

Question A – Exercise Questions

(i) If z1 = 2 + 3i and z2 = 1 - 2i find:

- 1) 2z1 + z2
- **2)** *z*1**z*2
- 3) z1 iz2
- 4) $|2 + z_1|$
- 5) <u>z</u>1
- 6) $\frac{z_2}{2z_1 + z_2}$

(ii) Write the following in polar format

- 1) 2 + 2i
- 2) $-2\sqrt{2} + 2\sqrt{2}i$

Question B (Question 3 Paper 1 2022)

(a) z = 6 + 2i, where $i^2 = -1$.

- (i) Show that z iz = 8 4i.
- (ii) Show that $|z|^2 + |iz|^2 = |z iz|^2$

(iii) The circle *c* passes through the points *z*, *iz*, and 0, as shown in the diagram below (not to scale). *z* and *iz* are endpoints of a diameter of the circle. Find the area of the circle *c* in terms of π .

(b) $(\sqrt{3} - i)^9$ can be written in the form a + ib, where $a, b \in \mathbb{Z}$ and $i^2 = -1$. Use de Moivre's Theorem to find the value of a and the value of b.

Question C (Question 1 Paper 1 2021)

(a)
$$\frac{(4-2i)}{(2+4i)} = 0 + ki$$
, where $k \in \mathbb{Z}$, and $i^2 = -1$. Find the value of k.

- (b) Find $\sqrt{-5 + 12i}$. Give both of your answers in the form a + bi, where $a, b \in \mathbb{R}$.
- (c) Use De Moivre's theorem to find the three roots of z³ = −8. Give each of your answers in the form a + bi, where a, b ∈ ℝ, and i² = −1.

Question D (Question 2 Paper 1 2020)

(a) Find the two complex numbers z_1 and z_2 that satisfy the following simultaneous equations, where $i^2 = -1$:

$$iz_1 = -4 + 3i$$

 $3z_1 - z_2 = 11 + 17i.$

Write your answers in the form a + bi where $a, b \in \mathbb{Z}$.

(b)

(i) The complex numbers $z_1 = 3 + 2i$ and $z_2 = 5 - i$ are the first two terms in a sequence. Find $z_3 = \frac{z_2}{z_1}$ in the form a + bi.

Question E (Question 5 Paper 1 2019)

(a) 3 + 2i is a root of $z^2 + pz + q = 0$ where p, $q \in R$. Find the values of p and q.

- (b) (i) $v = 2 2\sqrt{3}i$. Write v in the form $r(\cos \theta + i \sin \theta)$, where $r \in \mathbb{R}$ and $0 \le \theta \le 2\pi$.
 - (ii) Use your answer to part (b)(i) to find the two possible values of w, where w² = v. Give your answers in the form a + ib, where a, b ∈ ℝ.

Question F (Question 1 Paper 1 2013)

 $z = \frac{4}{1 + \sqrt{3}i}$ is a complex number, where $i^2 = -1$.

- (a) Verify that z can be written as $1 \sqrt{3}i$.
- (b) Plot z on an Argand diagram and write z in polar form.
- (c) Use De Moivre's theorem to show that $z^{10} = -2^9 (1 \sqrt{3}i)$.

Question G (Question 1 Paper 1 2016)

- (a) (-4+3i) is one root of the equation $az^2 + bz + c = 0$, where $a, b, c \in \mathbb{R}$, and $i^2 = -1$. Write the other root.
- (b) Use De Moivre's Theorem to express $(1 + i)^8$ in its simplest form.
- (c) (1+i) is a root of the equation z² + (-2 + i)z + 3 i = 0.
 Find its other root in the form m + ni, where m, n ∈ ℝ, and i² = -1.

Question H (Question 4 Paper 1 2021)

Prove using induction that $2^{3n-1} + 3$ is divisible by 7 for all $n \in \mathbb{N}$.

Question I (Question 7 Paper 1 2020)

Prove using **induction** that, for all $n \in \mathbb{N}$, the sum of the first n square numbers can be found using the formula:

$$1^{2} + 2^{2} + 3^{2} + 4^{2} + \dots + n^{2} = \frac{n(n+1)(2n+1)}{6}.$$

Question J 2023 Q 4 paper 1

- (a) The complex number $z_1 = 1 + i$ is a root of the equation $z^2 + (3 2i)z + p = 0$. Find the value of p, where p = a + bi, with $a, b \in \mathbb{Z}$.
- (b) Use **De Moivre's Theorem** to find the values of w for which $w^2 = -1 + \sqrt{3}i$. Give each value of w in the form a + bi, with $a, b \in \mathbb{R}$.