in Ireland
Financial Maths - Solution Handout

Warm up questions

Question 1.

$$
\begin{aligned}
& F=P(1+i)^{t} \\
& F=(4000)(1+0.03)^{4} \\
& F=€ 4,502.04 \\
& \text { Interest }=€ 4,502.04-€ 4,000=€ 502.04
\end{aligned}
$$

Question 2.

$F=P(1+i)^{t}$
$F=1.12 P$
$1.12 P=P(1+i)^{5}$
$1.12=(1+i)^{5}$
$1+i=\sqrt[5]{1.12}$
$1+i=1.02292$
I = $0.02292=2.3 \%=$ AER correct to 1 decimal place
Rule for rounding "correct to 1 dp " is round to nearest number ?

Question 3.

$$
\frac{2500}{(1+0.03)^{7}}=2032.73
$$

Society of Actuaries
in Ireland

> Financial Maths - Solution Handout

Compound Interest

Question 4. I

$$
\begin{gathered}
(1+i)^{4}=\left(1+\frac{5.75}{100}\right)^{1} \\
1+i=1.0575^{\frac{1}{4}}
\end{gathered}
$$

$$
\begin{gathered}
S_{n}=\frac{a\left(1-r^{n}\right)}{1-r} \\
a=1 \\
r=1+i
\end{gathered}
$$

So, from above, $r=1.0575^{\frac{1}{4}}$
Hence, $S_{16}=\frac{1\left(1-\left(1.0575^{\frac{1}{4}}\right)^{16}\right)}{1-1.0575^{\frac{1}{4}}}=\frac{1-1.0575^{4}}{1-1.0575^{0.25}}=17.80519556$
Investment is worth $300 S_{16}=300 \times 17.80519556=5341.558669$

$$
\approx € 5341.56
$$

(Sense check: €300 per quarter $=€ 1200$ per year $=€ 4800$ in 4 years, plus interest seems ok.)
in Ireland
Financial Maths - Solution Handout

Question 5.

$$
\begin{gathered}
P(1+i)^{t}=F \\
9950(1+i)^{5}=12700 \\
(1+i)^{5}=\frac{12700}{9950} \\
{\left[(1+i)^{5}\right]^{\frac{1}{5}}=\left[\frac{12700}{9950}\right]^{\frac{1}{5}}} \\
1+i=1.050016511 \\
i=0.050016511=5.0016511 \% \\
i \approx 5.00 \%
\end{gathered}
$$

Question 6.

Hint: The unknown (t) is the exponent. So, this involves using logs. Natural logs are easiest on the calculator.

$$
\begin{gathered}
P(1+i)^{t}=F \\
10000(1.05)^{t}=13000 \\
1.05^{t}=\frac{13000}{10000}=1.3 \\
\ln \left(1.05^{t}\right)=\ln 1.3 \\
t \ln 1.05=\ln 1.3 \\
t=\frac{\ln 1.3}{\ln 1.05}=5.377400731 \text { years } \\
t=5.377400731 \times 12=64.52880877 \text { months } \\
t \approx 65 \text { months }
\end{gathered}
$$

Society of Actuaries

in Ireland

> Financial Maths - Solution Handout

Question 7.

(i)

$$
\begin{aligned}
& F=P(1+i)^{t}=1(1+0 \cdot 0035)^{12}=1 \cdot 042818 \\
& \Rightarrow i=4 \cdot 28 \%
\end{aligned}
$$

(ii)

$$
\begin{aligned}
& F=P(1+i)^{t} \\
& 1 \cdot 045=1(1+i)^{12} \\
& 1+i=\sqrt[12]{1 \cdot 045}=1 \cdot 0036748 \\
& \Rightarrow i=0 \cdot 367 \%
\end{aligned}
$$

(iii) Formula is on page 31 of Log Tables

$$
\begin{aligned}
A & =P\left[\frac{i(1+i)^{t}}{(1+i)^{t}-1}\right] \\
& =80000\left[\frac{0 \cdot 0035(1 \cdot 0035)^{120}}{(1 \cdot 0035)^{120}-1}\right] \\
& =80000\left[\frac{0 \cdot 00532296}{0 \cdot 520846}\right] \\
& =817 \cdot 59=€ 818
\end{aligned}
$$

or

$$
\begin{aligned}
& 80000=\frac{A}{1 \cdot 0035}+\frac{A}{1 \cdot 0035^{2}}+\ldots+\frac{A}{1 \cdot 0035^{120}} \\
&=A\left[\frac{1}{1 \cdot 0035}+\frac{1}{1 \cdot 0035^{2}}+\ldots+\frac{1}{1 \cdot 0035^{120}}\right] \\
&=A\left[\frac{1}{1 \cdot 0035}\left(1-\left(\frac{1}{1 \cdot 0035}\right)^{120}\right)\right] \\
&\left.1-\frac{1}{1 \cdot 0035}\right] \\
&=A\left[\frac{0.342471198}{0.0035}\right] \\
&=A[97.8489137] \\
& A= 817 \cdot 58=€ 818
\end{aligned}
$$

Society of Actuaries

in Ireland
Financial Maths - Solution Handout

Present Value

Question 8.

(i)

$$
\begin{aligned}
& (1+i)^{12}=1 \cdot 04 \Rightarrow 1+i=\sqrt[12]{1 \cdot 04}=1 \cdot 003273 \Rightarrow i=0 \cdot 003274 \\
& \text { Hence, } i=0.327 \%
\end{aligned}
$$

Or

$$
\begin{aligned}
&(1.00327)^{12}=1.039953481 \\
&=1.0400 \\
& r=4 \%
\end{aligned}
$$

Where i is the monthly rate of interest and r is the annual equivalent rate.
(ii) From Sn Formula on page 22 of Log Tables

$$
\begin{aligned}
& 15000=P\left(1 \cdot 00327^{36}+1 \cdot 00327^{35}+\cdots+1 \cdot 00327^{2}+1 \cdot 00327\right) \\
& \Rightarrow P\left[\frac{1 \cdot 00327\left(1 \cdot 00327^{36}-1\right)}{1 \cdot 00327-1}\right]=15000 \\
& \Rightarrow P[38 \cdot 26326387]=15000 \\
& \Rightarrow P=392 \cdot 02=€ 392
\end{aligned}
$$

(iii)

$$
\begin{aligned}
A & =P \frac{i(1+i)^{t}}{(1+i)^{t}-1} \\
& =15000\left[\frac{0 \cdot 00866(1+0 \cdot 00866)^{36}}{1 \cdot 00866^{36}-1}\right] \\
& =486 \cdot 77
\end{aligned}
$$

Monthly payment $€ 487$

Society of Actuaries
in Ireland
Financial Maths - Solution Handout

Question 9. d
(i) $\mathrm{F}=\mathrm{P}(1-\mathrm{i})^{\mathrm{t}}$

$$
\begin{aligned}
& F=(20000)(1-0.15)^{2} \\
& F=20000(0.85)^{2} \\
& F=€ 14,450
\end{aligned}
$$

(ii) $F=P(1-i)^{t}$
$F=14450(1-0.1)^{3}$
$\mathrm{F}=14450(0.9)^{3}$
$\mathrm{F}=€ 10,534.05$

Question 10. D

Year	Project X	Project Y
0	$P V=-5000$	$\mathrm{PV}=-3000$
1	$P V=\frac{-2000}{1.05^{1}}=-1904.76$	$P V=\frac{-1000}{1.05^{1}}=-952.38$
2	$P V=\frac{2000}{1.05^{2}}=1814.06$	$P V=\frac{2000}{1.05^{2}}=1814.06$
3	$P V=\frac{5000}{1.05^{3}}=4319.19$	$P V=\frac{3000}{1.05^{3}}=2591.51$
NPV	-771.51	453.19
Advice	Reject	Invest

Amortisation Questions

Question 11. (B)
(i)

$$
2.5 \% \times 5000=125
$$

(ii) To calculate monthly rate "i"

Society of Actuaries

in Ireland

Financial Maths - Solution Handout

$$
(1+i)^{\frac{1}{12}}=(1.2175)^{\frac{1}{12}}=1.016535
$$

$$
\text { Rate }=1.65 \%
$$

(iii)

Payment number	Fixed monthly payment, € A	€ A		New balance of debt ($€$)
		Interest	Previous balance reduced by (€)	
0				5000
1	125	$82 \cdot 50$	$42 \cdot 50$	$4957 \cdot 50$
2	125	81.80	$43 \cdot 20$	4914.30
3	125	81.09	43.91	$4870 \cdot 39$

(iv) Source of formulae - Log Tables page 31

$$
\begin{gathered}
A=p\left[\frac{i(1+i)^{t}}{(1+i)^{t}-1}\right] \\
A\left[(1+i)^{t}-1\right]=p i(1+i)^{t} \\
A(1+i)^{t}-A=p i(1+i)^{t} \\
A=(1+i)^{t}[A-p i] \\
\frac{A}{A-p i}=(1+i)^{t} \\
\frac{125}{125-5000\left(\frac{1 \cdot 65}{100}\right)}=\left(1+\frac{1 \cdot 65}{100}\right)^{t} \\
\frac{125}{42 \cdot 5}=(1.0165)^{t} \\
\log \left(\frac{125}{42 \cdot 5}\right)=t \log (1 \cdot 0165) \\
t=\frac{\log \left(\frac{125}{42 \cdot 5}\right)}{\log (1.0165)} \\
t=65 \cdot 920 \\
t=66 \text { months }
\end{gathered}
$$

$$
\begin{gathered}
A=p\left[\frac{i(1+i)^{t}}{(1+i)^{t}-1}\right] \\
125=\frac{5000(0.0165)(1.0165)^{t}}{(1.0165)^{t}-1} \\
125=\frac{82 \cdot 5(1.0165)^{t}}{(1.0165)^{t}-1} \\
\frac{125}{82.5}=\frac{1.0165^{t}}{1.0165^{t}-1} \\
\frac{50}{33}=\frac{1.0165^{t}}{1.0165^{t}-1} \\
50\left(1 \cdot 0165^{t}-1\right)=33\left(1.0165^{t}\right) \\
50\left(1.0165^{t}\right)-50=33\left(1.0165^{t}\right) \\
50\left(1.0165^{t}\right)-33\left(1.0165^{t}\right)=50 \\
1.0165^{t}(50-33)=50 \\
1.0165^{t}(17)=50 \\
1.0165^{t}=\frac{50}{17} \\
t \log 1.0165=\log \frac{50}{17} \\
\log \left(\frac{50}{17}\right) \\
t=\frac{\log 1.0165}{}=65.92 \\
t=66 \text { months }
\end{gathered}
$$

Society of Actuaries

in Ireland
Financial Maths - Solution Handout

Society of Actuaries

in Ireland

Financial Maths - Solution Handout

(v)

$$
\begin{gathered}
A=\frac{p i(1+i)^{t}}{(1+i)^{t}-1} \\
=\frac{5000\left(1.085^{\frac{1}{52}}-1\right)(1.085)^{3}}{(1.085)^{3}-1} \\
=€ 36.16
\end{gathered}
$$

OR
Weekly interest rate $(1+i)^{52}=1.085$

$$
\begin{gathered}
1+i=1.085^{\frac{1}{52}} \\
1+i=1.00157 \\
i=0.00157 \\
A=\frac{p i(1+i)^{t}}{(1+i)^{t}-1} \\
A=\frac{5000(0.00157)(1.00157)^{156}}{(1.00157)^{156}-1} \\
=€ 36.16
\end{gathered}
$$

(vi)
$125 \times 66-(36 \cdot 16)(156)$
$=€ 2609 \cdot 04$

Society of Actuaries
in Ireland

Question 12.

(i) We can use the formula on page 31 as the interest rate and the compounding periods match; i.e. both monthly. (The formula book says "Annual" but we can replace this with "Monthly")

$$
\begin{gathered}
A=P \frac{i(1+i)^{t}}{(1+i)^{t}-1} \\
A=5000 \frac{(0.01)(1.01)^{6}}{(1.01)^{6}-1} \\
A=862.7418336 \approx € 862.74 \text { p.m. }
\end{gathered}
$$

Monthly payment $=€ 862.74=$ (portion to pay interest) + (portion to reduce debt)
(ii)

A	B	C	$\mathrm{D}=1 \% \times \mathrm{B}$	$\mathrm{E}=\mathrm{C}-\mathrm{D}$	$\mathrm{F}=\mathrm{B}-\mathrm{E}$
Month	Outstanding Balance at start month	Monthly Payment	Interest	Reduction in Debt	Outstanding Balance at end month
1	5000	862.74	50.00	812.74	4187.26
2	4187.26	862.74	41.87	820.87	3366.39
3	3366.39	862.74	33.66	829.08	2537.31
4	2537.31	862.74	25.37	837.37	1699.94
5	1699.94	862.74	17.00	845.74	854.20
6	854.20	862.74	8.54	854.20	0.00

Society of Actuaries

in Ireland
Financial Maths - Solution Handout

Question 13

Solution Part (i)

At the end of the first year Tom will save 15% of his salary
This will accumulate for 19 years at 3% pa
Tom's contribution will increase in the second year (month 24) to
This will accumulate for 18 years at 3% pa
The final contribution will be paid at the end of year 20

$$
\begin{aligned}
& 60,000 * 15 \%=9,000 \\
& 9,000 *\left[(1.03)^{\wedge} 19\right] \\
& 9,000 * 1.04=9,360 \\
& 9,360 *\left[(1.03)^{\wedge} 18\right] \\
& 9,000^{*}\left[1.04^{\wedge} 19\right]=18,961
\end{aligned}
$$

So Accumulated Amount will be (from Sn formula on page 22 of Log Tables)

```
        9,000 (1.03^19 + 1.04 *(1.03^18) + ....+ 1.04^19]
= 9,000*[(1.04^19)] *[{(1.03/1.04)}^19 +{(1.03/1.04)}^18+...1]
= 9,000*2.106849*(1+i)*[{1-(1/(1+i))^20 }/i] where 1+i=(1.04/1.03) = 1.009709
= 18,961 * 1.009709 * [1-((1/1.009709)^20)/ 0.009709] = 19,145* 18.09858 = 346,499
```


Question 13

Solution Part (ii)

The accumulated value in part (i) equals the present value of a payment of 10,000 per annum, increasing at 5% per annum payable for n years. So

```
\(346,499=10,000\left[1+1.05 / 1.03+(1.05 / 1.03)^{\wedge} 2+\ldots .(1.05 / 1.03)^{\wedge}(n-1)\right]\)
```

$34.6499=\left[1+(1+\mathrm{i})+(1+\mathrm{i})^{\wedge} 2+\ldots+(1+\mathrm{i})^{\wedge}(\mathrm{n}-1)\right]$ where $(1+\mathrm{i})=(1.05 / 1.03)=1.019417$
$34.6499=\left[\left\{(1+\mathrm{i})^{\wedge} \mathrm{n}-1\right\} / \mathrm{i}\right]=[\{1.019417 \wedge \mathrm{n}-1\} / 0.019417$
$0.672814=\left\{1.019417^{\wedge} n-1\right\} \Rightarrow \ln 1.672814=n \ln 1.019417=>n=26.75$
So the accumulated fund will be sufficient to pay the annuity for 26 years with three quarters of a years' payment remaining in the fund.

