

Geometry 1 Tutorial - Solutions

Q1

Hint: Rearrange equation to equation of a line i.e. y = *mx* + *c*

Line	Equation	y = mx + c	m
h	x = 3 – y	y = -x + 3	-1
i	2x - 4y = 3	$y = \frac{1}{2}x - \frac{3}{4}$	$\frac{1}{2}$
k	$y = -\frac{1}{4} (2x - 7)$	$y = -\frac{1}{2}x + \frac{7}{4}$	$-\frac{1}{2}$
Ι	4x - 2y - 5 = 0	$y = 2x - \frac{5}{2}$	2
m	$X + \sqrt{3}y - 10 = 0$	$y = -\left(\frac{1}{\sqrt{3}}\right)x + \frac{10}{\sqrt{3}}$	$-\frac{1}{\sqrt{3}}$
n	$\sqrt{3}x + y - 10 = 0$	$y = -\sqrt{3}x + 10$	-√3

(a) Complete table below by matching each description given to one or more of the lines.

Description	Line(s)
A line with a slope of 2	1
A line which intersects the y-axis at $(0, -2\frac{1}{2})$	1
A line which makes equal intercepts on the axes	h (0, 3) & (3, 0)
A line which makes an angle of 150° with the positive sense of the x-axis	m tan 150° = - $\frac{1}{\sqrt{3}}$
Two lines which are perpendicular to each other	k, l m1 * m2 = -1

(b) Hint: Check P19 of your log tables for a formula.

Slopes of lines were calucalted above as $m = -\frac{1}{\sqrt{3}}$ and $n = -\sqrt{3}$ Tan $\alpha = \frac{m1 - m2}{1 + m1m2}$ or $\frac{m2 - m1}{1 + m1m2}$ Page 19 of tables Tan $\alpha = \frac{-\frac{1}{\sqrt{3}} - (-\sqrt{3})}{1 + (-\frac{1}{\sqrt{3}})(-\sqrt{3})}$ or $\frac{-\sqrt{3} - (-\frac{1}{\sqrt{3}})}{1 + (-\frac{1}{\sqrt{3}})(-\sqrt{3})}$... discard -neg Tan $\alpha = \frac{1.154701}{2}$ or $\frac{2}{2\sqrt{3}}$ Tan $\alpha = 0.57735$ or $\frac{1}{\sqrt{3}}$ Answer: $\alpha = 30^{\circ}$

Q 2(a)

Line	Equation	y = mx + c	Cuts y-axis	Cuts x-axis
Ι	x + 2y = -4	$\mathbf{y} = -\frac{1}{2}\mathbf{x} - 2$	(0, -2)	(-4, 0)
m	2x - y = -4	y = 2x + 4	(0, 4)	(-2, 0)
j	x + 2y = 8	$y = -\frac{1}{2}x + 4$	(0, 4)	(8, 0)
n	2x - y = 2	y = 2x - 2	(0, -2)	(1, 0)

(b) Scale is 6mm per unit – add the numbers to the diagram

(c)

Intercepts for k are (0, 2) and (4,0) ... from observation

Slope of k is
$$\frac{(y^2 - y_1)}{(x^2 - x_1)} = \frac{(0 - 2)}{(4 - 0)} = -\frac{1}{2}$$

Equation of k: $(y - y_1) = m(x - x_1)$
 $(y - 2) = -\frac{1}{2}(x - 0)$
 $2y - 4 = -x$
 $x + 2y - 4 = 0$

Q 3(a)

Hints: - Find the slope of AC

Turn the fraction upside-down and multiply by -1
This gives you the slope of a perpendicular line to AC

(b) Hints: - Find the equation of the line through C which is perpendicular to AB

- Use your answer from (a) and simultaneous equations to get the answer

Slope of $|BC| = \frac{(y^2 - y_1)}{(x^2 - x_1)} = \frac{(4 - 3)}{(-3 - 5)} = \frac{1}{-8} = -\frac{1}{8}$ Slope of Perpendicular line through A is 8 Use $(y - y_1) = m (x - x_1)$ to find equation of line where (x_1, y_1) is (6, -2) and m is 8 (y - (-2)) = 8 (x - 6)y + 2 = 8x - 488x - y - 50 = 0Solve the simultaneous equations 8x - y - 50 = 0Point of intersection is (7, 6) = orthocentre

Q4 (a)

Slope of $|AB| = \frac{(y2 - y1)}{(x2 - x1)} = \frac{(-6 - 2)}{(6 - 2)} = \frac{-8}{4} = -2$

Use (y-y1) = m(x-x1) to find equation of line |AB|where (x1, y1) is (2, 2) and m is -2

$$(y-2) = -2 (x-2)$$

y-2=-2x+4
2x+y-6=0

(b)

(c)

Use the formula
$$\frac{|ax1+by1+c|}{\sqrt{a^2+b^2}}$$

(x1, y1) is C(-2, -3) and the line (ax +by + c =0) is 2x + y - 6= 0
$$\frac{|2(-2) + 1(-3) - 6|}{\sqrt{2^2 + 1^2}} = \frac{13}{\sqrt{5}}$$

(d)

Area of Triangle = Half the base by the perpendicular heigh
Base =
$$|AD| = \sqrt{(x^2 - x^1)^2 + (y^2 - y^1)^2} = \sqrt{20}$$

Perpendicular Height = $\frac{13}{\sqrt{5}}$
Area = $\frac{1}{2} * \sqrt{20} * \frac{13}{\sqrt{5}} = 13$ square units

Q5 (a) Hint: Area = ½ base x perpendicular height

Use the formula for area on page 18 of the tables OR Use the triangle area formula "half the base by the perpendicular height" $\frac{1}{2} |OR|.10 = \frac{125}{3}$ $[OR] = \frac{25}{3}$ $R(-\frac{25}{3},0)$

(b)

METHOD 1: Get the equation for the line]RS| and show that E is on the line Slope of $|RS| = \frac{(y2 - y1)}{(x2 - x1)} = \frac{(10 - 0)}{(0 - (-\frac{25}{3}))} = \frac{10}{(\frac{25}{3})} = \frac{30}{25} = \frac{6}{5}$ Equation of |RS| is (y - y1) = m(x - x1)use $\frac{6}{5}$ for m and (0, 10) for (x1, y1) $(y - 10) = \frac{6}{5}(x - 0) \implies 5y - 50 = 6x \implies$ Equation of |RS| is 6x - 5y + 50 = 0Put E (-5, 4) into the equation of the line 6(-5) - 5(4) + 50 = -30 - 20 + 50 = 0 So E is on the line |RS|

Society of Actuaries in Ireland

METHOD 2: Show that the slope of |RE| = slope of |ES|Slope of $|ES| = \frac{(y2 - y1)}{(x2 - x1)} = \frac{(10 - 4)}{(0 - (-5))} = \frac{6}{5}$ Slope of $|RE| = \frac{(y2 - y1)}{(x2 - x1)} = \frac{(4 - 0)}{(-5 - (-\frac{25}{3}))} = \frac{4}{\frac{10}{3}} = \frac{12}{10} = \frac{6}{5}$ So E is on the line |RS|

(c)

V v = mx + cThe point E(-5, 4) is on this line, so substituting for x and y S(0, 10)4 = -5m + c c = 4 + 5m A This line cuts the y-axis at (0, c) and the x-axis at $(\frac{c}{m}, 0)$ The area of the triangle is $\frac{125}{2}$ This equals $\frac{1}{2} \left[x_1 y_2 - x_2 y_1 \right] = \frac{1}{2} \left[0 - c(-\frac{c}{m}) \right] = \frac{1}{2} \left[\frac{c^2}{m} \right]$ E Substituting from A above $\frac{125}{3} = \frac{1}{2} \left| \frac{(4+5m)^2}{m} \right|$ $250 m = 75m^2 + 120 m + 48$ $75m^2 - 130m + 48 = 0$ х (5m - 6)(15m - 8) = 0 (5m - 6) relates to the line |RS|, so $m = \frac{8}{15}$ and $c = 4 + 5\left(\frac{8}{15}\right) = \frac{20}{3}$ $/_R$ 0

Q6 (a) Hint: Find both slopes.

Find the slope of L1: 3x - 4y - 12 = 0 3x - 4y - 12 = 0 4y = 3x - 12 $y = \frac{3}{4}x - 3$ slope of $L1 = \frac{3}{4}$ |AB| perpendicular to L1 so slope of |AB|is $-\frac{4}{3}$ Slope of |AB| $= \frac{(y2 - y1)}{(x2 - x1)} = \frac{(t - (-1))}{(7 - 4)} = \frac{(t + 1)}{(3)}$ $\frac{(t + 1)}{(3)} = -\frac{4}{3}$ t + 1 = -4 t = -5

Q6 (b) Hint: Use the perpendicular distance formula

Use the formula for the perpendicular distance from point (x1, y1) to line ax +by + c =0 $\frac{|ax1 + by1 + c|}{\sqrt{a^2 + b^2}}$ (x1, y1) is (10, k) and the line (ax +by + c =0) is 3x - 4y - 12 = 0 $\frac{|3(10) - 4(k) - 12|}{\sqrt{3^2 + 4^2}}$ $\frac{|18 - 4k|}{5}$

(c) (i)

Use the formula for the perpendicular distance to get the distance in terms of k from P to I2
(x1, y1) is (10, k) and the line (ax +by + c =0) is $5x + 12y - 20 = 0$
$\frac{ 5(10) + 12(k) - 20 }{\sqrt{5^2 + 12^2}}$
$\frac{ 30+12k }{13}$
P is equidistant from 11 and 12

So $\frac{(18-4k)}{5} = \frac{(30+12k)}{13}$ OR $\frac{(18-4k)}{5} = -\frac{(30+12k)}{13}$ k = $\frac{3}{4}$ OR k = -48

(ii)

$$k > 0$$
 so $k = \frac{3}{4}$
Use one of the previous results and insert the value for k
Perpendicular distance
 $=\frac{(18-4k)}{5} = \frac{(18-4(\frac{3}{4}))}{5} = \frac{(18-3)}{5} = 3$

Q7

(a) Show that, for all $k \in \mathbb{R}$, the point P(4k-2, 3k+1) lies on the line $l_1: 3x - 4y + 10 = 0$.

If
$$(x, y) = (4k - 2, 3k + 1)$$
 then
 $3x - 4y + 10 = 3(4k - 2) - 4(3k + 1) + 10$
 $= 12k - 6 - 12k - 4 + 10$
 $= 0$
So the equation of l_1 is satisfied. Therefore
 $(4k - 2, 3k + 1)$ lies on l_1 .

(b) The line l_2 passes through P and is perpendicular to l_1 . Find the equation of l_2 in terms of k.

We have

$$3x - 4y + 10 = 0$$

$$\Leftrightarrow$$

$$-4y = -3x - 10$$

$$\Leftrightarrow$$

$$y = \frac{3}{4}x + \frac{5}{2}$$

Therefore the slope of l_1 is $\frac{3}{4}$. Therefore the slope of l_2 is $\frac{1}{\frac{3}{4}} = -\frac{4}{3}$. So l_2 has slope $-\frac{4}{3}$ and passes through (4k-2, 3k+1). So it has equation

$$y - (3k + 1) = -\frac{4}{3}(x - (4k - 2))$$

or

$$3y - 3(3k + 1) = -4(x - (4k - 2)).$$

Rearranging this gives

$$4x + 3y - 25k + 5 = 0$$

(c) Find the value of k for which l_2 passes through the point Q(3,11).

The equation of l_2 is

4x + 3y - 25k + 5 = 0.

Now (3,11) lies on l_2 if and only if $4(3) + 3(11) - 25k + 5 = 0 \Leftrightarrow 25k = 50 \Leftrightarrow k = 2$. So the k = 2 is the required value.

(d) Hence, or otherwise, find the co-ordinates of the foot of the perpendicular from Q to l_1 .

When k = 2 the equation of l_2 is 4x + 3y - 45 = 0.So to find the required point, we solve 3x - 4y + 10 = 0 4x + 3y - 45 = 0simultaneously. This is equivalent to 12x - 16y + 40 = 0 12x + 9y - 135 = 0Subtracting yields -25y + 175 = 0.Therefore 25y = 175 and $y = \frac{175}{25} = 7$. Now $3x - 4(7) + 10 = 0 \Leftrightarrow 3x = 4(7) - 10 = 18 \Leftrightarrow x = 6$. So the foot of the perpendicular from Q to l_1 has co-ordinates (6,7).

Q8

$$1 = \left| \frac{\frac{3}{2} - m}{1 + \frac{3}{2}m} \right| \Rightarrow 1 + \frac{3}{2}m = \frac{3}{2} - m \Rightarrow \frac{5}{2}m = \frac{1}{2} \Rightarrow m = \frac{1}{5}$$

$$1 = \left| \frac{m - \frac{3}{2}}{1 + \frac{3}{2}m} \right| \Rightarrow 1 + \frac{3}{2}m = m - \frac{3}{2} \Rightarrow \frac{3}{2}m - m = -\frac{3}{2} - 1 \Rightarrow m = -5$$
From the diagram, the slope of QR_1 is negative, so $m = -5$. We know one point on the line: $(x_1, y_1) = Q = (6, 6)$.
Equation of the line: $y - y_1 = m(x - x_1) \Rightarrow y - (6) = (-5)(x - (6))$

$$\Rightarrow 5x + y - 36 = 0$$
 x intercept: $y = 0 \Rightarrow 5x + (0) - 36 = 0 \Rightarrow x = \frac{36}{5} = 7 \cdot 2$
The co-ordinates of R_1 are $(7 \cdot 2, 0)$.

Question 9 - Answer

(b) Slope of $a = \frac{1}{2}$ Q1 Model Solution – 25 Marks (a) Slope of $b = \tan 60^\circ = \sqrt{3}$ Slope of *BC* $m = \frac{3+12}{-4-6} = -\frac{3}{2}$ $\tan \theta = \pm \frac{\sqrt{3} - \frac{1}{2}}{1 + \frac{\sqrt{3}}{2}} = \pm \frac{2\sqrt{3} - 1}{2 + \sqrt{3}}$ 3x + 2y + 6 = 0.Equation BC Perp. Distance from A to line BC $=\pm\frac{(2\sqrt{3}-1)(2-\sqrt{3})}{(2+\sqrt{3})(2-\sqrt{3})}$ $\frac{3(2)+2(-6)+6}{\sqrt{3^2+2^2}} = \frac{6-12+6}{\sqrt{13}} = \frac{0}{\sqrt{13}} = 0.$ $= \pm (-8 + 5\sqrt{3})$ $\theta = \tan^{-1} \left(-8 + 5\sqrt{3} \right)$ $\theta = 33.435^{\circ}$ Therefore A, B and C are collinear. Or $\theta + \tan^{-1}\frac{1}{2} + 120^{\circ} = 180^{\circ}$ $\theta + 26.565^{\circ} + 120^{\circ} = 180^{\circ}$ $\theta = 33.435^{\circ}$

Questions 10 - Answer

Q3	Model Solution – 30 Marks		
(a)	Method 1		
	$(\frac{4}{5}, 6), (-\frac{3}{5}, -1), (0, 11).$		
	-11	Q3	Model Solution – 30 Marks
	(4, -5), (-3, -12), (0, 0)	(b)	$1 + \frac{1}{2} = \frac{1}{2} - \frac{1}{2} + $
	$AREA = \frac{1}{2} 4(-12) - (-3)(-5) $	(i)	$Mid-point = \left(\frac{-2}{2}, \frac{-2}{2}\right)$
	$=\frac{1}{2} -63 $		$=\left(2\frac{k+l}{2}\right)$
	= 31 · 5		
			OR
	OR		
			-1 to 5 is 6 steps, then $x = -1 + 3 = 2$
	Method 2		-1 to 5 is 6 steps, then $x = -1 + 3 = 2$ k to l is $(l - k)$ steps, then $y = k + \frac{l - k}{2} = \frac{k + l}{2}$
	Method 2 Uses any one of the following formulae:		-1 to 5 is 6 steps, then $x = -1 + 3 = 2$ k to l is $(l - k)$ steps, then $y = k + \frac{l - k}{2} = \frac{k + l}{2}$ Mid-point = $\left(2, \frac{k + l}{2}\right)$
	Method 2 Uses any one of the following formulae: 1. Area = $\frac{1}{2}absinc$		-1 to 5 is 6 steps, then $x = -1 + 3 = 2$ k to l is $(l - k)$ steps, then $y = k + \frac{l - k}{2} = \frac{k + l}{2}$ Mid-point = $\left(2, \frac{k + l}{2}\right)$
	Method 2 Uses any one of the following formulae: 1. Area = $\frac{1}{2}absinc$ 2. Area = $\frac{1}{2} \times base \times perpendicular height$		-1 to 5 is 6 steps, then $x = -1 + 3 = 2$ k to l is $(l - k)$ steps, then $y = k + \frac{l - k}{2} = \frac{k + l}{2}$ Mid-point $= \left(2, \frac{k + l}{2}\right)$

Q3 Model Solution – 30 Marks
(b)(ii) Slope
$$AB = \frac{l-k}{5-(-1)} = \frac{l-k}{6}$$

Perpendicular slope $= -\frac{6}{l-k}$
Slope of $3x + 2y - 14 = 0$ is $-\frac{3}{2}$
 $-\frac{6}{l-k} = -\frac{3}{2}$ so $l-k = 4$... Eqn 1
or
Slope $AB = \frac{2}{3}$, then $(-1, k)$ and $(5, l) \in$
 $y = mx + c$, also gives $l-k = 4$... Eqn 1
 $\left(2, \frac{k+l}{2}\right) \rightarrow 3(2) + 2\left(\frac{k+l}{2}\right) - 14 = 0$
 $k + l = 8$... Eqn 2
 $\left\{ \begin{array}{c} l+k = 8\\ l-k = 4 \end{array} \right.$
 $2l = 12$ $l = 6, \ k = 2$
OR
Slope $AB = \frac{l-k}{6}$ and perpendicular $= -\frac{6}{l-k}$
Eqn of perp bisector:
 $y - \frac{k+l}{2} = -\frac{6}{l-k}(x-2)$
 $2y - k - l + \frac{12}{l-k}x - \frac{24}{l-k} = 0$ or
 $\frac{12}{l-k}x + 2y - k - l - \frac{24}{l-k} = 0$
Equating coefficients:
 $x: \frac{12}{l-k} = 3$ so $4 = l - k$... Eqn 1
Const.: $-k - l - \frac{24}{l-k} = -14$
 $-k - l - \frac{24}{4} = -14$
Solve for $l = 6, \ k = 2$

Question 11 - Answer

$\mathcal{C} = \left(\frac{1(8)+4(-1)}{4+1}, \frac{1(-4)+4(3)}{4+1}\right)$	-	
$C = \left(\frac{4}{5}, \frac{8}{5}\right)$		
OR		
x: 9 steps back [8 to -1]		
So $x_c = 8 - \frac{4}{5}(9) = \frac{4}{5}$		
y: 7 steps up [-4 to 3]		
So $y_c = -4 + \frac{4}{5}(7) = \frac{3}{5}$		
$C = \left(\frac{4}{5}, \frac{8}{5}\right)$		
	_	
	Q2	Model Solution – 30 Marks
	(c)	$\tan 30^{\circ} = \frac{-2 - m_2}{1 + (-2)m_2}$
		So $\frac{1}{\sqrt{3}} = \frac{-2 - m_2}{1 - 2m_2}$
From y-intercept to (q, r) :	-	$1 - 2m_2 = -2\sqrt{3} - \sqrt{3}m_2$
Run = q , so rise = qm , so y-value = $r - qm$		$m_2 = \frac{1+2\sqrt{3}}{2-\sqrt{3}}$
Answer: $(0, r - qm)$		$m_2 = \frac{1+2\sqrt{3}}{5} \times \frac{2+\sqrt{3}}{5}$
OR		$2^{-\sqrt{3}}$ $2^{-\sqrt{3}}$ $2^{+\sqrt{3}}$
y = mx + c		$m_2 = 8 + 5\sqrt{3}$
So $r = mq + c$		OR
So $c = r - mq$		$\frac{1}{\sqrt{3}} = \frac{-(-2-m_2)}{1+(-2)m_2}$
Answer: $(0, -mq + r)$		$1 - 2m = 2\sqrt{2} + \sqrt{2m}$
OR		$1 - 2m_2 = 2\sqrt{3} + \sqrt{3}m_2$
$y - y_1 = m(x - x_1)$		$m_2 = \frac{1-2\sqrt{3}}{2+\sqrt{3}}$
y - r = m(x - q) $y - r = mr - mq$		$m = \frac{1-2\sqrt{3}}{\sqrt{3}} \times \frac{2-\sqrt{3}}{\sqrt{3}}$
y = mx - mq y = mx - mq + r		$m_2 = \frac{1}{2+\sqrt{3}} \times \frac{1}{2-\sqrt{3}}$
x = 0, so $y = -mq + r$		$m_2 = 8 - 5\sqrt{3}$
Answer: $(0, -mq + r)$		
	$C = \left(\frac{1(8)+4(-1)}{4+1}, \frac{1(-4)+4(3)}{4+1}\right)$ $C = \left(\frac{4}{5}, \frac{8}{5}\right)$ OR $x: 9 \text{ steps back [8 to -1]}$ So $x_c = 8 - \frac{4}{5}(9) = \frac{4}{5}$ $y: 7 \text{ steps up } [-4 \text{ to 3]}$ So $y_c = -4 + \frac{4}{5}(7) = \frac{8}{5}$ $C = \left(\frac{4}{5}, \frac{8}{5}\right)$ From y-intercept to (q, r) : Run = q, so rise = qm, so y-value = $r - qm$ Answer: $(0, r - qm)$ OR $y = mx + c$ So $r = mq + c$ So $r = mq + c$ So $r = mq + c$ So $c = r - mq$ Answer: $(0, -mq + r)$ OR $y - y_1 = m(x - x_1)$ $y - r = mx - mq$ $y = mx - mq + r$ $x = 0, \text{ so } y = -mq + r$ Answer: $(0, -mq + r)$	$C = \left(\frac{1(8)+4(-1)}{4+1}, \frac{1(-4)+4(3)}{4+1}\right)$ $C = \left(\frac{4}{5}, \frac{8}{5}\right)$ OR $x: 9 \text{ steps back [8 to -1]}$ So $x_c = 8 - \frac{4}{5}(9) = \frac{4}{5}$ $y: 7 \text{ steps up } [-4 \text{ to } 3]$ So $y_c = -4 + \frac{4}{5}(7) = \frac{8}{5}$ $C = \left(\frac{4}{5}, \frac{8}{5}\right)$ From y-intercept to (q, r) : Run = q, so rise = qm, so y-value = $r - qm$ Answer: $(0, r - qm)$ OR $y = mx + c$ So $r = mq + r$ Answer: $(0, -mq + r)$ OR $y - y_1 = m(x - x_1)$ $y - r = mx - mq$ $y = mx - mq + r$ Answer: $(0, -mq + r)$ Answer: $(0, -mq + r)$