from 

level 𝛼 up to 1 (BCBS, 2011):  

𝐸𝑇𝐿𝛼 ≡  
1

1 −  𝛼
 ∫ 𝑉𝑎𝑅𝑐𝑙

1

𝛼

(𝐿)𝑑𝑐 

where L = a random loss with distribution function FL, ∝ 𝜖 (0, 1) = confidence level close 

to 1. Similar to VaR, ETL represents a common consistent risk measure across different 

portfolio assets made of different securities and takes account of correlations correctly. 

Besides satisfying the postulate of sub-additivity, ETL is also a better risk measure than 
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VaR given its greater generalizability as a risk measure as well as better optimization 

properties resulting in use with more efficient optimization methods (Dowd, 2007).  

 
Fig. 7-9. Comparison of How VaR and ETL vary with the Two Parameters. 

 

As seen in Fig. 7-9 (Dowd, 2007), just like the VaR surface, the ETL surface portrays its 

variation w.r.t. to the two parameters. A comparison of how VaR varies as compared 

with ETL surface showing maximum possible loss approaching 25σ for VaR relative to 

30σ for ETL. 

ETL, not being a point-specific estimate, also somewhat mitigates the influence of 

choosing different confidence intervals on risk management decisions. This point is all 

the more critical for cyber risk modeling given that point estimates cannot be modeled 

based on reliable historical data as such data is sparse. As frameworks of cyber risk 

management focus on categorical rank order of risks rather than specific point 

estimates, they also seem consistent with ETL. It is important to reiterate however that 

ETL gives only ‘Expected’ value that is the average value of risk in the left tail if the 

related VaR confidence level is exceeded. Hence, even though ETL is a more 

conservative estimate than VaR, it is only the average or ‘expected’ loss in the left tail 

beyond VaR 𝛼. The actual loss (and related risk), however, could be more extreme than the 

average of the left tail risk. Hence, ETL does not provide any information about the severity of 

loss by which VaR is exceeded. For more precise tail risk analysis of extreme events, 

Extreme Value Theory techniques (Embrechts et al., 1999; Gumbel, 2004; Pickands III, 

1975) such as Block Maxima and Peaks over Threshold represent more sophisticated 

techniques. Computationally mathematically demanding and often constrained by lack 



 

147 
 

of adequate representative data for extreme events, those techniques may also result in 

broad confidence intervals and weak significance estimates. 

7.8 Marginal and Systemic ETL for Cyber Risk Modeling 

Related to Expected Shortfall or Expected Tail Loss are additional measures that 

focus on the incremental risk of each of the units (assets, portfolios, firms, entities, 

devices, agents, etc.) of risk in a given risk portfolio as well as the systemic (system wide) 

risk. Marginal Expected Shortfall (MES) or Marginal Expected Tail Loss (METL) 

measures how much incremental tail risk a specific unit adds to the overall tail risk of 

the portfolio of all such units. In the context of a financial institution, it helps determine 

how each group’s risk taking adds to the financial institution’s overall risk at intra-

enterprise level, or, how each institution’s risk taking adds to the overall financial 

system risk at the inter-enterprise level (Acharya et al. 2010). Mapped from finance to 

cyber domain, MES (or METL) measures the incremental tail risk that a specific cyber 

risk unit adds to the overall risk of the portfolio of such cyber risk units. As discussed in 

an earlier chapter, at the intra-enterprise level, such units could be units of cyber risks 

related to specific groups or departments or divisions. MES can then be estimated as the 

specific unit’s expected cyber risk related loss as a part of the overall expected loss of 

the enterprise. At the inter-enterprise level, such units could be units of cyber risks 

related to specific enterprises. MES can then be estimated as the specific enterprise’s 

cyber risk related loss as a part of the overall system wide loss where the system is 

composed of multiple enterprises. 

The notion of Systemic Expected Shortfall (SES) or Systemic Expected Tail Loss 

(SETL) takes into account the externalities characterizing cyber risks discussed earlier. In 

finance domain, externalities result from specific units taking large risks and taking on 

too much leverage (debt) thus causing risk to other units system wide. In cyber domain, 

externalities result from specific units not taking specific cybersecurity countermeasures 

or ‘taking on’ (assuming) too much cyber risk such as by violating even the baseline 

norms (e.g. use of Windows XP systems with missing upgrade paths that are known to 

be vulnerable) thus causing risk to other units system wide. Mapping from finance 

domain to cyber domain, SES is therefore the probability of an aggregate cyber crisis 

times the conditional loss of a specific unit in such a crisis (Acharya et al. 2010). The 

important point is that the expectation is conditional on a system wide cyber crisis such 
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as at the inter-enterprise level. Hence, SES measures a specific unit’s propensity to be 

exposed to cyber risk when the system as a whole is exposed to cyber risk. In turn, it 

further increases the interdependence and correlations of system wide cyber risks 

discussed earlier as well as related tail risks and systemic risks. 

In the finance domain, both MES and SES calculations are based on the ES 

measure. Considering enterprise level return R as a sum of each unit’s (negative loss, 

i.e.) return ri, and considering yi as the weight of the specific unit in the risk portfolio, 

total return is (Acharya et al. 2010):  

 
From the definition of ES discussed before, the formulation of ES is then given by: 

 
MES is then interpreted as the sensitivity of the overall risk to exposure yi to each unit i: 

 

The other measure, SES, would be of potential interest to regulators who are 

increasingly interested in determining and controlling externalities related to cyber risk 

exposures from specific firms. A recent example in Banking and Finance includes the 

December 10, 2014 ‘New Cyber Security Examination Process’172 announced by the New 

York State Department of Financial Services173 which is being interpreted by some as a 

‘signal of increased proactive regulator interest174’.  Another recent example relevant to 

all US industries and companies is the US President’s proposed legislation of Jan. 12, 

2015 requiring all US companies to notify consumers of a data breach within 30 days175. 

 In finance domain, SES is the key measure of each firm’s expected contribution to 

systemic risk and thus captures externalities related to its assumed risk. That risk 

measure on a relative basis can be used for differential taxation of firms with 

differential respective (externalities related) contributions to systemic risk176. In the 

                                                           
172 http://www.dfs.ny.gov/banking/bil-2014-10-10_cyber_security.pdf 
173 http://www.dfs.ny.gov/about/press2014/pr1412101.htm 
174 http://www.alston.com/Files/Publication/b9785fea-f457-46b8-9739-
e1c558ff2d63/Presentation/PublicationAttachment/61c0d644-bb3f-49f9-a1f4-ecea6a9defce/Cyber-Alert-New-
York-State-Inquiries-into-Insurance-Company-Cybersecurity-Practices.pdf 
175 http://www.whitehouse.gov/the-press-office/2015/01/12/remarks-president-federal-trade-commission 
176 http://papers.ssrn.com/sol3/papers.cfm?abstract_id=1595075 
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context of financial risk regulation, the default expected shortfall DESi for bank i is 

defined as the expected loss in bankruptcy for bank i. A bank’s SES is defined as the 

amount by which its equity 𝑤1
𝑖  drops below its target level computed as fraction z of 

assets ai in case of a systemic crisis. It is the shortfall relative to its capital asset holding 

requirement and is hence interpreted as shortfall contributing to systemic risk (Acharya 

et al. 2010).  

                   

𝐼 ̅ is the indicator for the occurrence of systemic distress and Ii is the indicator of default 

by firm i in the above expressions for SES and DES.  

The ‘bankruptcy’ event in the finance domain may be interpreted as ‘complete 

business disruption’ event in the cyber domain. A plausible example is the case of 

recent Sony (SPE) hack that was devastating enough to disrupt the firm’s entire 

information infrastructure and destroy most of its data. Hence, in case of the SPE hack, 

DES will be the expected loss from ‘complete business disruption’ resulting from the 

cyberattack. Unless there are regulatory mandated expected levels of cybersecurity, it 

may be difficult to find a direct analog of SES in the cyber domain. Regardless, the point 

is evident that if any specific firm’s cyber risk ‘spills over’ (because of externalities of 

cyber risk discussed earlier) and impacts other firms beyond it, the extent of that risk 

corresponds to SES. Another related measure that is used in finance called CoVaR has 

similar implications in capturing the marginal contribution of a specific firm to the 

overall systemic risk  (Adrian & Brunnermeier, 2011). The above measures assess the 

risk posed by specific firms under financial distress (‘business disruption’) to other 

firms which can be controlled by using regulatory disincentives such as taxation and 

insurance mandates. 

 Prior discussion focused on the model risks, tail risks, systemic risks, and, ETL 

model and extensions which are useful improvements over the VaR models. It is 

important to mention extreme risks which seem particularly relevant to the cyber 

domain given the unique nature of cyber risks. The notion of extreme risks can be 

appreciated by thinking of very rare events which may happen very infrequently but 

may result in highly disastrous losses. In popular language, we hear about those events 
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in terms such as ‘100-year storm177’, or ‘100-year flood178’. Such an event has 1% chance 

of occurring every year. Fig. 7-10 from a presentation at the Valuation Actuary 

Symposium of September 23-24, 2013, illustrates the point about 99% VaR denoting a 

100-year storm.  

 

Fig. 7-10. How VaR and ETL Predict a ‘100-Year Storm’. 

 There is an important caveat about treating such statistical frequencies of 

occurrence literally particularly based on normality and linearity assumptions as most 

actuaries know. In the real world of sociotechnical phenomena such as financial markets 

and cyberspace, such assumptions of normality and linearity of models may simply not 

apply(Lohr, 2008179; Heires, 2012180; Derman & Wilmott181). Fig. 14 from the same SOA 

presentation shows another slide confirming that ‘The world is usually not normal.’ 

                                                           
177 http://www.cnbc.com/id/101032241 
178 http://www.nytimes.com/2008/09/07/business/worldbusiness/07iht-07ltcm.15941880.html 
179 http://www.nytimes.com/2008/11/05/business/05risk.html 
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Fig. 7-11. ‘The world is usually not normal.’: World beyond Normality is Non-Normal 

Consistently, many bankers too agree that most of the (sociotechnical)182 world is 

anything but normal (Haldane & Nelson, 2012)183: “Normality has been an accepted 

wisdom in economics and finance for a century or more. Yet in real-world systems, 

nothing could be less normal than normality. Tails should not be unexpected, for they are the 

rule. As the world becomes increasingly integrated – financially, economically, socially – 

interactions among the moving parts may make for potentially fatter tails. Catastrophe 

risk may be on the rise.” The key problem seems in modeling risk while hoping to 

manage uncertainty (Knight, 1921)184,185,186. More on this central concern of both theory 

                                                                                                                                                                                           
180 http://www.rmmagazine.com/2012/08/29/finance-isnt-science-why-wall-streets-models-will-always-have-
limitations/ 
181 http://www.businessweek.com/stories/2008-12-30/financial-models-must-be-clean-and-simple 
182 http://www.yogeshmalhotra.com/publications.html 
183 http://www.bankofengland.co.uk/publications/Documents/speeches/2012/speech582.pdf 
184 http://www.econlib.org/library/Knight/knRUP.html 
185 http://www.yogeshmalhotra.com/blackswans.html 
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and practice of cyber risk modeling and risk management is discussed in the next 

concluding chapter.  

7.9 Recommended Future Research  

Our prior analysis established much stronger and greater interdependence and 

correlations in case of cyber risks as compared with financial risks modeled by VaR. 

Hence, it can be expected in case of cyber risks that assumptions of normality and 

linearity may not hold187,188. Therefore, we need to further advance research on cyber 

risk modeling to catastrophic risks or cat risks mentioned in our earlier analysis. Related 

‘extreme events’ are modeled using theories such as extreme value theory189 (EVT) and 

statistical distributions such as power law distributions. Additionally, there is also critical 

need for advancing risk modeling research to focus on uncertainty management (Malhotra, 

2004)190, (Haldane & Nelson, 2012)191. 

Normality assumptions are justified by the Central Limit Theorem which applies 

only to the central mass of the probability density function, but not to the extreme tail 

risks. Hence, when dealing with extremes, i.e., very high or very low confidence levels, 

extreme value theory is used for modeling and not the normality assumptions.  EVT is 

the theory of modeling events that occur with very small probability (Embrechts, et al, 

1999). Hull192 (2012) describes Extreme Value Theory (EVT) as the science of estimating 

the tails of a distribution that forms the theoretical underpinnings for the power law. The 

effect of EVT is to smoothen and extrapolate the tails of an empirical data distribution. 

EVT is the method of extracting an accurate measure of estimated loss given limited 

data around an extreme event (Darbyshire & Hampton, 2012)193. Implementation of EVT 

faces the challenges of lack of adequate and reliable extreme data (as is currently 

applicable in case of cyber risk attack losses), demarcating the beginning and end of the 

tail, distinguishing if it is a ‘fat tail’, and the choice of method for parameters estimation.  

                                                                                                                                                                                           
186 http://www.yogeshmalhotra.com/risk.html 
187 Taleb, N. N. (2010). The Black Swan: The Impact of the Highly Improbable Fragility. Random House LLC. 
188 Taleb, N. (2004). Fooled by randomness: The hidden role of chance in life & in the markets. Random House LLC. 
189 http://www.casact.org/library/studynotes/embrechts_extremevalue.pdf 
190 http://www.yogeshmalhotra.com/blackswans.html 
191 http://www.bankofengland.co.uk/publications/Documents/speeches/2012/speech582.pdf 
192 Hull. (2012). Risk Management and Financial Institutions, John Wiley & Sons. 
193 Darbyshire, P., & Hampton, D. (2012). Hedge Fund Modeling and Analysis Using Excel and VBA (Vol. 

644). John Wiley & Sons. 
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The greatest challenge particularly in case of cyber risk and cyber insurance 

modeling in using EVT and power law distribution analysis is that they require tail risk 

and tail loss data. The process of the EVT begins with the consideration of the 

exceedances over thresholds, i.e., data values that represent extreme values given the 

specification of the extreme. Our prior analysis already established the lack of available 

data on critical losses related to cyber risks given SEC filings which represent publicly 

available data indicate ‘non-materiality.’ Some of the recent regulatory and compliance 

trends at the Federal and state levels briefly reviewed in prior discussion may possibly 

facilitate availability of such data in the future. Hence, future research is recommended 

on advancing cyber risk and cyber insurance modeling with specific focus on extreme 

value theory and power law distributions as reliable data becomes available. 
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Chapter 8.  

Beyond Risk Modeling to Uncertainty Management 

“It is this ‘true’ uncertainty, and not risk, as has been argued, which forms the 

basis of a valid theory of profit and accounts for the divergence between actual 

and theoretical competition.”  

-- Frank H. Knight, in Risk, Uncertainty, and Profit, Houghton Mifflin, 1921.  

 

8.1 Key Contributions to Cyber Risk Insurance Modeling 

Unlike other risks, cyber risk poses a uniquely different set of exposures as it is intertwined with 

the medium and the message in the increasingly global interconnected, distributed, and, 

networked world of digital communications powered by universal use and reuse of 

enabling global monocultures of information and communication technologies and standard 

computing network protocols.  

To avert the impending national Cyber risk and Cyber-insurance disaster based 

upon large-scale commercial reliance upon quantitative models with inherent model 

risks, tail risks, and systemic risks in current form, this dissertation made the following 

key contributions.  

 

 First, we developed the first known Cyber-Finance-Trust framework for Cyber 

insurance modeling to analyze how finance risk entangled with Cyber risk further 

exacerbates the systemic, interdependent, and correlated character of Cyber risks.  
 

 Second, we developed the first known model risk management framework for 

Cyber insurance modeling as model risk management has received sparse attention 

in Cyber risk assessment and Cyber insurance modeling.   
 

 Third, our review of quantitative models in Cyber risk and Cyber insurance 

modeling developed the first known analysis establishing significant and extreme 

model risks, tail risks, and, systemic risks related to predominant models in use.  
 

 Fourth, we developed an empirical study of VaR and Bayesian statistical inference 

methodologies with specific guidance for containing model risks by applying 

multiple simple and advanced models for cross-checking the reliability of VaR. 
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 Fifth, we developed an analysis of the Markov Chain Monte Carlo Models, Gibbs 

Sampling and Metropolis-Hastings statistical computing algorithms for enabling 

Bayesian statistical inference methodologies to minimize model risk in Cyber risk 

and Cyber insurance risk modeling for the specific context of cybersecurity.  
 

 Sixth, we developed the first known portfolio theory based framework for Cyber 

insurance modeling with guidance to minimize model risks, tail risks, and systemic 

risks inherent in models in commercial Cyber insurance modeling.  
 

 Finally, given increasing role of uncertainty in cyber (and financial) risk modeling 

and management, we developed a framework for enabling Knightian uncertainty 

management relating it to model risk management. 

The specific focus of respective contributions of corresponding chapters was as 

follows. Chapter 1 developed the background context of the cyber risk assessment and 

cyber insurance modeling industry. Chapter 2 developed the first known cyber-finance-

trust framework to analyze how global financial risk intertwined with global cyber risk 

further exacerbates the systemic, interdependent, and correlated character of cyber risks. 

Chapter 3 developed the first known systematic basis for analysis of model risk 

management for cyber risk and cyber insurance as model risk management has received 

sparse attention in cyber risk and cyber insurance related contexts. Chapter 4 developed 

the first known analysis establishing significant and extreme model risk and tail risk 

based on a review of the quantitative models in predominant commercial application 

and use for cyber risk and cyber insurance modeling.  Chapter 5 developed a baseline 

empirical study of similar quantitative models with specific guidance for containing 

model risks related to above quantitative models and model risks associated with 

related statistical inference methodologies. Chapter 6 developed an analysis of the 

statistical computing algorithms that can be used for enabling statistical inference 

methodologies for containing model risk in cyber risk and cyber insurance modeling for 

the specific context of cybersecurity. Chapter 7 developed alternative quantitative 

models for cyber risk and cyber insurance modeling to minimize model risks, tail risks, 

and systemic risks inherent in currently predominant models in commercial cyber risk 

and cyber insurance modeling. Chapter 8 develops a framework for enabling Knightian 

uncertainty management relating it to model risk management given increasing 

uncertainty related to risk modeling of cyber risk. 
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8.2 Recommendations for Cyber Risk Insurance Modeling 

The objective of the above contributions is to advance modeling, use, practice, and 

research related to cyber insurance risk modeling. Specifically, by recognizing the 

unique defining characteristics of cyber risk as compared with financial risk, developers 

and users of such models can make prudent choices of quantitative models. The 

difference between making prudent choice and otherwise is amply evident in how 

misuse, abuse, or simply neglect of quantitative financial risk models contributed to 

drastic underestimation and mis-estimation of risk leading to the Global Financial 

Crisis.  

To facilitate insight and intuition into the unique defining characteristics of cyber 

risk and how it is entangled with cyber finance and cyber warfare, we developed the 

above frameworks. Those frameworks facilitated our discovery and analysis of cyber 

risk. We anticipate others can also better understand both measurable and 

unmeasurable attributes of the dynamically evolving cyber risks with the aid of those 

frameworks. Such understanding should contribute to advancing both theory and 

practice of cyber risk assessment and cyber risk modeling.  

Prior analyses determined exponentially high systemic risks and tail risks in the 

context of cyber risks as compared with financial risks modeled by VaR and other 

models. Above observations were based on observations about high levels of 

interconnections, correlations, and interdependencies in case of cyber risks not evident 

in case of other risks. Such characteristics of cyber risk will lead us to expect that 

statistical normality of distributions should be even less normal in case of cyber risk 

than in case of financial risk. Hence, models of statistical probabilistic distributions of 

expected losses based on normality assumptions cannot be relied upon for modeling 

cyber risk related losses.  

Therefore, it follows that VaR will be even a less unreliable model for assessing 

potential financial loss in case of cyber risk than it has been in the case of financial risk. 

We developed focus on empirical application of model risk management of VaR models 

that are currently predominant in cyber insurance modeling. In ensuring that multiple 

simple as well as sophisticated models are used to cross-check reliability and validity of 

VaR models, we recommend other users to similarly focus on multi-methods to reduce 

model risks.  
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Also, given predominance of known systemic risks in case of cyber as compared 

to finance, VaR is not the right model to use given that it is unsuitable for modeling 

systemic risks. This specific point was discussed earlier in the discussion on statistical 

coherent risk measures. Specifically, VaR does not meet the criteria of sub-additivity as 

noted in that discussion, hence it is unsuitable for modeling systemic risks. Therefore, 

the prudent choice for cyber risk insurance models is to advance beyond VaR to T-VaR 

(also known as ETL, ES, etc. as discussed in a prior chapter). To enable the transition, 

we also empirically demonstrated the application of the proposed T-VaR (ES, ETL) 

models. Based on our analysis highlighting significant model risk of VaR in cyber risk 

modeling, specifically given its unsuitability for estimating systemic risk, it must be 

avoided for modeling systemic risks. T-VaR (ES, ETL) models, given their suitability as 

sub-additive measures, are better suited for modeling systemic risks compared to VaR.  

 Model risks arise in use of specific quantitative models (such as VaR vs. T-VaR) as 

well as specific quantitative methodologies (such as classical i.e. NHST vs. Bayesian). 

Above discussion focused on how to minimize model risks related to quantitative 

models such as VaR in cyber insurance modeling. In addition, to facilitate 

understanding about distinction between the two model risks (in use of models and 

methodologies), we developed analytical understanding of Bayesian inference statistical 

methodology. That quantitative methodology can facilitate minimization of known 

model risks inherent in the use of classical NHST inference methodology. As explained 

in the related chapter, it is not an easy choice given execution and computational 

resource requirements required for doing meaningful Bayesian analysis. Given 

computational statistical resource requirements on which Bayesian methodologies are 

reliant, we also provided analytical understanding about the Monte Carlo Markov 

Chain algorithms. With the various computational statistical models and 

methodologies, the cyber risk insurance modeler has a baseline of both classical and 

more sophisticated models and methodologies to build on and minimize model risk. 

8.3 Recommendations for Insurers, Underwriters, Reinsurers 

Besides model developers and uses, cyber insurance companies including 

underwriters and reinsurers need to understand the ‘bottom line’ of our analysis for 

helping their bottom line. A specific example provided by a couple of specialists from 

Bank of England should help drive our point home about understanding the model risk 

of the model that you are using194. Answering why tail risks that arise from fat tails (i.e., 

                                                           
194 http://www.bankofengland.co.uk/publications/Documents/speeches/2012/speech582.pdf 
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kurtosis) are critical, they consider example of an insurance contract designed to guard 

against catastrophes in the tail of the distribution of outcomes. Based on other contracts, 

they assume that the above contract pays out if outcomes are more than four-sigma 

(sigma stands for standard deviations) above their mean value in any one year (or 

below for the economic series). Under assumption of normality of a model (such as 

VaR), payouts would be expected very rarely. Such assumptions implicit in use of VaR 

will result in serious under-estimation and mis-estimation of the pricing of catastrophic 

insurance risk. They highlight that such mis-pricing of insurance contracts in the 

context of economic and financial series could be enormous and of two orders of 

magnitude, such as typical multiples of 100 or more.   

Consistent with our analysis of sociotechnical risks being higher (as in the case of 

cyber risks), they further underscore that such mis-pricing is more acute in case of 

economic catastrophes (such as output crashes) as natural catastrophes (such as 

earthquakes). They further project the above example of the serious impact of incorrect 

assumption about statistical normality in terms of extreme events and black swans. 

Assuming normality, implied probability of a three-sigma decrease in GDP would 

occur once every 800 years in contrast to its actual occurrence eight times more 

frequently, i.e., almost once every century. Similarly, assuming normality, implied 

probability of a three-sigma decrease in equity prices occurs once every 64 years. In 

reality however it occurs eight times more frequently, i.e., almost once every 8 years. 

Such are the serious consequences of assuming normality or using a model that 

assumes normality when the phenomena being modeled is non-normal. 

8.4 Recommendations for Cyber Risk Modeling Research 

Based upon our analysis of Knight’s distinction between risk and uncertainty, 

statistical distributions, including Gaussian and all others, can be used for modeling 

theoretical risk. Of course, more sophisticated statistical distributions, such as those 

based upon Power Law distributions, can be used for ‘zooming in’ specifically on tail 

risks. However, the model is not the reality. As models need to reflect key aspects of 

reality, they themselves are dependent upon reliable data both in their development 

and subsequently in their application. This is particularly applicable in the case of cyber 

risk assessment and cyber risk insurance models that are often hamstrung by lack of 

adequate and reliable data. Unquestioning reliance on any one specific model, 

whichever model it is, whether VaR or Gaussian Copula, is a recipe for disaster as the 

model gets misaligned from reality of the phenomena it is trying to model. The key 
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objective in using multiple measures and models is to cross-check the reliability and 

validity of any specific model.  

We are observing the ongoing evolution in quantitative modeling from reliance 

upon point-specific estimates (such as VaR) to range estimates (such as T-VaR or ETL). 

In addition, we are also observing similar evolution in quantitative modeling 

methodologies from reliance upon point-specific estimates (such as p-values of NHST) 

to range estimates (such as Bayesian). In the not too historical past, just preceding 

mainstream popularity of WWW, statistical averages with their ‘p-values’ were deemed 

adequate in scientific research (Nuzzo, 2014)195. It was perhaps a function of both the 

state of the world at the time and the state of our models and measures that made us 

live with them. Over subsequent years, we have seen the point-estimate based metrics 

being questioned about actually reflecting the real state of the world. Even, the range-

based estimates such as confidence intervals based on the classic NHST are being 

questioned about their reliability in specific sociotechnical domains196 (Gelman, 2013). 

These developments seem to reflect increased uncertainty characterizing the state of the 

post-WWW cyber era increasingly globally interconnected and interactive 

sociotechnical world that we inhabit.  Hence, risk modeling needs to advance beyond 

confines of deterministic probabilistic distributions to cater to the needs of an 

increasingly non-deterministic world challenged by high uncertainty. 

8.5 Risk Modeling to Uncertainty Management for Profit 

Most critically, it is important to recall what Knight (1921) originally observed 

and others recently focused on model risk management such as Derman (1996) have 

emphasized. Often, it is what that may not be measured, i.e., the real uncertainty, that 

may determine the difference between the theory and practice of risk management (or 

more precisely, ‘uncertainty management’). Considering Knight’s distinction between 

risk and uncertainty, he denotes uncertainty as the “true” uncertainty and not risk that 

really matters for actual purposes (Knight, 1921, p. 9): “It is this ‘true’ uncertainty, and 

not risk, as has been argued, which forms the basis of a valid theory of profit and 

accounts for the divergence between actual and theoretical competition.”  Hence the 

                                                           
195 http://www.nature.com/news/scientific-method-statistical-errors-1.14700 
196 http://www.stat.columbia.edu/~gelman/research/published/pvalues3.pdf 
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theoretical world of academics needs to advance risk modeling to relate to the critical 

real world needs of uncertainty management.  

The practical business challenge still remains in managing uncertainty which 

may be objectively unmeasurable in terms of statistical probabilities at least given 

currently known methods. In any case, whatever data distributions or combinations 

thereof are used, such as stochastic simulations and importance sampling, we need to 

be aware of the primary objective. That key objective of all modeling exercises is to 

ensure that models reflect the key aspects of reality. Hence the modeler, the decision-

maker, the regulator, and, all others involved in developing, testing, managing, or using 

models need to ensure alignment of the models with the reality. That is simpler said 

than done given that the reality in the context of global cyberspace with increasing 

interactions is itself dynamically changing.  

The practical experiential world of pragmatists and scholar-practitioners can also 

benefit by understanding risk modeling as well as its limitations vis-a-vis uncertainty 

management. For instance, they can benefit from Malhotra’s (1999197, 2002198, 2001a199, 

2001b200, 2004201, 2005202) research on ‘anticipation of surprise’ uncertainty management 

frameworks203. Malhotra acknowledges developing those frameworks starting from the 

idea mentioned by another scholar-practitioner Steve Kerr.204’  

Kerr (1995) had mentioned the notion of anticipation of surprise in a Planning 

Review article. Kerr later went on to be the Chief Learning Officer for General Electric 

and investment bank Goldman Sachs. Malhotra developed Kerr’s idea into a scholarly 

research program which was applied in global uncertainty management practices by 

worldwide governments, firms, and institutions205. Just like the above frameworks of 

uncertainty management, practitioners can also benefit from recognizing the potential 

of advanced statistical and computational modeling technologies. They can apply 

                                                           
197 http://brint.org/WhiteWaters.pdf 
198 http://www.brint.org/KMEcology.pdf 
199 http://brint.org/intelebusiness.pdf 
200 http://www.brint.org/expertsystems.pdf 
201 http://www.brint.org/WhyKMSFail.pdf 
202 http://www.kmnetwork.com/RealTime.pdf 
203 http://www.yogeshmalhotra.com/blackswans.html 
204 Academy of Management Journal,1975, pp 769-783. 
205 http://www.yogeshmalhotra.com/blackswans.html 
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creative intuition206 for managing what Knight calls the critical unmeasurable uncertainty 

while delegating the measurable to human or artificial agent developed and executed 

models (Yuva, 2002)207. 

 The distinction between risk and uncertainty drawn by Knight (1921) in his 

classic published in 1921 is even more critical today than it was ever before. Risk arises 

when the statistical distribution of the future can be calculated or is known. Uncertainty 

arises when this distribution is incalculable, perhaps unknown. As noted by real world 

practitioners knowledgeable about the greatest stalwarts of serious scholarship 

(Haldane & Nelson2012)208: 

“Many of the biggest intellectual figures in 20th century economics took this 

distinction seriously. Indeed, they placed uncertainty centre-stage in their policy 

prescriptions. Keynes in the 1930s, Hayek in the 1950s and Friedman in the 1960s 

all emphasised the role of uncertainty, as distinct from risk, when it came to 

understanding economic systems. Hayek criticised economics in general, and 

economic policymakers in particular, for labouring under a ‘pretence of 

knowledge’. Yet it is risk, rather than uncertainty, that has dominated the 

economics profession for much of the past 50 years... Uncertainty was, quite 

literally, ruled out of the equation… But if economic and financial systems 

operate on the border between order and disorder, ignoring uncertainty is 

deeply unrealistic.”  

It is about time to put uncertainty back into the equation of serious uncertainty 

management and risk modeling scholarship that really matters to the most critical of 

today’s real world concerns. Perhaps that can still save normal science (Kuhn, 2012) 

from becoming branded as a pseudo-science completely detached and apathetic to the 

most critical of the cyber era’s real world concerns. To seek most empirical of truths, 

serious economic science, cyber science, and modeling science must all ground 

themselves in the empirical reality of the most critical concerns that matter to today’s 

real world. 

 

                                                           
206 http://blogs.reuters.com/emanuelderman/2011/10/28/intuition-initial-and-final/ 
207 http://www.brint.org/SupplyChainManagement.pdf 
208 http://www.bankofengland.co.uk/publications/Documents/speeches/2012/speech582.pdf 
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