

Calculus 1 Tutorial Questions

1) Find the derivatives of:

i. x^4 ii. $7x^3$ iii. x^{-1} iv. x^1

2) Find the derivative of:

i.
$$f(x) = 5x^2 + 7x + 3$$

ii.
$$g(x) = 2x^3 + 4x^2 + x + 5$$

iii. y = 8x + 4

- 3) Find the slope of line y = 8x + 4 using differentiation
- 4) Product rule: $y = (4 + 3x^2)(6x + 4x^2)$ Find $\frac{dy}{dx}$

5) Quotient rule:
$$y = \frac{(5+6x)}{2x^2}$$
. Find $\frac{dy}{dx}$

- 6) Chain rule: $y = (2 + 3x)^4$. Find $\frac{dy}{dx}$
- 7) Chain rule: y = Cos (3x + 5). Find $\frac{dy}{dx}$
- 8) Find the following limits:

i.
$$\lim_{x \to 1} \left(\frac{x^2 + x - 2}{x - 1} \right)$$

ii. $\lim_{n \to \infty} \left(\frac{2n^2 - 3n + 2}{6n^2 + 5n - 6} \right)$

9) Find the derivative of f(x) = 5 - 2x by first principles.

10) 2014 Paper 1 Q4

- (a) Differentiate the function $2x^2 3x 6$ with respect to x from first principles.
- (b) Let $f(x) = \frac{2x}{x+2}$, $x \neq -2$, $x \in \mathbb{R}$. Find the co-ordinates of the points at which the slope of the tangent to the curve y = f(x) is $\frac{1}{4}$.

11) 2016 Paper 1 Q6

- (a) Differentiate the function $(2x + 4)^2$ from first principles, with respect to x.
- (b) (i) If $y = x \sin(\frac{1}{x})$, find $\frac{dy}{dx}$

(ii) find the slope of the tangent to the curve $y = xsin(\frac{1}{x})$, when $x = \frac{4}{\pi}$. Give your answer correct to two decimal places.

12) 2017 Paper 1 Q3

(b) $f(x) = \ln(3x^2 + 2)$ and g(x) = x+5, where $x \in \mathbb{R}$. Find the value of the derivative of f(g(x)) at $x = \frac{1}{4}$. Give your answer correct to 3 decimal places.

13) 2021 Paper 1 Q8

- (a) h(x) = $0.001x^3 0.12x^2 + px + 5$ in the domain $0 \le x \le 75$
- (i) Use h(10) = 30 to show that p = 3.6
- (ii) Complete the table below and hence draw the graph of h(x) in the domain $0 \le x \le 75$ on the grid below.

Calculus 1 Tutorial Questions

- (b) The function h(x) can be used to model the height above level ground (in metres) of a section of the path followed by a rollercoaster track, where x is the horizontal distance from a fixed point.
 - (i) Find h'(x), the derivative of h(x).
 - (ii) Show that this section of the track reaches its maximum height above level ground when x = 20.
 - (iii) Find using calculus, the height above ground in metres, at the instant the track passes through an inflection point.