

1. Background

A complex number is a number that has a real part and an imaginary part. The form is:

Z = a + bi

- Where a = real part and is written a = Re(z)
- b = imaginary part and is written b = Im(z)
- $i = \sqrt{-1}, i^2 = -1$

With imaginary numbers, we can write the square root of any negative number in terms of i E.g. $\sqrt{-9} = \sqrt{9} * \sqrt{-1} = 3i$

2. Hierarchy of Sets of Numbers

Where N is all Natural Numbers, Z is all Integers, Q is all Rational Numbers, R is all Real Numbers, I is all Imaginary Numbers and C is all Complex Numbers.

3. Conjugates and Division

The conjugate of z is represented as $\overline{z} = a - bi$. The sign of the imaginary part is changed. Key properties are:

- $z\bar{z} = |z|^2 = a^2 + b^2$
- $\overline{z_1 + z_2} = \overline{z_1} + \overline{z_2}$
- $\overline{z_1 * z_2} = \overline{z_1} + \overline{z_2}$

To divide a complex number, multiply numerator and denominator by the **conjugate** of the denominator.

E.g. $z = \frac{3+2i}{5+i}$

1. Get the conjugate of the denominator = 5 - i

2. Multiply numerator and denominator by conjugate.

$$\frac{3+2i}{5+i} * \frac{5-i}{5-i} = \frac{5*(3+2i)-i(3+2i)}{5(5+i)-i(5+i)}$$
$$= \frac{15+10i-3i-2i^2}{25+5i-5i-i^2} = \frac{15+10i-3i-2(-1)}{25+5i-5i-(-1)}$$
$$= \frac{17+7i}{26} = \frac{17}{26} + \frac{7i}{26}$$

4. Modulus

The modulus of a complex number is the distance between the number and the origin (0,0). The notation used to represent the modulus of the complex number z is |z|

If z = a+ bi then the modulus is $|z| = \sqrt{a^2 + b^2}$

5. Conjugate Roots Theorem

The conjugate roots theorem states that is a polynomial with **real** coefficients has a complex root z = a + bi, then its conjugate $\overline{z} = a - bi$ is also a root.

If we are given a cubic where we can work out both complex roots and asked to find the other root:

- If z = x + yi is a root of the equation $az^3 + bz^2 + cz + d = 0$, then z = x yi is also a root.
- If z = x + yi and z = x yi are roots, then (z x yi) and (z x + yi) are factors.
- $(z x yi)^*(z x + yi)$ is also a factor
- $= z^2 xz + zyi xz + x^2 xyi zyi + xyi y^2i^2$
- $= z^2 2xz + x^2 + y^2$ is also a factor.
- Now using this term and dividing into $az^3 + bz^2 + cz + d$ will give the final factor and root.

6. Representing Complex Numbers

6.1 Geometric Form

We can represent complex numbers on an argand diagram where the x-axis is the Real axis and the y-axis is the imaginary axis. The numbers are represented as a point on this diagram. E.g. 4 + 2i

6.2 Polar Form

$$Z = r(\cos\theta + i \sin\theta)$$
, where:

- r is the modulus, r = |z|
- θ is called the argument. The formula depends on which quadrant the complex number is in:
 - 1st quadrant: $\theta = Reference \ angle = Tan^{-1}\left(\frac{y}{x}\right)$
 - \circ 2nd quadrant: θ = 180⁰ Reference Angle
 - 3^{rd} quadrant: θ = (180^o + Reference Angle) <u>or</u> (180^o Reference Angle)
 - 4^{th} quadrant: θ = (360[°] Reference Angle) <u>or</u> -Reference Angle
- Argument is written as arg(z)

E.g. Write $z = 1 + \sqrt{3}i$ in polar form

•
$$r = \sqrt{1^2 + (\sqrt{3})^2} = \sqrt{1+3} = 2$$

- $\theta = \operatorname{Tan}^{-1}(\frac{\sqrt{3}}{1}) = 60^{\circ}.$
- $z = 2(\cos 60^{\circ} + \sin 60^{\circ})$

7. De Moivre's Theorem

Powers Formula: $z^n = (r \cos \theta + r i \sin \theta)^n = r^n (\cos n\theta + i \sin n\theta)$ Roots Formula: $z^{\frac{1}{n}} = (r\cos\theta + ri\sin\theta)^{\frac{1}{n}} = r^{\frac{1}{n}}(\cos(\frac{\theta + 2k\pi}{n}) + i\sin(\frac{\theta + 2k\pi}{n}))$ The key applications are for:

- Calculating powers of a complex number -
- Finding the n-th roots of a complex number -

E.g. Find the roots of $z^3 = 8 + 8\sqrt{3}i$. Solution:

1. Find the modulus r:

r =
$$\sqrt{a^2 + b^2}$$

r = $\sqrt{8^2 + (8\sqrt{3})^2}$ = $\sqrt{64 + 192}$ = $\sqrt{256}$ = 16.

2. Find the argument θ .

$$\theta = \tan^{-1}\left(\frac{b}{a}\right)$$
$$\theta = \tan^{-1}\left(\frac{8\sqrt{3}}{8}\right) = \tan^{-1}(\sqrt{3}) = 60^{\circ}$$

- 3. Polar form $z^3 = 16(\cos 60^0 + i \sin 60^0)$
- 4. Find the cube roots using the roots formula

$$(16\cos 60^{0} + 16i\sin 60^{0})^{\frac{1}{3}} = \sqrt[3]{16}(\cos\left(\frac{60^{0} + (k * 360^{0})}{3}\right) + i\sin\left(\frac{60^{0} + (k * 360^{0})}{3}\right))$$

For
$$k = 0$$
:

$$Z_{0} = \sqrt[3]{16} (\cos\left(\frac{60^{0} + (0*360^{0})}{3}\right) + isin\left(\frac{60^{0} + (0*360^{0})}{3}\right))$$

$$= \sqrt[3]{16} (\cos\left(\frac{60^{0}}{3}\right) + isin\left(\frac{60^{0}}{3}\right))$$

$$= \sqrt[3]{16} (\cos\left(20^{0}\right) + isin\left(20^{0}\right)\right)$$

$$Z_{1} = \sqrt[3]{16} (\cos\left(\frac{60^{0} + (1*360^{0})}{3}\right) + isin\left(\frac{60^{0} + (1*360^{0})}{3}\right))$$

$$= \sqrt[3]{16} (\cos\left(\frac{420^{0}}{3}\right) + isin\left(\frac{420^{0}}{3}\right)\right)$$

$$= \sqrt[3]{16} (\cos\left(140^{0}\right) + isin\left(140^{0}\right)\right)$$

$$Z_{2} = \sqrt[3]{16} (\cos\left(\frac{60^{0} + (2*360^{0})}{3}\right) + isin\left(\frac{60^{0} + (2*360^{0})}{3}\right))$$

$$= \sqrt[3]{16} (\cos\left(\frac{780^{0}}{3}\right) + isin\left(\frac{780^{0}}{3}\right)\right)$$

$$= \sqrt[3]{16} (\cos\left(260^{0}\right) + isin\left(260^{0}\right)\right)$$
Final metric and

5. Final roots are:

 $Z_0 = \sqrt[3]{16} \left(\cos \left(20^0 \right) + i \sin \left(20^0 \right) \right)$ $Z_1 = \sqrt[3]{16} (\cos (140^0) + i \sin (140^0))$ $Z_2 = \sqrt[3]{16} (\cos (260^0) + i \sin (260^0))$

Proof by Induction

Step 1: Show that the proposition is true for n = 1(insert your workings to show outcome.....) Hence, proposition is true for n=1

Step 2: Assume that the proposition is true for n=k

Step 3: Prove that the proposition is true for n = k + 1, given that it is true for n = k. (insert your workings to show outcome for k+1 & how it relates to outcome for k....)

∴ The proposition is true for n = k + 1, given that it is true for n = k. Step 4: State that proposition is true for n = 1 and if the proposition is true for n=k, it will be true for n = k + 1, therefore by induction it is true for all $n \in N$.