Sequences and Series - Answers

Q4 2021 Paper 1

(i) $\quad T_{n}=a+(n-1) \cdot d$ for arithmetic sequence

$$
\begin{aligned}
& T_{1}=a+(0-1) \cdot d \Rightarrow T_{1}=p \quad \Rightarrow a=p \\
& T_{2}=p+(2-1) \cdot d \Rightarrow T_{2}=p+7, \Rightarrow d=7 \\
& T_{n}=p+(n-1) \cdot 7
\end{aligned}
$$

(ii) $2021 / 7=288 \bmod (5)=>p=5 \quad T_{288}=5+(288-1) .7$

Q4 Paper 12022

(a) $u_{3}=\sqrt{\frac{u_{2}}{U_{1}}}=\sqrt{\frac{64}{2}}=\sqrt{32}=\sqrt{2^{5}}=\left(2^{5}\right)^{1 / 2}=2^{5 / 2}$
(b)
(i) $\quad T_{n}=a+(n-1) . d$
$T_{1}=a+(1-1) \cdot d=5 e^{-k} \quad \Rightarrow \quad a=5 e^{-k}$
$\mathrm{T}_{2}=5 \mathrm{e}^{-\mathrm{k}}+(2-1) \cdot \mathrm{d}=13 \quad \Rightarrow \quad 5 \mathrm{e}^{-\mathrm{k}}+\mathrm{d}=13 \quad \Rightarrow \quad \mathrm{~d}=13-5 \mathrm{e}^{-\mathrm{k}}$
$\mathrm{T}_{3}=5 \mathrm{e}^{-\mathrm{k}}+(3-1) \cdot \mathrm{d}=5 \mathrm{e}^{\mathrm{k}} \quad \Rightarrow \quad 5 \mathrm{e}^{-\mathrm{k}}+2\left(13-5 \mathrm{e}^{-\mathrm{k}}\right)=5 \mathrm{e}^{\mathrm{k}} \quad \Rightarrow 26-5 \mathrm{e}^{-\mathrm{k}}=5 \mathrm{e}^{\mathrm{k}}$
$5 \mathrm{e}^{\mathrm{k}}-5 \mathrm{e}^{-\mathrm{k}}+26=0 \quad \mathrm{y}=\mathrm{e}^{\mathrm{k}} \quad \& \quad \mathrm{e}^{-\mathrm{k}}=\frac{1}{e^{k}}=\frac{1}{y}$
$5 y-\frac{5}{y}+26=0 \quad---$ multiply by y $=>5 y^{2}+26 y-5=0$
(ii) Factors are $(5 y-1)(y-5)$

$$
\begin{aligned}
& (5 y-1)=0 \quad 5 y=1 \quad=>\quad y=\frac{1}{5}=e^{k} \\
& \log _{e}\left(\frac{1}{5}\right)=\log _{e} e^{k}=k \quad=>\quad k=\log _{e}\left(\frac{1}{5}\right)=\log _{e}\left(5^{-1}\right)=-\log _{e}(5)
\end{aligned}
$$

Or

$$
\begin{aligned}
& (y-5)=0 \quad=>\quad y=5=>e^{k}=5 \\
& \log _{e}(5)=\log _{e} e^{k}=k \\
& k=\operatorname{Ln}(5)
\end{aligned}
$$

Q1 2015 Paper 1

(a)

Bounce	0	1	2	3	4	
Height	2		$\frac{3}{2}$		$\frac{9}{8}$	
			$\frac{27}{32}$	$\frac{81}{128}$		

(b)

Sum of 2 series -5 downward falls and 4 upward bounces. After first drop of $2 m$, height of bounce $=$ height of fall. Start series from when hits ground first to capture sum of upward bounces:
$S_{n}=\frac{a\left(1-r^{n}\right)}{1-r} \quad \Rightarrow$
$\mathrm{a}=\frac{3}{2} \quad \mathrm{r}=3 / 4 \quad \mathrm{n}=4 \quad S_{4}=\frac{\frac{3}{2}\left(1-\left(\frac{3}{4}\right)^{4}\right)}{1-\frac{3}{4}} \quad S_{4}=\frac{4}{1} \cdot \frac{3}{2}\left(1-\left(\frac{3}{4}\right)^{4}\right)=6\left(1-\frac{81}{256}\right)=\frac{1050}{256}=\frac{525}{128}$
Vertical movement is upward plus downward movement so travelled $2 \times \mathrm{S} 4$ after first bounce.
Total travel including initial drop $=2+2 \times \mathrm{S}_{4}=2+2 . \frac{525}{128}=\frac{653}{64}$
Or use numbers in table [Bounce $0+2 \mathrm{x}$ (Bounces $1-4$)]
(c) Travel indefinitely $=2+2 \times S_{\infty}$

$$
S_{\infty}=\frac{a}{1-r}
$$

$S_{\infty}=\frac{\frac{3}{2}}{1-\frac{3}{4}} \quad=\quad \frac{4}{1} x \frac{3}{2} \quad=6$
Total vertical distance travelled $2+2 \times 6=14 \mathrm{~m}$

Q9 2016 Paper 1

(i) First Term $=4$
$S_{n}=\frac{a\left(1-r^{n}\right)}{1-r}=7.9375 \quad a=4 \quad r=0.5$
$S_{n}=\frac{4\left(1-0.5^{n}\right)}{1-0.5}=7.9375 \quad \Rightarrow \quad 4\left(1-0.5^{n}\right)=\frac{1}{2} \times 7.9375 \quad \Rightarrow 1-0.5^{n}=3.96875 / 4$
$0.5^{n}=0.0078125 \quad \log 0.5^{n}=\log (0.0078125)$
$n \log 0.5=-2.1072 n=\frac{-2.1072}{-.301029}$
$\mathrm{n}=7$
(ii)
$S_{\infty}=\frac{4}{1-\frac{1}{2}}=8$ units
(iii) Treat x and y as two separate series and look at each one

For x coordinate $S_{\infty}=\frac{4}{1-\left(-\frac{1}{4}\right)}=\frac{4}{\frac{5}{4}}=\frac{16}{5}$ For y coordinate $S_{\infty}=\frac{2}{1-\left(-\frac{1}{4}\right)}=\frac{2}{\frac{5}{4}}=\frac{8}{5}$

The target co-ordinate is $\left(\frac{16}{5}, \frac{8}{5}\right)$

Stage	$1^{\text {st }}$	$2^{\text {nd }}$	$3^{\text {rd }}$	$4^{\text {th }}$	$5^{\text {th }}$	$6^{\text {th }}$	$7^{\text {th }}$	$8^{\text {th }}$	$9^{\text {th }}$
Change in x	+4	0	-1	0	$\frac{1}{4}$	0	$-\frac{1}{16}$	0	$\frac{1}{64}$
Change in y	0	2	0	$-\frac{1}{2}$	0	$\frac{1}{8}$	0	$-\frac{1}{32}$	0

Q2 2023 Paper 1

$\lim _{n \rightarrow \infty}\left[\frac{n}{n+1}+\frac{n+1000}{n}+\left(\frac{1}{3}\right)^{n}\right]=$
$\lim _{n \rightarrow \infty}\left(\frac{n}{n+1}\right)+\lim _{n \rightarrow \infty}\left(\frac{n+1000}{n}\right)+\lim _{n \rightarrow \infty}\left(\frac{1}{3}\right)^{n}=$
$\lim _{n \rightarrow \infty}\left(\frac{1}{1+\frac{1}{n}}\right)+\lim _{n \rightarrow \infty}\left(\frac{1+\frac{1000}{n}}{1}\right)+\lim _{n \rightarrow \infty}\left(\frac{1}{3}\right)^{n}=$
$\frac{1}{1+0}+\frac{1+0}{1}+0=2$

Q2 2018 Paper 1

(a) $\mathrm{T}_{\mathrm{n}}=\mathrm{ar} \mathrm{r}^{\mathrm{n}-1} \quad \mathrm{~T}_{1}=\mathrm{x}^{2}=\mathrm{a}$
$\mathrm{T}_{2}=5 \mathrm{x}-8=\mathrm{x}^{2} \mathrm{r}$
$\mathrm{T}_{3}=\mathrm{x}+8=\mathrm{x}^{2} \mathrm{r}^{2}$
$r=\frac{T 3}{T 2}=\frac{x+8}{5 x-8}$
Substitute r into T_{2}
$5 x-8=x^{2} \frac{(x+8)}{(5 x-8)} \quad \Rightarrow \quad(5 x-8) \cdot(5 x-8)=x^{3}+8 x^{2}$
$25 x^{2}-80 x+64=x^{3}+8 x^{2} \quad \Rightarrow \quad x^{3}-17 x^{2}+80 x-64$
(b) $\quad 1^{3}-17.1^{2+} 80.1-64=0$

$$
\frac{\left(x^{3}-17 x^{2}+80 x-64\right)}{(x-1)}=x^{2}-16 x+64=(x-8) \cdot(x-8)
$$

Other factor is $\mathrm{x}=8$
(c) $\mathrm{x}=1$ then $\mathrm{a}=1$ and $\mathrm{r}=\frac{1+8}{5-8}=-3$

$$
S_{\infty}=\frac{a}{1-r} \text { only works where }-1<r<1
$$

Society of Actuaries
in Ireland
$\mathrm{x}=8$ then $\mathrm{a}=64$ and $\mathrm{r}=\frac{8+8}{40-8}=1 / 2$

$$
S_{\infty}=\frac{64}{1-\frac{1}{4}}=\frac{264}{3}=88
$$

Q2 2020 Paper 1

$T_{n}=a r^{n-1}$

$$
\mathrm{T}_{1}=3+2 i=\mathrm{a}
$$

$\mathrm{T}_{2}=5-i=(3+2 i) \mathrm{r}$
$\frac{5-i}{(3+2 i)}=r \quad$ multiply by conjugate to remove denominator

$$
r=\frac{5-i}{(3+2 \mathrm{i})} x \frac{3-2 i}{(3-2 \mathrm{i})}=\frac{\left(15-3 i-10 i+2 i^{2}\right)}{\left(9-4 i^{2}\right)}=\frac{13-13 i}{13}
$$

$r=1-i$

Question 10 Paper 12023

(a) Area is area of triangle plus parts of rectangles outside of the triangle.

Triangular portion of rectangles outside large triangle has a height of $8 / 3+$ base of $1 / 6$ (3 rectangles)

Area of triangle $=1 / 2 \times 2 \times 8=8$
Area of other portions of 3 rectangles outside the large triangle $=6 \times 8 / 3 \times 1 / 6=8 / 3$
Total area $=8+8 / 3=32 / 3$ units
(b) Area of rectangles $=$ length x breadth i.e. for
$T_{1}=$ triangle base x triangle height,
$T_{2}=$ triangle base \times (triangle height/2) + (triangle base $/ 2 \times$ (triangle height/2)
$=($ triangle base \times triangle height/2) $\times(1+1 / 2)$
$T_{\mathrm{n}}=$ triangle base x triangle height $. \frac{1}{n} \times\left(\frac{1+(\mathrm{n}-1)+\ldots . .+1}{n}\right)$
$T_{\mathrm{n}}=2 \times \frac{8}{n} \mathrm{x}(\mathrm{n}+(\mathrm{n}-1)+\ldots . .1) \cdot \frac{1}{n}=\frac{16}{n^{2}} \times S_{\mathrm{n}}$ where $\mathrm{a}=1$ and $\mathrm{d}=1$
where $S_{n}=\frac{n}{2} \cdot(2 \cdot a+(n-1) \cdot d)=\frac{n}{2} \cdot(2 \cdot 1+(n-1) \cdot 1)=\frac{n \cdot n+1}{2}$
$T_{\mathrm{n}}=\frac{16}{n^{2}} \times \frac{n \cdot n+1}{2}=\frac{8(n+1)}{n}$
(c) Area of triangle $=0.5 \times 2 \times 8=8 \Rightarrow 95 \%$ Area $=7.6$ so A_{n} must be >7.6

$$
\begin{aligned}
& \frac{8(n-1)}{n}>7.6 \quad 8 \quad 8 n-8>7.6 n \quad=>0.4 n>8 \\
& n>20 \text { so } n=21 \text { is lowest value of } n
\end{aligned}
$$

Question 9 Paper 12018

Step	0	1	2	3
Number of black triangles	1	3	9	27
Fraction of the original triangle remaining	1	$3 / 4$	$\frac{9}{16}$	$\frac{27}{64}$

(b) (i) $T_{\mathrm{n}}=3^{n}$ derived from table

$$
\begin{array}{rlrrr}
\text { (ii) } T_{\mathrm{k}}>1 \times 10^{9} & =>3^{k}>1 \times 10^{9} \quad=> & \log _{10} 3^{k}>\log _{10}\left(1 \times 10^{9}\right) \\
\operatorname{kLog}_{10} 3>9 & => & \mathrm{k}>\frac{9}{\log _{10} 3} & & =>\mathrm{k}>18.86 \text { i.e. } \mathrm{k}=19
\end{array}
$$

(c) (i) $T_{\mathrm{h}}=\left(\frac{3}{4}\right)^{h}$ derived from the fact adding an equilateral triangle to the centre removes $1 / 4^{\text {th }}$ of original triangle so leaves $3 / 4$ of area in the previous term
$T_{\mathrm{h}}<\frac{1}{100}=>\quad \frac{1}{100}>\left(\frac{3}{4}\right)^{h} \quad=>\log _{10} \frac{1}{100}>\log _{10}\left(\frac{3}{4}\right)^{h}$
$-2>\operatorname{hLog}_{10} \frac{3}{4} \quad=>\quad \frac{-2}{-.12493}<\mathrm{h} \quad 16.007<\mathrm{h}$
$\mathrm{h}=17$
(ii) $\lim _{n \rightarrow \infty}\left(\frac{3}{4}\right)^{n}=0$ as $\left(\frac{3}{4}\right)^{\infty}=0$
(d) (i)

Step	0	1	2	3	4
Perimeter	3	$9 / 2$	$27 / 4$	$81 / 8$	$243 / 16$

Logic is that a new triangle placed in centre creates 3 equilateral triangles each one is half the perimeter to the original triangle so perimeter increased $\times 50 \%$ so $T_{\mathrm{n}}=3 \times\left(\frac{3}{2}\right)^{n}$
(ii) $\quad T_{35}=3 \times\left(\frac{3}{2}\right)^{35}=4,368,329$ to nearest unit
(e) As the number of steps increases the area remaining of the black triangles decreases to a negligible amount but the perimeter on the increased number of black triangles gor to infinity so they are inversely related.

Q7 Paper 12021

Swing	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	4	5
Length of Arc (cm)	$\mathbf{4 5}$	$\frac{\mathbf{8 1}}{2}$	$\frac{729}{20}$	$\frac{\mathbf{6 5 6 1}}{200}$	$\frac{59049}{\mathbf{2 0 0 0}}$

(ii) $T_{\mathrm{n}}=45(0.9)^{25-1}=3.589$ i.e 3.6 to one decimal place
(iii) $T_{\mathrm{n}}=45(0.9)^{\mathrm{n}-1} \quad$ Geometric series where $\mathrm{a}=45$ and $\mathrm{r}=0.9$
$\mathrm{S}_{\mathrm{n}}=\frac{a .\left(1-r^{n}\right)}{1-r} \quad \mathrm{~S}_{40}=\frac{45 .\left(1-0.9^{40}\right)}{1-0.9}=\frac{44.334}{0.1}=443.3$ i.e. 443 cm (nearest)
(iv) $T_{\mathrm{n}}<2 \quad \Rightarrow \quad 45(0.9)^{n-1}<2 \quad \Rightarrow \quad(0.9)^{n-1}<\frac{2}{45}$
$\log _{10}(0 \cdot 9)^{n-1}<\log _{10}\left(\frac{2}{45}\right) \quad \Rightarrow \quad(n-1) \log _{10} 0 \cdot 9<-1.3521$
($\mathrm{n}-1$) $(-.04575)<-1.3521$
$\Rightarrow \quad(\mathrm{n}-1)>\left(\frac{-1.3521}{-.04575}\right)$
$(n-1)>29.55 \quad \Rightarrow \quad n>30.55$ i.e. swing 31
(b) (i) length of arc $=2 \pi r \frac{\theta}{360^{\circ}} \quad \mathrm{I}=45 \mathrm{~cm} \quad \mathrm{r}=100 \mathrm{~cm}$
$45=2 \pi .100 \frac{\theta}{360^{\circ}} \quad \theta=\frac{45 \times 360^{\circ}}{200 \pi} \quad=25.78$ nearest is 26°
(ii) $\mathrm{S}_{\infty}=\frac{a}{1-r}=\frac{26}{1-0.9}=260^{\circ}$
(iii) When $\mathrm{S}_{\mathrm{n}}=\frac{a \cdot\left(1-r^{n}\right)}{1-r}=130^{\circ}$
$\frac{26 .\left(1-0.9^{n}\right)}{1-0.9}=130^{\circ} \quad \Rightarrow \quad\left(1-0.9^{n}\right)=\frac{130 \times 0.1}{26}$
$-0.9^{n}=0.5-1 \quad \Rightarrow \quad-0.9^{n}=-0.5 \Rightarrow>\quad 0.9^{n}=0.5$
$n \log _{10}(0 \cdot 9)=\log _{10}(0.5) \quad \Rightarrow \quad n=\frac{-0.301029}{-0.0457574}=6.5788$
$\mathrm{S}_{6.5788}=\frac{45 .(1-0.96 .5788)}{1-0.9}=224.99$ or 225 to nearest cm

Q9 Paper 12022
(a) $15(0 \cdot 6)^{2.5}=4.18 \mathrm{mg}$
(b) $15(0 \cdot 6)^{n}=1 \mathrm{mg} \quad \Rightarrow \quad \log _{10}(0 \cdot 6)^{\mathrm{n}}=\log _{10}\left(\frac{1}{15}\right)$

$$
n \log _{10}(0 \cdot 6)=-1.17609 \quad \Rightarrow \quad n=\frac{-1.17609}{-0.22184}=5.3 \text { days to one decimal place }
$$

Society of Actuaries
in Ireland
(c) 15: amount from injection just given

15(0 $\cdot 6$): amount from injection 1 day ago
$15\left(0 \cdot 6^{2}\right)$: amount from injection 2 days ago
$15\left(0 \cdot 6^{3}\right)$: amount from injection 3 days ago
(d) $\mathrm{S}_{\mathrm{n}}=\frac{a .\left(1-r^{n}\right)}{1-r} \quad \mathrm{a}=15 \quad \mathrm{r}=0.6 \quad \mathrm{n}=10$
$\mathrm{S}_{10}=\frac{15\left(1-0.6^{10}\right)}{1-0.6}=37.273$ ie 37.27 mg rounded to 2 decimal place
(e) $\mathrm{S}_{\infty}=\frac{a}{1-r}=\frac{15}{1-0.6}=37.5 \mathrm{mg}$
(f) \quad (i) $T_{n}=d(0.85)^{t}$
$\mathrm{S}_{\mathrm{n}}=\frac{d \cdot\left(1-0.85^{n}\right)}{1-0.85}=\frac{d \cdot\left(1-0.85^{n}\right)}{0.15}=\frac{d \cdot\left(1-0.85^{n}\right)}{\frac{3}{20}}=\frac{20 d \cdot\left(1-0.85^{n}\right)}{3}$
(ii) $\mathrm{S}_{7}=50_{\text {and }}$
$S_{7}=\frac{20 d .\left(1-0.85^{7}\right)}{3}=\frac{20 d(0.67942)}{3}=4.5294(\mathrm{~d})=50$
so $\mathrm{d}=11.038 \mathrm{mg}$ or 11 mg to nearest

