Calculus 2- Hints and Tips

2. Integration

2.1 Definition

- Integration is the reverse process of differentiation.
- The integral of a function between two points gives the **area** under the curve and above the x-axis, between those two points.

2.2 Notation

• If y = f(x), the integral is denoted as $\int f(x) dx$

2.3 Rules of Integration

2.3.1 Power Rule

- If $f(x) = x^n$ then $\int f(x) dx = \frac{x^{(n+1)}}{n+1} + C$ where C is constant of integration. (Increase the power by 1 and divide by the power plus 1).
- The only exception to the above rule is n=-1 i.e. x^{-1} . The integral of $f(x) = x^{-1}$ is ln(x) (Opposite of differentiation).
- E.g. If $f(x) = 3x^3$ then $\int f(x) = \frac{3x^4}{4} + C$

2.3.2 Sum/Difference Rule

- $\int (f(x) + g(x)) dx = \int f(x) dx + \int g(x) dx$
- Similarly $\int (f(x) g(x)) dx = \int f(x) dx \int g(x) dx$
- You can either combine similar terms together first and then integrate <u>or</u> integrate each function separately and then combine.
- E.g. $f(x) = 5 3x^2$ and $g(x) = 6x^2 2x$ and we want to find $\int (f(x) g(x)) dx$
 - Method 1 Combine similar terms and then integrate. $f(x) g(x) = (5 3x^2) (6x^2 2x) = 5 9x^2 + 2x$
 - $0 \int 5 9x^2 + 2x \, dx = 5x 3x^3 + x^2$
 - o Method 2 Integrate and then combine similar terms.
 - $\circ \int f(x) \ dx = \int 5 3x^2 \ dx = 5x x^3$
 - $0 \int g(x) dx = \int 6x^2 2x dx = 2x^3 x^2$
 - $0 \int f(x) dx \int g(x) dx = 5x x^3 (2x^3 x^2) = 5x 3x^3 + x^2$

2.4 Common Integrals of Functions (Page 26 of log tables)

Function	Integral
$\frac{1}{x}$	Ln(x)
e ^x	e ^x
e ^{ax}	$\frac{1}{a}e^{ax}$
Sin(x)	-Cos(x)
Cos(x)	Sin(x)
Tan(x)	Ln sec(x)

Calculus 2- Hints and Tips

2.5 Area under a Curve

2.5.1 Trapezoidal Rule

- The Trapezoidal Rule is used to <u>estimate</u> the area under a curve.
- The formula is on page 12 of log tables: A $\approx \frac{h}{2}[y_1 + y_n + 2(y_2 + y_3 + \cdots y_{n-1})]$

• h is the difference between consecutive x values.

2.5.2 Integrate Function over Interval

- The Trapezoidal rule is just used to estimate the area under a curve.
- To calculate the actual area under a curve between an interval [a,b] we:
 - i. Integrate the function and ignore the constant C.
 - ii. Calculate the integral at the upper interval (b) and subtract the integral at the lower interval (a).
- E.g. Calculate the area under the curve $f(x) = 3x^2$ between (2,5).
 - O Integrate the function: $\int_2^5 f(x) dx = \frac{3x^3}{3} = x^3.$
 - O Apply the limits of integration: $x^3 |_2^5 = (5)^3 (2)^3 = 125 8 = 117$ units squared is the area.

2.6 Average Value of Function over Interval

• The average value of a function f over the interval [a, b] is given by the formula:

$$\frac{1}{b-a}\int_a^b f(x)dx.$$

- This formula is **not** in your log tables so you need to learn it.
- The question may ask for average value of a function **or** average height of a function over an interval. Both forms mean the same.
- E.g. Calculate average height of the function $f(x) = 3x^2$ over the interval (2,5).
 - o From 2.5.2 $\int_{2}^{5} 3x^{2} dx = 117$.
 - Average value over [2,5] = $\frac{1}{5-2} * 117 = 39$.