Hints and Tips for Sequences and Series

Sequence is a list of objects in order. Recursion Formula enables finding a term in the sequence from a previous term e.g. $T_{n+1}=T_{n}+5$

Arithmetic Sequences

Difference between T_{n+1} and T_{n} is a constant so first difference between each terms in a sequence is the same. Each term can be written in format:
$T_{n}=a+(n-1) d$ where $T_{1}=a \quad$ and $d=$ first difference $\left(T_{2}-T_{1}\right)$

The sum of all the terms cumulatively up to (and including) term n is:

$$
S_{n}=\frac{n}{2}(2 a+(n-1) d
$$

Geometric Sequences

Difference between $\mathrm{T}_{\mathrm{n}+1}$ and T_{n} is a constant ratio. So $\frac{\overline{l_{n}}}{T_{n-1}}=r$ where r is the contract ratio between terms:
$T_{n}=r . T_{n-1}=a r^{n-1}$ where $T_{1}=a$ and r is the contact ratio

The sum of all the terms cumulatively up to (and including) term n is:

$$
S_{n}=\frac{a\left(1-r^{n}\right)}{1-r} \quad \text { where } r<>1
$$

where $-1<r<1$ then $S_{\infty}=\frac{a}{1-r}$ which can be used to convert recurring decimals into fractions

Limits

$$
\begin{gathered}
\lim _{n \rightarrow \infty} c=c \\
\lim _{n \rightarrow \infty}(n+n)=\lim _{n \rightarrow \infty} n+\lim _{n \rightarrow \infty} n \\
\lim _{n \rightarrow \infty}\left(\frac{1}{n}\right)=0 \\
\lim _{n \rightarrow \infty}\left(\frac{1}{x}\right)^{n}=0 \text { where }-1<x<1
\end{gathered}
$$

