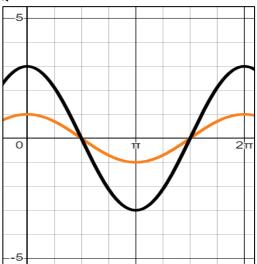
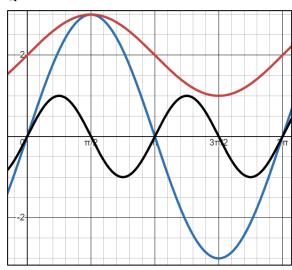
Exercises:

Q1.



Orange line: y = cos(x)Black line: y = 3cos(x) Q2.



Blue line: $y = 3\sin(x)$ Black line: $y = \sin(2x)$ Red line: $y = 2 + \sin(x)$

Q3.

(i) Length of arc =
$$r * \theta = 5 * \frac{\pi}{6} = \frac{5\pi}{6}$$
.
Area = $\frac{1}{2} * r^2 * \theta = \frac{1}{2} * 5^2 * \frac{\pi}{6} = \frac{25\pi}{12}$

(ii) Length of arc =
$$2 \pi * r * \frac{\theta}{360^0} = 2 \pi * 6 * \frac{40}{360} = \frac{4\pi}{3}$$
.
Area = $\pi * r^2 * \frac{\theta}{360^0} = \pi * 6^2 * \frac{40}{360} = 4 \pi$

Q4.

Find the reference angle: $\cos\theta = -\frac{\sqrt{3}}{2}$.

$$\Rightarrow \theta = \cos^{-1}(\frac{\sqrt{3}}{2})$$
$$\Rightarrow \theta = 30^{\circ}$$

Find the quadrant the angle lies in:

- ⇒ From our initial equation, Cos is negative.
- ⇒ Cos is negative in quadrants 2 and 3.

Our reference angle is 30° and lies in quadrants 2 and 3.

- \Rightarrow For quadrant 2, our angle is $180 30 = 150^{\circ}$
- \Rightarrow For quadrant 3, our angle is 180 + 30 = 210⁰

General solution is:

$$\theta = 150^{\circ} + n*360^{\circ} \text{ or } \theta = 210^{\circ} + n*360^{\circ}$$

Q5.

Find the reference angle: $\tan \theta = \sqrt{3}$.

$$\Rightarrow \theta = \operatorname{Tan}^{-1}(\sqrt{3}) = 60^{\circ}$$

From the initial equation, tan is positive.

⇒ Tan is positive in quadrants 1 and 3.

Our reference angle is 60° and lies in quadrants 1 and 3.

 \Rightarrow For quadrant 1, our angle is 60°

 \Rightarrow For quadrant 3, our angle is $180^{\circ} + 60^{\circ} = 240^{\circ}$.

General solution is:

 $\theta = 60^{\circ} + n*360^{\circ} \text{ or } \theta = 240^{\circ} + n*360^{\circ}$

We can also write this as:

 $\theta = 60^{\circ} + n*180^{\circ}$ (period of tan function is 180°).

Q6.

Find the reference angle: $\sin 3\theta = \frac{1}{2}$.

$$\Rightarrow 3\theta = \sin^{-1}(\frac{1}{2}) = 30^{\circ}$$

From the initial equation, sin is positive:

⇒ Sin is positive in quadrants 1 and 2.

Our reference angle is 30° and lies in quadrants 1 and 2.

- \Rightarrow For quadrant 1, the angle is 30°
- \Rightarrow For quadrant 2, the angle is $180 30 = 150^{\circ}$.

Our general solution is:

$$3\theta = 30^{\circ} + n*360^{\circ}, 3\theta = 150^{\circ} + n*360^{\circ}.$$

$$\theta = 10^{\circ} + n*120^{\circ}, \ \theta = 50^{\circ} + n*120^{\circ}.$$

Now we need to list each angle where $0 \le \theta \le 360^{\circ}$:

N=0:
$$\theta = 10^{\circ} + 0*120^{\circ}$$
, $\theta = 50^{\circ} + 0*120^{\circ}$

$$\theta = 10^{\circ}, \, \theta = 50^{\circ}$$

N=1:
$$\theta = 10^{\circ} + 1*120^{\circ}$$
, $\theta = 50^{\circ} + 1*120^{\circ}$

$$\theta = 130^{\circ}, \, \theta = 170^{\circ}$$

N=2:
$$\theta = 10^{0} + 2*120^{0}$$
, $\theta = 50^{0} + 2*120^{0}$

$$\theta = 250^{\circ}, \, \theta = 290^{\circ}$$

N=3:
$$\theta = 10^{\circ} + 3*120^{\circ}$$
, $\theta = 50^{\circ} + 3*120^{\circ}$

 θ = 370°, θ = 410°. These are greater than 360° so are not included.

Final list: θ = 10°, 50°, 130°, 170°, 250°, 290°.

Exam Questions:

Q1. 2021 Paper 2 Question 4b

_	Local aper a decoulon in					
Q4	Model Solution – 30 Marks					
(b)	$tan(angle) = -\sqrt{3}$, so reference angle = 60°					
	$150^{\circ} \le B + 150^{\circ} \le 510^{\circ}$					
	In Quad's 2 or 4, so angles are 300° or 480°					
	B + 150 = 300 or $B + 150 = 480$					
	So $B = 150^{\circ}$ or $B = 330^{\circ}$					
	OR					
	$\tan(B + 150) = \frac{\tan B + \tan 150}{1 - \tan B \tan 150}$					
	$= \frac{\tan B - \frac{1}{\sqrt{3}}}{1 + \left(\frac{1}{\sqrt{3}}\right) \tan B} = -\sqrt{3}$					
	So $\tan B - \frac{1}{\sqrt{3}} = -\sqrt{3} - \tan B$					
	So $2 \tan B = -\frac{2}{\sqrt{3}}$, i.e. $\tan B = -\frac{1}{\sqrt{3}}$					
	Reference angle = 30°					
	In Quad's 2 or 4, so $B=150^\circ$ or $B=330^\circ$					

Q2. 2020 Paper 2 Question 4

Q4	Model Solution – 25 Marks
(a)	_
	Reference angle: $\frac{\pi}{6}$
	$2^{ m nd}$ Quadrant: $\pi - \frac{\pi}{6} = \frac{5\pi}{6}$
	$\frac{\theta}{2} = \frac{5\pi}{6} + 2n\pi$
	$\theta = \frac{5\pi}{3} + 4n\pi$
	$n=0 \implies \theta = \frac{5\pi}{3} = 300^{\circ}$
	4 nd Quadrant: $2\pi - \frac{\pi}{6} = \frac{11\pi}{6}$
	$\frac{\theta}{2} = \frac{11\pi}{6} + 2n\pi$
	$\theta = \frac{11\pi}{3} + 4n\pi$
	$n=0 \implies \theta = \frac{11\pi}{3} = 660^{\circ}$
(b)	
	Area of ΔCOA = Area of Sector -21
	$= \frac{1}{2}r^2\theta - 21 = 8.4$
	Area of $\triangle COA$: $\frac{1}{2} CO 7 \sin 1.2 = 8.4$
	$ CO = \frac{8.4}{3.5 \sin 1.2} = 2.57$
	BC = 7 - 2.6 = 4.4 cm

Q3. 2019 Paper 2 Question Q4b

Let length of side be
$$x$$
Diagonal of any face $= \sqrt{x^2 + x^2} = \sqrt{2}x$

Internal diagonal $= x^2 + (\sqrt{2}x)^2 = \sqrt{3}x$

By cosine rule:
$$x^2 = \left(\frac{\sqrt{3}x}{2}\right)^2 + \left(\frac{\sqrt{3}x}{2}\right)^2 - 2\frac{\sqrt{3}x}{2}\frac{\sqrt{3}x}{2}\cos A$$

$$\cos A = \frac{\left(\frac{\sqrt{3}x}{2}\right)^2 + \left(\frac{\sqrt{3}x}{2}\right)^2 - x^2}{2\left(\frac{\sqrt{3}x}{2}\right)\left(\frac{\sqrt{3}x}{2}\right)}$$

$$\cos A = \frac{1}{3}$$
Or

Drop perpendicular from intersecting diagonals to side of cube, thereby creating angle $A/2$ at vertex in a right-angled triangle.
$$\sin \frac{A}{2} = \frac{x}{\frac{\sqrt{3}x}} = \frac{1}{\sqrt{3}}$$

$$\therefore \cos \frac{A}{2} = \frac{\sqrt{2}}{\sqrt{3}}$$

$$\cos A = 2\cos^2\frac{A}{2} - 1 = 2\left(\frac{2}{3}\right) - 1 = \frac{1}{3}$$
Also: $\sin \frac{A}{2} = \frac{1}{\sqrt{3}} \rightarrow \frac{A}{2} = 35 \cdot 2643896^\circ$

$$A = 70 \cdot 5287792^\circ$$

Q4. 2018 Paper 2 Question 4

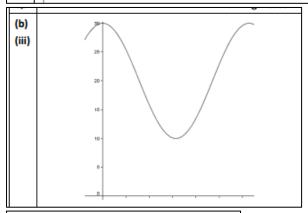
 $\cos A = 0.33236$

Q4	Model Solution – 25 Marks				
(a)	2x = 150 + 360n or $2x = 210 + 360nx = 75 + 180n$ $x = 105 + 180nn = 0 \Rightarrow x = 75^{\circ} n = 0 \Rightarrow x = 105^{\circ}n = 1 \Rightarrow x = 255^{\circ} n = 1 \Rightarrow x = 285^{\circ}$				
(b)	$2^{2} = y^{2} + z^{2}$ $z = \sqrt{4 - y^{2}}$ $\sin 2A = 2\sin A \cos A$ $2\left(\frac{\sqrt{4 - y^{2}}}{2}\right)\left(\frac{y}{2}\right)$ $= \frac{y\sqrt{4 - y^{2}}}{2}$ Or				
	Or				

Q5. 2018 Paper 2 Question 9

Q9	Model Solution – 40 Marks
(a)	$\frac{10}{\sin 15} = \frac{30}{\sin x}$ $\sin x = \frac{30 \sin 15}{10}$ $\sin x = 0.77645$ $x = 51^{\circ}$
(b) (i)	period = 2π Range = [10, 30]

(b)						
(ii)	α	0°	90°	180°	270°	360°
	f(α) (cm)	30	18-28	10	18-28	30



(c)
$$r^2 = 36^2 + (31 + r)^2 - 2(36)(31 + r)\cos 10^{\circ}$$
$$r^2 = 1296 + 961 + 62r + r^2 - (2232\cos 10^{\circ} - 72r\cos 10^{\circ})$$
$$8.906r = 58.91$$
$$r = 6.62$$
$$r = 7$$

Q6. 2016 Paper 2 Question 7

Q7	Model Solution – 55 Marks	
(a) (i)	$ EC ^2 = 3^2 + 2.5^2 = 15.25$	
	$ EC = \sqrt{15 \cdot 25}$	
	<i>EC</i> = 3⋅905	
	$\Rightarrow AC = 1.9525$	
	= 1.95	
(a) (ii)	$\tan 50^\circ = \frac{ AB }{1.95}$	
	AB = 1.95(1.19175) = 2.23239 AB = 2.3	
(a) (iii)	$ BC ^2 = 1.95^2 + 2.3^2$ BC = 3.015377 BC = 3	
	Also: $\sin 40^{\circ} = \frac{1.95}{ BC }$ or $\cos 40^{\circ} = \frac{2.3}{ BC }$	or
	$\cos 50^{\circ} = \frac{1.95}{ BC }$ or $\sin 50^{\circ} = \frac{2.3}{ BC }$	
(a) (iv)	$3^2 = 3^2 + 2.5^2 - 2(3)(2.5)\cos \alpha$	
	15 cos ∝= 6·25	
	∝= 65°	
	$cos \propto = \frac{1 \cdot 25}{3}$	
	∝= 65°	
(a)	4 = 2 Vicescales triangle ±2 V equilatoral	

(a)
(v)
$$A = 2 \times \text{isosceles triangle} + 2 \times \text{equilateral triangle}$$

$$= 2 \times \left[\frac{1}{2}(2.5)(3) \sin 65^{\circ}\right] + 2 \times \left[\frac{1}{2}(3)(3) \sin 60^{\circ}\right]$$

$$= 14.59$$

$$A=15$$

(b)
$$\tan 60^{\circ} = \frac{3}{|CA|}$$
$$\Rightarrow |CA| = \sqrt{3}$$
$$|CE| = 2\sqrt{3}$$
$$x^{2} + x^{2} = (2\sqrt{3})^{2}$$
$$x = \sqrt{6}$$